SPH and Eulerian underwater bubble collapse simulations

PDF Version Also Available for Download.

Description

SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. Previously, the SPH algorithm has been subjected to detailed testing and analysis to determine the feasibility of using the coupled finite-element/SPH code PRONTO/SPH for the analysis of various types of underwater explosion problems involving fluid-structure and shock-structure interactions. Here, SPH and Eulerian simulations are used to study the details of underwater bubble collapse, particularly the formation of re-entrant jets during collapse, and the loads generated on nearby structures by the jet and ... continued below

Physical Description

41 p.

Creation Information

Swegle, J.W. & Kipp, M.E. May 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. Previously, the SPH algorithm has been subjected to detailed testing and analysis to determine the feasibility of using the coupled finite-element/SPH code PRONTO/SPH for the analysis of various types of underwater explosion problems involving fluid-structure and shock-structure interactions. Here, SPH and Eulerian simulations are used to study the details of underwater bubble collapse, particularly the formation of re-entrant jets during collapse, and the loads generated on nearby structures by the jet and the complete collapse of the bubble. Jet formation is shown to be due simply to the asymmetry caused by nearby structures which disrupt the symmetry of the collapse. However, the load generated by the jet is a minor precursor to the major loads which occur at the time of complete collapse of the bubble.

Physical Description

41 p.

Notes

OSTI as DE98005448

Source

  • Other Information: PBD: May 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98005448
  • Report No.: SAND--98-1040
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/658192 | External Link
  • Office of Scientific & Technical Information Report Number: 658192
  • Archival Resource Key: ark:/67531/metadc703234

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 14, 2016, 8:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Swegle, J.W. & Kipp, M.E. SPH and Eulerian underwater bubble collapse simulations, report, May 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc703234/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.