
Sandia National Laboratories
Albuquerque, NM 87185-0780

ABSTRACT
This paper describes the design and preliminary test results of a 360-degree scanning, multispectral intrusion detection sensor. This moderate-resolution, panoramic imaging sensor is intended for exterior use at ranges from 50 to 1500 meters. This Advanced Exterior Sensor (AES) uses three sensing technologies (infrared, visible, and radar), separate track processors and sensor fusion to provide low false-alarm intrusion detection, tracking, and immediate visual assessment. The images from the infrared and visible detector sets and the radar range data are updated as the sensors rotate about once per second. The radar provides range data with one-meter resolution. This sensor has been designed for low-cost, easy use and rapid deployment to cover wide areas beyond, or in place of, typical perimeters, and tactical applications around fixed or temporary high-value assets. A prototype AES has been developed and preliminary test results are presented. This sensor represents a growing trend to use low-cost thermal imaging sensors, combined with other devices and advanced processing, for protection of U.S. military forces and other national assets.

INTRODUCTION
The Advanced Exterior Sensor (AES) is an intrusion detection and tracking system for wide area coverage in ground-based security applications. The requirements are to detect human and vehicle intrusions across various terrain and environmental conditions. It has been designed to be rapidly deployable and simple to set up and operate, and suitable for both day and night operations.

The AES integrates three sensor technologies (thermal infrared waveband, visible waveband, and microwave radar) with three motion detection target trackers and a sensor fusion software module to achieve higher performance than single technology devices. Wide areas are covered by continuously scanning the three sensors 360 degrees in about one second. No commercial-off-the-shelf (COTS) system exists today that combines these technologies.

Sensors capable of wide area, stand-off intrusion detection are gaining increased importance in applications ranging from upgraded fixed perimeter security to rapid-deployment force protection on peace-keeping missions. Adding imaging and motion detection capabilities to wide area sensors enhances their usefulness and provides the operator immediate visual alarm assessment.

Video motion detection (VMD) systems have been applied primarily to closed-circuit television (CCTV) cameras around perimeters; however, recent evaluations show nuisance alarms are still high [Ringler-95], and most applications have focused on clear zones, not unstructured areas.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
The AES project was designed to include VMD by capitalizing on faster processors and advanced detection and tracking algorithms. One goal of the AES project is to combine these in an affordable package.

DESIGN REQUIREMENTS FOR AN AES

At the beginning of the AES project, the following general requirements for a stand-off intrusion detection sensor were identified:

1. Capable of wide area coverage (hundreds of meters for humans and vehicles).
2. Detection and tracking of multiple targets.
3. Capable of detecting a wide range of penetration scenarios.
4. High probability of detection (Pd).
5. Low nuisance alarm rate by discriminating humans and vehicles from nuisance sources.
6. Capable of 24-hour operation in varying environmental and climatic conditions.
7. Limited mechanical moving parts.
8. Capable of sectorized assessment while maintaining detection in the remaining areas.
10. Low life-cycle cost.

Additional requirements and clarification of these parameters were derived from related programs, interviews with individuals in the security field, operational requirements documents, and other agencies and sources.

SPECIFIC DESIGN PARAMETERS

The AES was designed to detect and track humans and vehicles in accordance with the ranges summarized in Table 1. Targets moving as slowly as 0.25 meter per second (0.1 m/sec desired) are to be detected as well.

The AES was designed to reduce nuisance alarms based on motion of the objects. The AES detects motion in a full 360° while assessing alarms from other locations by continuous azimuth scanning. The system can accommodate uneven terrain by varying the elevation angle during rotation, but this has not yet been fully implemented.

Initial detection and tracking performance, as described later, is meeting expectations and any refinements to the infrared sensor will result in overall system improvements.

Table 1. Detection range requirements.

<table>
<thead>
<tr>
<th>Target</th>
<th>Conditions</th>
<th>Range (req'd)</th>
<th>Range (desired)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright human walk/run</td>
<td>Clear, good visibility</td>
<td>500 m</td>
<td>750 m</td>
</tr>
<tr>
<td>0.6x1.65 m 1.0 m²</td>
<td>Light rain, humid</td>
<td>350 m</td>
<td>525 m</td>
</tr>
<tr>
<td>Crawling human head-on</td>
<td>Clear, good visibility</td>
<td>250 m</td>
<td>375 m</td>
</tr>
<tr>
<td>0.5x0.3 m 0.15 m²</td>
<td>Light rain, humid</td>
<td>200 m</td>
<td>300 m</td>
</tr>
<tr>
<td>Truck/van</td>
<td>Clear, good visibility</td>
<td>1000 m</td>
<td>1500 m</td>
</tr>
<tr>
<td>1.5x1.5 m 2.3 m²</td>
<td>Light rain, humid</td>
<td>800 m</td>
<td>1200 m</td>
</tr>
</tbody>
</table>

COMPONENTS OF THE AES

The AES consists of three major components. The Remote Sensor Module (RSM), shown in Figure 1, is a rotating sensor pod that is placed in the field and remotely connected over a high-speed data link to a high-speed Data Processing Module (DPM). Eventually, multiple RSMs and DPMs (used in combination) can be networked to cover a very large facility. A single Display Control Module (DCM) is used to configure and control an RSM and DPM.

REMOTE SENSOR MODULE

An infrared sensor was selected to provide good quality imagery in both day and night conditions, with some advantage during poor weather as well. A lead-selenide (PbSe) linear infrared array, operating in the 3-5 micron thermal infrared band, was selected as the primary sensing device in the AES RSM.
Figure 1. Remote Sensor Module

Performance modeling of the system using a 160-element PbSe linear array predicted the Minimum Resolvable Temperature Difference curve shown in Figure 2 [see also Pritchard-94]. Also shown in this figure are measured MRTD values taken before and after some system refinements, including detector replacement and focus adjustments. Performance of the infrared sensor is not as good as predicted, however, and some additional investigations are under way.

A radar has been included to overcome rain and fog obscuring the infrared sensor. The radar developed for the AES is a frequency modulated, continuous wave (FMCW) radar with area moving-target indication (AMTI). The chosen frequency (17 GHz) was based on rain clutter and human signature modeling. Additional details of the system are described in [Pritchard-95 and Garcia-97].

DATA PROCESSOR MODULE

The DPM (Figure 3) consists of an industry-standard VME backplane and industrial quality enclosure, a custom Fibre Channel receiver and demultiplexer board, a high-speed PowerPC-based control computer, and two, dual Texas Instruments 320C80 digital signal processors.

Figure 2. AES MRTD Comparison

A visible-waveband imaging sensor and a microwave radar sensor were chosen to complement the infrared sensor. The visible band sensor effectively supplements the limitations of an infrared sensor during periods of low thermal contrast in warm background, daytime operation.

Figure 3. Data Processor Module

The AES infrared and visible motion detection (segmentation) software development was based on an adaptation of the spatio-temporal constraint equation technique [Munno 93]. The radar digital signal processing is primarily 4096-point fast Fourier transform (FFT) operations with some additional coherent averaging and infinite-impulse response (IIR) filtering. The tracking software uses the output of the basic motion detection software; then feature-based sensor fusion software is used to combine the outputs of the three trackers to achieve an overall confidence value of the detection [Nelson-96].
DISPLAY AND CONTROL MODULE

A common personal computer (PC) is used as the DCM in the AES. The special requirements are that it have an ethernet port for communication to the networked DPM suitable display for grayscale imagery with color overlays. Although not implemented for the proof-of-concept system, the DCM will eventually have the capability to connect to and control multiple sensor modules and display imagery from each. Figure 4 shows a sample PC screen displaying a 10-degree wedge of the full 360-degree image. The imagery shown is from the visible sensor and is at an angle of 194 degrees from north.

APPLICATIONS

Figure 5 shows a conceptual AES application with only four sensor modules at each corner of a one square-kilometer protected area covering an excess of one square mile. The DPMs are co-located and connected together with an ethernet connection. The RSMs are connected to the DPMs over an optical fiber cable.

PRELIMINARY AES TESTING

VEHICLE DETECTION

Preliminary testing to detect vehicles moving within the field of regard has been completed. Vehicles have been successfully detected and tracked in several scenarios. Vehicle traffic on a freeway 4.2 km away is routinely detected and tracked. Small trucks, cars, and vans are also routinely detected and tracked on an access road to the test facility at Sandia National Laboratories. Figure 6 shows a detection and track box around a vehicle at a distance of approximately 4 km in daytime imagery using the visible camera. This vehicle was simultaneously detected by both the visible and infrared trackers.
Figure 6. Vehicle Detection at 4.2 km
(Daytime, Visible Image)

Figure 7 shows a detection of a vehicle at 4.2 km at night in infrared imagery. Actual detection ranges may vary depending on environmental conditions. This vehicle is beyond the range of the radar. The radar range cut-off is 1500 m.

Figure 7. Vehicle Detection at 4.2 km
(Night, Infrared Image)

PEOPLE DETECTION

Preliminary performance testing to detect people walking and running shows detection ranges in clear conditions of 500 m or more. Figure 8 shows an example of detection of a person walking in a field during the day at 550 m. The person was detected by both the infrared and visible sensors. Figure 9 shows detection of a person at night using just the infrared sensor. This person is also at 550 m.

Figure 8. Detection of Person at 500 m
(Daytime, Visible Image)

Figure 9. Detection of Person at 500 m
(Night, Infrared Image)

Some additional test data has been taken to detect crawlers. Figure 10 shows detection of a crawling person in the daytime at approximately 350 m. The image is from the visible sensor.

Although a large amount of test data has not yet been acquired and analyzed, the results to date indicate good detection and tracking performance with the infrared and visible sensors. When the radar becomes fully operational, additional testing will be performed and detection rates are expected to increase. Some further testing will also be performed using different targets and during adverse weather conditions.
SUMMARY AND FUTURE EFFORTS

The AES design combines infrared imaging and visible linear arrays with an area MTI radar in a rotating sensor module. The data processor is implemented as a separate module, remotely located near the operator’s display and control unit. The first operational prototype was completed in early 1998 and performance testing has begun. The system is designed to be easily deployed and be effective in many weather conditions. This is accomplished by integration and complementary processing of the signals from three discrete sensors.

Data processing requirements play a major role in the AES system design. The detection and tracking algorithms were developed to reliably detect moving objects in low signal-to-noise conditions and operate on scenes where little or no activity is expected.

Additional testing of the prototype AES will be performed to better understand the capabilities of the system to detect humans and vehicles in varied and dynamic clutter environments.

REFERENCES

