PHE RLATION OF THE WATETMATIOLL VOCABTLARY
OF THE BLXTH AND SEVWNTH GRADRS
TO BEILL TM PROBLEA SOLVING
Dot

THE RELATION OF THE MATHEMATICAL VOCABULARY OF THE SIXTH AND SEVENTH GRADES TO BKILL IN PROBLEM SOLVING

THESIS

Presented to the Graduate Council of the North Texas State Teachers College in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE
by

Alma Giles, B. S.

Iowa Park, Texas
August,1941
90649

90649

TABL OF COWTMTS

Chapter

1. सwnonucs on 1
 Vocabulany In monkza boxvime... 6
 acrool 17
2V. COMLTATONS. 39
APPENDIX 41
MTITOORAMWY 44

Table
Fage

1. The Tntelilgence cuoticnt, mhe ohronological Age, and the tental feg of the mpile in

2. The Intellicence quotient, the Ghronolouteal bse, and the wental fre of the puplla in the
 Khementery School, Iowa fark, Texas, 1940-41.. 90
3. The Zntell igence uotiont, the Ohronolontcel Hee, and the Sental heg of the rupils in the seventh Grace, Group A of the Iown Park thaentary school, Iowe rark, Texte. 1940-41
4. The Tatelligence guotient, the Chxonoloetcal hge, and the mentel tege of the pupils in the acventh Orade, Group B, of the Iowa Fark mbmentary whool, Iowa Park, Texas.......
5. The 0 acore of guantitative selstionshipa, problem 3olving, sithwetio Yocabulary, and sumamental operetions of the axth
 ning of 3tucy25
 Froblem solving, withet the Yocabulery, and hundanental operetions of the sixth Grace, Group B, Arithottic chas at the reginning of the study
6. The 0 scores In Gututitative gelatlonshipe, moblem Golving, Arithectic Vocebulery, and Fundamental operations of the seventh Grade, Group f fithmetie clasa ge serinning of study... 28
7. The C seores in quantitative relationahips, roblem solvine, Arithtetle Vocebulary, and Tunderantal opertions of the seventh Grade, Group 8. Arithwtic class et geginning of study
8. The 0 gcores in Guantitative relationships, Problex Solving, Arithmetic Vocabulary, and fundamental operations of the sixth orade. Group As Alter Normal Instruction of Twolve feeks.33
9. The C Beores in guantitative zelationships, problem Solving, Axithmetie vocebulary, and Fandamental operationa of the sizth Grade, Group B, After Period of pecial Ingtruction 34
10. The O scores in guntitative petationships, problem golvine, Arithmetic poobulary, and Fundamental operations of the seventh arade, Group A, Arithmetic cinss, After period of goecial Instruction in Vocabulary 35
11. The 0 scores in guantitative Eelationships,rroblem $301 v i n g, ~ A r i t h m e t i c ~ Y o c a b u l a r y, ~ a n d ~$Fundamental operations of the zeventh Grade,Group 3 , Arithmetic class, Atter a Ferlodof special Instruction.36
12. The Mean a georea in quantitative seletionships,Problem golving, Aritmetic Vocsbulary,and Fundemental opertions of Groups A andB of the sixth and Seventh crade F rithmeticClasses at the Beginning of the study andHfter a period of twelve weeks................... 38

ITMPontcmion

Problem

Whe mofority of chicren have diffiealty in solving arithmetie problems. Farious caucetors buve fiven their
 fleulty. Some teachers hove advenced the idae that a great may chilcren bave aifficulty in golving arithmetid problems because they laok knowledge snd undergtanding of the arithmetic vocobulary. Comane says:
gince the vocoulay of groblems if frequently so unknown to ohildren as to eause serious dififeulty, their knowledee of the vocabularles as found in thought problens should be tested. 1

筑e purpose of thit study was to make a comperison of the relative matery of matheratieal vocabulary th skills In general problow solving between two eroups of sixth ana seventh grade axithmetic students. An drort wes made to determine to that extent knowledee of the gathendten woentulary influenoed akills in encral problem solving.

LImitations of study

The study wes linited to four clesses of sixth and seventh erade axithmetic stuatente taucht by the writer in

1 Hobart in corning, Review of Tobtine Mavement, $p .25$.
 1940-41 cession.
source of rata
Data for the study were obtelned malny from the experIment oonducted with the arithretio chas. Fowever, reputable educators and techers were consulted in deteraining the relation of mathemation vocabulay to akinl in problem aolving.

Gesearch on the problen
Some investieation wed nade, betore the experiment was undertaken, of relate investidstiono on rethewnticn vocnbulnry. Reputabio whtematical rriters axd tocherg were consulted conceming the inportance of whembicol vocebulary in mroblem wolvine, conclusions reached from varloug raperlzenta, mad aethods used by tecolers in voonbolary training in methezatics.

Setting vp the itucy
The arithuatic cleasea of the atxth and seventh gredeb were divided into tvo groups of as near the sume chronolote icel age as posalble. one hundre and twenty puplis conprised the groapt, but due to withorawals and ivoompletiond of tuts. only 107 zade up the andyzed eroups. At the betinning of the twelve wedks teating period, each group was eiven the Tulhmen-maerwon Test to detwrine the intelligence quotants and mental agee of the pupils.

Two control groups of pupils vere organized. The seventh

was also divided into A and B sectiong. All of the pupila In the four groups were then given the KellogebraecknerVan wagenen Anelytical Tests. These tests were anelyzed end the weakneases of indiviaual pupils noted. out of these groups, four were selected for special remedial work: group A of the seventh grade and Group of the sixth grade. This resedial work was study in the knowledge and use of the mathenatioal vocabulary.
the testing period followed this selection. aroup B of the seventh grade end Group A of the sixth grade were given the orainary instruction as outilned in the Texas state course of study for teaching methematics. In adaltion, these groups were given remediel work for the weaknesses revealed by the Kellogg-Brueckner-Van Wagenen fests, but no special arill was given on thematioal vocabulary. On the other hand. Oroup A of the seventh grade and oroup B of the gixth grade were given special drill each day in the knowledge and practical use of the mathematheal vocabulary in addition to thele nomal instruction in sixth and seventh grade arithaetic.

At the enc of the twelve weeks testing period, welloge Brueckner-Van wagenen fnalytical teats were again given. The results of the tests, elong with those of the first tests, were set up in tables where a comparison could be made of the results gained in che study. Analyeis of the tests was made
to determine the effleacy of the remedial measures, and the relation between matery of mothematical vocabulary and silil in problem solvine.

In the stuay of the relation of the matheration vocabulary to skills in problem solving, verious educational leaders in the fleld of athematios were consulted. special attention was iven to related invtetigations. The tests which were used were sceured from reputable educational oreanizations and repreaented those used by areat many teachera in the public schools throughout the country.

Preseatation of the rata
Chapter I prosented the Introduction which stated the problem, gave the source of data, outlined the manner of procedure, and cave the limits of the study.

Attention was Eiven in chapter II to various opinions of educational leaders regarding the extent to whioh knowledge of the mothematical vocsbulary influenced akills in computation. Relsted stadies vere amined and their contents noted. Sugesested remedial work in mastering the mathenaticel vocabulary was outlined.

Chapter 111 aealt with an analysis of the tests eiven the sixth and seventh grade arithoetic papils in the fowa Fark glementary school, Iowe mark, Texas, at the beginning of the study. An outhine was then given of the proposed readedal work for the two control groups, Group A of the seventh grade, and Group of the sixth grode, and of the
normal instruction for the other two groups, oroup the the sixth erede, and Group B of the seventh grade. This period of training was followe by the same analyticel arithaetic testa given et the beginning of the teating pextod. The finding of theae tosts were disoussed and analyzed. Chapter IV prenented the conolustons cained from the experiment.

IN PROBLEM SOLVIRG

The Importance of the Fethematicel Vocabulary
The facillty that pupil naeda in the rapid exact readng of the abject metter doe not usually result from gencral training in reading. Training in reading subject mitter of one fiele does not provide aufficient ability to read other types of material. Neob of severel fields of subifect metter possessen a specific vocabulery that the reader must be able to use and underatand. The type of expreseion and the turn of phease of each kind of subject matter are more or less ita own.

Wathematyes is no exception to this rule. It bas its own peculiar vocabulary, and posseaces a groat many texms not uaed in any other subject. These terms, whon interpoleted in arithatic problenz, ayy came the stucent to fall in solving them if they are not properiy understood. Lessinger says:

Aritheetc computation, although seamingly farther Givoreed fon readine than from the solution of verbal problems, does involve oertain apecific skills in the field of resdire. In connection with an extenstre study of mpecial instruction and motivetion in reading the writer Wee oroueht face to face with certain strikine racts
 solving examples in ardthmetic.

Duncan give an explanetion of mathematic vocabulary and commonta on its use:

In mathentios the vocebulary 1 s of wo types. The first 1 g the technlcal vocabulery which 1 composed of Forda relebing strietiy to the subject. The secont is a wore cencrally functional type. It 19 composed of words and gapresilions which gre mathemetical in nature but which fanction outside the ralm of mathemstios. They are the morcis whioh ere ased to interpret wethematical conoeptsend appear moat frequently in the verbel exeretsem as exprevions of quanitetive relationships. 2

In arithmetic the inportwee of both types of vocabulary has been recoentzed. Stevenaon abaerta:

耳ery often a pupil fails to solve on arithmetic problew because one or more of the vorda are untomillar. chileren do not understond na much about the memalng
 ing. Not only are puplls defloient in eoneral reading vocabulary but they are also unfamilar with the many technicel words used in arithmetic. ${ }^{3}$

Brweokner, 4 In ascuabing the Glagnosis of errors in arithmetic, gave as one of his conclusiona: "Vocabulary exercisea on fmportant art thotical terms and number conceote are essential. Kinney, ${ }^{*}$ in sumarizine the information that

1w. F. Lesainger, wetainc picticulties in trithmetse,"

2y. n. Duncan, The [mthematic yocabulary, Journal of Ecucationel Researeh, XX (1954), 64.
3. R. Stephencon, viriculties in problew solving," Journal of suncatlonal Besearch. xt (1025), 90.
4. J. Bruecker, Miaenosis in Arithmetic, ThirtyFourth Yestbook of the retional socicty for the 3 tidy of

5. W. Kinney, Froblom bolving and the Lenguage of Percentege," The Journal of gugineak Education, X (1935), 24.
hat suen made available oy atudkes in the itwla of problea
 rasults frow the lack of a temnical wocebulary."

The asove opinions leava 114 Cl a and as to the laportorce of woedulagy in contection with proble⿳ solving. Gat it mat be Fomerbared the these are orly oningona. There in derlded nerd for dednodit and remedial Instruction In both the techatcal and the problan aotving vocabulamy in
 thet inatruction in the votabulery of wetheratiow will inprove the gapil's chievement in matheratics. nurint reont yours unsupported opinion hos been relegsed to a subordinete position in Fancation, and the selection and orcantiation

 letily conducted axperiments and investigetiont. An one writer exprestes 1t, opinion is being taken down frow its dusty throne and gueatloned and unsupported atatements no
 vill be ziven to experiments conductad by tenchors in special gtucy or the thenatiea vocabulary.

Investuratione of the qelation of 緥themetiend Vocebulery to skille in roblem olvine

[^0]of vocebulary. The general purpose of these Investigations, however, hes been to derive lista of impoxtent words in the various school subjects and to present stendsardzed ord 12ats. Dut of lete, a diferent kind of study of vocabulary hae been undertaken; instead of compilation of words, vocsbulary atudies have attemptec to study the avelopment of chileren's understandinge of words.

Duswell and John have sude algnlficant stady embracIng the purposes of studying the development of chileren's undergtanding of words. They state the parpose of their stuay as follows:

The purpoac of the investigation . . . was to atuay the nature and the developent of concepts of technical and sem-teghnical terme in the arithmetic of the firat six eradee. ${ }^{7}$

No attempt was made to construct new list of gtendardized terms, but a stady wos made of the general underatanding of one hunnred arlthaetical tevad sy group of 1,500 ohildren selected from Grades IV-Vi in twelve school syetems. Stuales were made by way of group tests and of individual bebts as well.

The evidence, as presented in the study, indicates thet, as a group, the 1,500 exilaren falled to show atisfectory understanding of technienl terms which presumably they hed studied. Zupplementary deta show that pupils may know a wora preaentea in one situation but fail to know it men it
70. T. Buawell and Lenore John, The Vocabulary of Arithencte, 2.3.
 pupils have ondy partisl ungerstandinc of terms whoh
 Fhe axprimentors ${ }^{\circ}$ ghate that the cownonest oriticisus of inatruction in awiknetio ere that the work of the papliet 1a Jomal and thedeme, that onteide the cladsroan puphs

 them in the gehoolrook feiks to tranafer into orelnary thinkIne and outalog wctivitios. These orgtickwa memmato inply
 develophac it from his own expertence. Buswall and John mate

 Gewand on the achool la that it anony a zacually
 cul backpround for the terms thet rust be learned.

If pupils are to think alearly in trithatito, they must have valla comoenta of the tervinologs of the subject. Thy words borrow, chncel, gary, and reduec
 which cen be sorfsed. They 解ut be ineimetaly masoanted xity backround ot experience of tho vype

 anhont in "talace ior instruetion in my braveh or becnohes of knowledes, "but whet pupil could be roand who would not bupply from hit ond far more suthaying to bira in wivionota and seope? If

 mast beconc more eonujnt.

In the prociss of tononing, rat more intalligent

B1013. P. 101.
and explaining new terms. As much study should be devoted to the means of developing a technical vocabulary in arithmetic as has heretofore been given to the development of a general vocabulary in reading. ${ }^{3}$
Chase ${ }^{10}$ reports an experiment he conducted in the forason public schools to try to determine why students make mistakes in solving arithmetic problems. He was not so much concerned with the number of mistekes as he was the reasong causing the mistakes.

Chase started out with the hypothesis that the mistaks and errors which pupils are commonly observed to make, are merely symptoms and seldom, of themselves, constitute the true causes or mental maladustments responsible for failure. He believed that future progreas in the direction of corrective and preventive instruction must take into account the value and possibilities of causes of learning difficulties. His investigation was directed slong these lines.

One of his findings was that lack of knowledge and understeading of the mathematical vocabulary prevented many students from achleving success in solving problems. He says:

It is evident from this experiment, however, that lack of familiarity with combinations and processes is but one factor contributing to failure and not necessarily the most important. other causes, such as improper reasoning habits, faulty reading and weak comprehension, were found to be responsible for much difficulty and failure. 11

9Ib1d.
10 V. E. Chase, TThe Diagnosis and Treatment of Some common Difficulties in Solving Arithmetic problems," Journal of gducational Research, XX (1929), 335-36.
$11_{\underline{I b i d}}$.

Brucokner ${ }^{18}$ undertook an inveatictation on the problew of improving instruction in arithmetic. In thia atudy he inclued the osychologioal functions, which include:

1. Teaningrul wocabulary
2. Development of alear quantitative concepta
3. x bility to read and evalut te arthmetio deta. We attempted to ceternine the oxtent to whon shate difterent olasilifouthons were relatec to probleg aolvine mat the ortent to which they oan be ingroved.

He foumb, In his invegtigations, that in adduton to Inaccumacy of compatation, amone the ahter matora contributuge to dfficulty in wiving conventionel verbal problens wex:
(1) fallure to conpreheat the problew in whols ow in part, owing wo inferion meadne ability; (2) carelsasness in reading, rocult-
 fthlure to erany the quantitative relation involvad in the problem, owfig to leck of knowledere of whent teal voondulary.

Turing the school year, 1925-24, a study of achievement quotiont technique was conacted sn the public schoola of Radekiffe, Iow, under the airection of professor zuch and Norn of the state पniversity of Iowa. 15 During this Investigation emphasts wa placed upon inetruction in resding, but no variation row the typlesl progroms for monetic or any other school subject wes permitted. During the bird

12 I. J. Bruecknar, Diecnosis in Aritmactio, ThirtyFourth Yearbook of the Mational gectety for the 3 gudy of斯ucation. 1955, p. 289.

13tegeinger, op. ait. . pp. eeq-e91.
week in september the Stanford nohievoment rest, Eorm was admanistered to all the pupils from the third to the eichth grade incluaive. At the end of the first semester, Form 8 of this test was given, and at the end of the second semester Fom A war repeated. Since a period of eight and one-half months segarated the two testines by form A, the direct "oarry-over" of tamilierity on practice efrecta was, in all probebility, negligible.

The gains in erithmetic due to the training in readne, siven between the two testb, were large cnough to be gtatisticelly aignificant, and the conclusion was renched that specific treinine in the reading of the ingtructions for the solution of examples vould almost completely allminate errors. It ves found that the lack of provision in the text-books for specific trainine in the readine and the neanine of the mathemtics vocobulary and symbols resulted in many errors. Tebb ${ }^{14}$ conducted an experiment in the public schools of "anton, Texas, to measure the eftect of the socio-economic atatus of aixth grace oupila on arlthmetic attainaent. wo Fundred and twenty four papila comprised the testine group. One phase of the experiment was the stuay of the extent to which the arlthetic vocsbulary of the aixth creat pupils wa affected oy the social and economic conditions in their homes. The conclucion quined from this perticular phase of the
$14_{\text {wery }}$ Webb, The mefect of the socio-Fcomowle gtatus of Sixth Grade Puplis on Gritbmetic Attainment, (Tnpublished Thesis
 state Teechers college, fuguet, 1938).
atudy wes chat arithactic voosbulary of aixh grade pupils wes very little influenced by socini-6conomio exyironment.

Remedial program for correcting

 trithmetic DoticienciasVarious remedial programs for onrecting deftciencles have been get forth by betchers and educators. gtevenands outifned a very depinite wrogram. He acid that all sane teating program shoula involve the sollowing prococure: (1) give tests; (5) Locate Inaivigual afferences; (3) apply remedial sustruetion; and (4) give tests agaln to sea 11 remedial instruction is effective. Fe recommaded the followine proceare for the remedial instruction.

1. Let reachinl instruction cover period of twelve weeks.
2. Devote three fifteen inute periods each week to spectal renclisi work, which wil make total of nine hours in the welve weeks.
3. Divide the tetting period. Daring the fisst, gecond, and tifa weeks, let the pupile read and analyze problems. Teach then to open their books to 11 at of probleas, deteraine what fact are given in the poblems, and the fifferent processen necessery to solve the problem.
4. Give the studenta practice in the exereises apon whon ne fedia.

5. puring the fourth, fifth, and aixth weoks, let the pugils work thage variety of probteas fron actual life situations. Have the pupils submit problens based on some of their and their parents activities.
C. purlng the seventh, algth, ang ninth weoks, let the puplls solve problens without the use of numbers.
6. Furing the tenth anc aleverth, and twelfth weks, let the students road probleas ans study vocabulary. Let them state their probleng in theix own words, in diferent weya, and see that they include words wh whioh the onflaren beve had aiffioulty.
7. After the twelve-weck remedial work na been completod, the testagen at the beginning of the period ahould be repeated.

Concernine follures to aolve aritumethe problems monroe zays:
If the cause is round to be lack of acquaintanoc with the $a^{3}+a n i n g$ of words used, more attention should be given vocabulary. In the upper erades the use of the dietionary will help, but the nost inportant thine is that the teacher shall detinitely recognize the necessity for teaoning the meanine of words not merely formal dictionary definitions, but rich comprehengive meanine which are direotly cannected Whth the experiences of puplls. It 1 frequently worth while to spend sive or ten minutes in a class diseussion of the meaning of important worts. The use of a vocabulary test will tend to cirect the atteation of the tescher to the neceselty of coinc this. It may also hepmen that wen the pupil finds that he tic bolow the, gtandard In vocabuinry his coopartion will be sectred. 14

Before the experiment described in thia atudy we underteken, serious attention was given to the facta get forth in

14
Monroe. Mocsuring the gesult of Teaching: p. ot.
this chapter. As has been noted, attention was given to the relation, if any, between knowledge of the methematical vocabulart and skills in problem solvine Various other experiments, related in thought to the one under study, were examined. Binaliy, buch attention was given to remealal measures reconmended by terchers and educators.

CHEPRT III

10 SRLECTLD GROUES Of MUETLS IN THE IOMA
FARK LEMKNTSE BCEOOL

Explanation of study
The experiment in teaching mathemetical vocabulary to a selcoted eroup of pupils wes made with two erithretic classes in the Iow park mhementary gchool, the sixth and seventh graces. Theae clasues were composed of 107 pupils and were divided into four groups as follows: twenty-two pupils in Group B, seveath grade; twenty-nine pupils in Group A,
 and twonty-nine nupils in Group t, sixth grade. For experimental purposes, aroup A of the seventh grede, and croup B of the sixth grade were singled out for specigl training in the stucy of mothematical wo cabuldry.

Before any apecial training was inatarated, however, the entire number of pupils were civen preliminary testa to cetermine their intelligence quotient, mental age, and ability to solve arithmetic problems of varying kinds.

Resulta Obteined from ruhlman-Mderaon Tests
The Fulhman-anderson Intelligence Testa were used in this preliminary investigation. Table 1 shows the results

TABLE 1

TOWA RA案, TXAAS, 1940-41

papil number	14	Chronological sue in Years 	$\begin{aligned} & \text { Sental } \\ & \text { Sge } \end{aligned}$
1	100	11-3	12-2
2	98	14-6	14--3
3	128	11-1	$14-3$
4	90	12-3	$10-7$
5	129	12-6	15-1
6	118	11-2	13-1
7	75	15-4	10-10
8	116	11-5	13-2
9	111	11-2	12-3
10	125	11-3	14-1
11	90	14-5	$11-5$
12	129	11-2	14-6
13	98	14-3	13-5
14	114	12-4	13-6
15	123	12-7	13-6
16	121	12-10	14-7
17	100	11-9	$11-8$
18	100	$11-8$	12-8
19	92	12-3	10-9
20	112	11-4	13-11
81	111	11-3	121
22	105	13-2	13-2
23	108	12-2	14-2
24	102	14-3	13-2
25	119	11-3	10-5
26	90	11-2	$11-6$
27	98	12-1	12-7
23	98	14-2	13
29	101	$13-8$	14^{-1}
Mean	107	12.3	12,9

of this test with Group A of the sixth grade. Twenty-nine pupils comprised this section of the sixth grade. The mean
quotient for this group was found to be 107 , the renge being from seventy-five to 128. This data indicates that the largest percentage of the pupils in this class were average in their intelligence quotients. According to Terman, 1 a range of 110 to 120 indicates superior intelligence; 20 to 110 indicates the normal or average; 85 to 90 indicates dullness; and below 85 deficiency begins. Pifteen pupils in this group fall into the average rating; thirteen pupils are reted as superior; and only one pupil falls below the deficiency rating.

The mean chronological age for croup A of the sixth grade was twelve and five tenth rears. The mental age of the pupils did not differ materially from that of the chronological: twelve and one-half years. These data, plus thet of the intelligent quotients, indicates that the class was normal in all respects and capable of doing normal classroom work of any kine ordinarily given this age group.

Table 2 gives the data on Group B, sixth grade. There Were twenty-seven pupils in this group. The intelligence quotient, as reveeled by the Kulhman-Anderson Test, has a range of seventy- seven to 126. Seventeen students fall into the normal or average class, ninety to 110 ; four students were classified as superior; and six pupils fell below ninety. The mean ohronological age was 12.77 years, and
1.. Merman, The Measurement of Intelligence, 9.79.

TABLI 2
THE INTELIIOENOE GUOTTENT, THE OHPOROLOCICAL AGE, AND
THE MSNTAL AGE OF THE EVPILS IN W世E GIXTH GRADE, GROUP B, OF THE IOWA PARE BLEMENTAPY SOHOOL; IOWA PARK, TEXAS, 1940-41

Pupil Number	IQ	Chronological Age in Years and Months	Mental Age
1	99	11-2	11-3
2	83	13-4	11-4
3	103	12-4	12-6
4	83	12-8	10-7
5	98	13-10	12-2
6	90	11-8	11-5
7	119	11-9	13-6
8	109	14-2	12-8
9	112	13-3	13-3
10	95	12-6	13-3
11	106	14-4	13-2
12	107	12-3	12-1
13	90	13-6	10-2
14	88	12-5	12-3
15	103	14-3	12-5
16	122	14-2	12-6
17	101	12-5	12-4
18	103	15-7	11-5
19	101	11-1	11-6
20	96	11-2	12-3
21	126	11-10	11-8
22	77	12-2	11-10
23	85	12-3	10-1
24	103	12-2	12-9
25	85	12-4	13-3
26	100	14-5	12-5
27	92	12-1	$12-8$
Mean	89	12.77	12.72

the mean mental age, 11.75. These data indicate a wider spread of intellectual abllity in this group than that of the A division of the same grade.

TMEX

品噱

pupil畀umber	19	Chronoloetical Age in Tegrg and lanths	$\begin{aligned} & \text { mental } \\ & \text { fge } \end{aligned}$
1	103	12－2	13－2
2	113	12－4	14－6
8	132	12－3	15－8
4	114	13.9	14－6
5	124	12－1	253
6	106	32－2	182
7	121	15－6	14－6
8	115	18－7	12－1
9	180	12－5	158
10	127	12－3	156
11	109	$1-2$	147
12	116	1．4．6	146
13	103	13－2	13.1
14	91	16－1	14－2
15	89	13－4	11－3
16	84	14－10	12－4
17	110	12－6	13－6
18	109	13－5	13－2
18	112	13－6	24－1
20	103	12－6	132
21	124	13－5	123
22	116	12－4	142
28	110	12－6	14－3
20	112	12－7	13－4
25	109	12－1	15－6
26	102	12－2	12－8
27	118	12－11	12－2
28	77	12－6	12－3
29	100	15－1	12－5
3nean	100	13.1	13.4

Table 3 gives the dita for Group A of the seventh grade. There were twenty-nine pupils in this group. The intelligence quotient had range from seventy-seven to 132 . Sixteen pupils had an intelligence quotient of 110 or more, which indicates that large percentege of this group were of superior intelligence. Ten pupils had a range from ninety to 110 , and only three pupils could be classified as dull.

The mean chronologicsi age for this group was 13.1; the mean mental age was 13,40 . All data indicate a group of chilcren capable of coing excellent work.

Table 4 gives the data for Group B of the seventh grade. There vere twenty-two pupils in this group. of these, eight were above the normal or average intelligence quotient; thirteen had a range of ninety to 110 ; and one fell into the group below ninety. The mean intelligence quotient for the entire class was 105.5. The mean chronological age was 13.1 , and the mean mental age was 13.00.

The above data indicate thet the two grades, as a whole, were normal or about the average in intelligence. Group A of the sixth grade had an intelligence quotient of 107; Group $B^{\prime} s$ intelligence quotient was ninety-nine. The average for the two groups was 103. The seventh grade with intelligence quotients of 109 and 105.5 , respectively, had an average of 107.25 for both eroups. In regard to age, in

Then 4

 TOWh TARK, THMA, 1940-41

Pupil number	Iq	Chronological Age in Years and Monthe	$\begin{aligned} & \text { Nental } \\ & \text { Age } \end{aligned}$
1	98	13-1	11-5
2	121	12-8	15-8
3	102	12-8	$13-6$
4	116	12-2	15-8
5	118	12-7	12-1
6	96	15-6	12-2
7	94	14-1	153
8	65	15-\%	124
9	104	13-2	13-6
10	92	13-2	12.7
11	103	10-6	122
12	98	13-5	12-2
13	112	13-6	13-9
14	103	12-2	13-1
15	114	12-2	13-2
10	116	15-1	12-3
17	109	15-4	12-4
18	121	13-6	15-6
19	113	$12-7$	12-7
20	106	14-8	12.3
21	102	12-5	124
22	99	12-7	122
Noen	105.5	13.1	13.0

both the sixth and seventh eradea, the mean mental age was alightly lower than the mean chronological ago.

Two groups were selected fron these four groups for an experiment in toaching mathemetical vocabulary and to determine, if possible, its relation to the pupil's ability to solve
ordinary arithmetic problems. Group A of the seventh grade and Group B of the sixth grade were chosen as the control groups. Group i of the sixth Erede and Group B of the seventh grade were to be given ordinary instruction, wi thout any special stresa beine placed on vocabulary.

Results Obtained from Analyticel pests Given t Beginning of Term

The first gtep in the stuay was to give a standard arithmetic test to all the students. A number of standard tests were studied, and the Analytical sceles of Attainment for arithmetic developed by Brueckner, Relloge and Van Wegenen was chogen to give the students. These tests are standard ond are approved by reputable eaucators, and it was felt they would give some indication of the pupil's akill in problem solving in many different kinds of arithmetic operations.

Exactly the same test was given to the four groups of the sixth and sevonth grades. After the tests were taken by the students, the data obtained was tabulated and analyzed.

Table 5 gives the data for Group of the sixth grade. In quantitative relationships the mean c score was 73.75; in arithmetic problews, the mean 0 acore was日2.E1; in arithnetio vocabulary, the mean C score was 76.07, and in fundamental operations the mean score was 75.43.

Pupil Nutaber	A noores			
	¢uen. Eel.	srob.	aritic. Yocab.	Fund. 0p.
1	73	00	78	69.5
2	71	72	$7{ }^{2} .5$	67
3	63	83.5	102	65, 5
4	52	20	70	72.5
5	\%	91	81	77.5
6	76.5	85.5	09	d1. 5
7	41	80	70	80
6	74.6	72.5	g1	78.5
9	83	69	- 89	8\%. 5
10	8t. 5	98	de. 5	85.8
11	69.5	69	60.5	59.5
12	74.5	68	79.6	70.5
18	76.5	63.5	75.5	¢1.5
14	52	80	79.5	81.5
15	87.5	61.5	94.5	76
16	76.5	85	87.5	78
17	67.5	95.5	84.5	61.5
16	76.5	76	31	6
19	67.5	87	85.5	76
20	76.5	89	84	77.5
21	73	76	61	77.5
22	85	65	3.5	81.5
23	74.6	85	75	79.5
24	69.5	87	87.5	67
25	61	93	81	61.5
26	90.5	78.5	54.8	77.5
27	C0	71	61	77.5
28	76.5	67	63	67
29	65	87	68	81. 5
Lean	73.76	62.81	76	75. 28

Table 6 presents the restults of the anelyticel wets efven the sixth grade aribusetic clete, group at the Deginning of the stuay. In quantitative relationships, the mean core west 60.05 ; in solving arithmethe problems, the wean ocore wa 70.44 in anithrutio vocabulery, it wat 6e.75; anc in rundemental aperetions. 1t was 66.72.

Fable 7 preacnts the data obtanned rrom the anaytiond tests given the seventh exade arithwotic clas施, group at the berlnuine of the study. In quantitative refationshipa, the wesn 0 soore was az . 23 ; in problwa solvine, the mean C score was 90.9 g ; in arithaetic vocabulsry, the mean acore wa de.76; and in rundmental oporations, tho menn seore W6 76.96.

Teble 8 presents the data ootained from the analytical teste given the seventh grade arithmetic class, group p, at the beginnine of the atuay. In quantitative relationshipa, the mean o soce wes $\%$; 5 ; in problew alving, the wean soore Wad 79.el; In arithatic vocabulary, the mean 0 seore was 77.25; and in fundamental operations, the mean o score was 75.15.

Aftor these tests were graded ond analyzed, the webknesces of the children in difrerent operations was noted. These ifferences varied with the clases, but it when observed that the lowest wan g pores were found in quantitative relationshipe sng in funcamental operstions.

TABIS 6
THE C OCORES OF QUANTITATIVE RLATIONGHIPS, BROBLNM SODVING
 THE SIXTE GRADE, GROUP B, AETEHNETC OLASB AT THE BROTNEINO OR TE ETUDY

Pupll Number	C Scores			
	Guan. Rel.	prob.	Arith. Vooeb.	rund. Op.
1	67.5	71	65	54.5
2	61	71	84	70.5
3	67	72	65	72
4	41	67	$4{ }^{\text {5 }}$. 5	61.5
5	73	65	66.5	59.5
6	52	83.5	79.5	67
7	01.5	81.5	81	74
6	76.5	80	73.5	74
9	69.5	110	78	87.5
10	65	65	58.5	61.5
11	67.5	74.5	81	70.5
12	61	89	63	70.5
13	87.5	83.5	50.5	54.5
14	52	80	90.5	77.5
15	74.5	59	63	63.5
16	80	67	61	68.5
17	41	93. 5	63	48.5
10	76.5	91	68	68.5
10	41	91	63	88.5
20	65	95	72	74
21	71.5	67	78	77.5
22	73	76	96.5	72.5
23	87.5	56	61	63.5
24	58	76	65	57.5
25	65	76	70	61.5
26	69.5	65	78	59.5
27	87.5	78	87.5	77.5
28	52	85	65	48.5
Mean	69.85	76.44	68.73	66.71

TATBL 7
 ATITEMETIC VOCABULARY, AND TUNDATENTAL OESTETTONS

GLASS AT BEGINNING OX STUDY

Pupil 4umber	C scores			
	guan. zel.	Prob.	Arith. Vocab.	Trad. 0p.
1	77.5	92.5	75	75
2	98	97	91	95.5
3	83	91.5	80	86
4	75	81	¢5	75
5	93	101	99.5	82.5
6	88.5	90	3¢	77
7	71	77	30	78.5
8	64.5	84.5	104.5	82.5
9	75	101	92.5	80.5
10	91.5	205	111	82.5
11	83	92.5	76.5	67.5
12	79.5	88	89.5	77
13	84.5	77	100.5	68
14	90	105	78	75
15	51	91.5	97.6	69.5
16	86.5	98.5	94	91.5
17	70.5	91.5	68	84.
18	88	38	94	69.5
19	94.5	77	86.5	91.5
80	62	105	69.5	77
21	91.5	91.5	85.5	89.5
22	71	77	84.	75
23	85	103	73	64.5
24	93	93.5	93.5	75
25	64.5	90	90.5	69.5
26	81.5	97	94	69,5
27	90	86	73	64.5
28	77.5	8E. 5	90.5	69.5
Mean	82.23	90.98	68.76	76.98

TamL范 8
 ARITHLTIC VOCABULARY, AND WUNANAM ML OPRRATIONS

CLASS AT BEGIMNYO OR STUDY

Pupil Number	- Scores			
	Guen. Mel.	Prob.	Arith. Vocab.	Pund. On.
1	80	65	70.5	60
2	31.5	84.5	82.5	75
3	75	82.5	71	78.5
4	77.5	86	05	67.5
5	75	88	60.5	69.5
6	71	79	78	73.5
7	81.5	77	80	67.5
8	75	72	64.5	69.5
9	88.5	81	78	64.5
10	86.5	86	63.5	77
11	75	75	71	91.5
12	75	82. 5	85	69.5
13	77.5	64.5	02	73.5
14	79.5	34.5	76.5	77
15	75	72	71	73.5
16	77.5	82.5	89.5	69.5
17	75	82.5	92.5	7 B .5
18	81.5	86	80	91.5
19	51	77	76.5	71.5
20	90	84.5	91	75
21	75	66.	75	73.5
26	81.5	77	77	71.5
neen	77.5	79.81	77.25	75.15

With theae weaknessea in mind, the study for the two non-control groups was planned for the next twelve weeks. The Course of study recommended by the Texas state Department of gducation for the teaching of arithmetic in the sixth and seventh grades was closely followed. No special effort was made to teach any special skjll except in seekine to remedy the weaknesses the tests had peverled.

On the other hand, the two control groups, A of the seventh grade, and group B of the sixth grade, were given special attention in the study of mathematical terms. The course of study was the same as that of the two non-control groups, the lesson time of the class was the same, and no particular time was set aside for vocabulary drill. The extra work was brought in with the regular class work without any extra attention being called to it, and without the pupil's knowledge that the vocabulary study had any special meaning.

In determining the number and kind of words to be used for drill, a great deal of thought and attention was given to what is meant by mathematical vocabulary. There are any number of technical terms used in arithmetic not commonly used in the adopted arithmetic texts and in everyday life. It was felt that there was no special need for burdening the children with terms of this kind. Thorndike's list of mathematical terms was not specific enough nor of sufficient length. Buswell and John ${ }^{1}$ had made a detailed study of the

1G. T. Buswell, and Lenore John, The Vocabulary of Arithmetic, Appendix a, pp. 107-116.
vocabulary of arithaetio nnd had aet up a list of five huncred teras commoniy used in arithmotic. stter rach study, 14 was deoldecto uee thege flye hunced terms for use in the oontrol eroupa of the classe under etudy. Thit list of words is tuched to the atway in the fppendix.
prill in Wathemblcal Vocabulary
 the atudy with the control groups of the wiuth ond eventh grade arithmetic clasees wan becun. No definite period was set alde each day for atudy of these worda. in effort was made to preatent the words as part of the regular anstraction

Were crill on the woris wat not resorted to in the study. tnowledge of the word, how to swell it, and whet it mont Was not consiceped sufficient. \&otukl oxparience with the uat of the vords was sought wheraver posalble. for axample, the word acrc wa lllustreted by actually deading an acre of land. A square foot was oompared with manning foot by reasurine the two and shoving the arforcnce; a whare inch
 words ss teralnete, gelution, resalt. volume. Fertcel, quentity, operation. parallel. partiel. Ingthileant, expantitare ond many othera wer put in conorets termenc illustrated throuch famblar diperinnces of the ohildron. Trill was used only to mofresh the chiluren's knowledge of towa they tad lograed
through their own experiences, and wes never used for mercly memorizing words. As mar as possible the methematIcal voendulery 1 sted in the ippendix sas incorporated into the defly lives and axpericnecs of the chiluren.

Tesulta of Anslyticol pesta Given At zand of study

At the ga of twalve wekg the fatutical teata given the four groupa at the begining of the temm were agein fiven.

Tatle 9 presents the cata obtained from the analytical test given aroup a of the alxth grade, non-oontrol eroup
 stress places on matering a mathematicel vocabulary. In
 problem solviag the math acore was 8 . 49 ; in arithetic vocabulary; the adan C score wa 37.01; and in indmmental operetions, the mean scare tan az. 8 g.
pable 10 presents the data obtainea from the results of the test eiven to group e, the control group of the sixth grade. In quantitative relationahipes the zean a sore ths 79.33; the mean 0 acore for problen anluint wes 04.19: the mesn c seore for arithmatio vacabulary wis 89.46; and in fundamental onerations, the mean acore was 76. R

Table 11 presents the ata obtanced fron the swalytieal teat eiven Croup a of the alxth erade, tontrol group, arter the coupletion of inatruction returine apecinl stagy in watheast1cal wocebulary. In quantitative relationshipa, the an acere

PABLE 9
THE C GCORES IN GUANTITATIVE RBLATIONGEIBS, PROBLEM GOLVING, ARITHMOTIC VOCABULARY, AND FUNDA ${ }^{\text {EBENTAL }}$ OPERATIONS OR THE GIXTH GRADE, GROUP A ATTER MORMAL INSTRUCTION OF TWELVE WKERS

Pupil Number	C scores			
	Quan. Rel.	Prob.	Arith. Vocab.	Fund. op.
1	65	81.5	76.5	74
2	73	72	75	80
3	88	75	78	80
4	87.5	91	94.5	77.5
5	81.5	91	84	82.5
6	86	87	90.5	03.5
7	78.5	91	85.5	76
8	41	61	54	73
9	74.5	85	89	81.5
10	86	95	108.5	95.5
11	80	85	89	81,5
12	94	101	87.5	68,5
13	71.5	91	73.5	82,5
14	76	89	81	85
15	78.5	81.5	78	71.5
16	80	89	85.5	73.5
17	95.5	97.5	101	72.5
18	81.5	76	96.5	74
19	87.5	83.5	70	72.5
20	87.5	93	81	84
21	80	91	84	72.5
22	71.5	89	87.5	84
23	81.5	70	85.5	79.5
24	80	81	85.5	75
25	69.5	89	70	79.5
26	69.5	72	81	75
27	71.5	72.5	90.5	79.5
28	78	85	89	65
29	84	87	72	76
Mean	82.01	88.49	87.01	88.62

GApt考 10

 OF BRICIAL INSTRUCLION TN VOCABULARY

pupil number	c acores			
	Quan. Tel.	Prob.	Arith. voeab.	Pund. op.
1	70	83	85	80
2	67	85	65.5	70.5
3	75.5	83	90	90
4	57	71	75	72.5
5	74.5	76	8 c .5	74.5
6	84.5	87	94.5	73.5
7	64. 5	91	94.5	77.5
8	74.5	85	94.5	76
9	70.5	95	89	05.5
10	85	78	90.5	76
11	80	74	87	66.5
12	73	83.5	87.6	77.5
13	74	82	96.5	87
14	97	97.5	86	77.5
15	76	98	85.5	84
16	86	92	66	86
17	96	76.5	96.5	94
18	71.8	80	9 B	74
19	87.5	78	87	70.5
20	66	79	89.5	82
21	105	75	89	77.5
22	90.5	102	81	81.5
Ez	73.5	66	80	72.5
24	60.5	72.ち	99	75.5
25	74	87	113.5	78.5
26	69.5	93	90	79.5
27	93.5	80	64	74.
28	88.5	86.5	70	87
Mean	79.33	88.12	89.46	76.25

TADLE 11

Pup11 number	C soores			
	guan. Rel.	Prob.	Arith. Vocab.	Fund. Op.
1	84.5	86	108.5	94
2	94.5	103	104	62.5
3	93	102.5	106.5	92.5
4	84.5	81	114	80.5
5	102	103	123.5	86
6	103	88	90	06
7	34.5	88	88	71.5
8	89	88	108	95.5
9	83	101	123.5	75
10	100.5	101	114	78.5
11	84.5	99	88	75
12	100.5	95	111	77.5
13	85	96	99	76.5
14	80	92	100	83
15	88.5	105	118.5	86
16	87	98.5	123.5	82.5
17	94.5	99	128.5	84
18	91. 5	97	104.5	75
19	91.5	103	111	82.5
20	80.5	90. 5	183.5	02.5
21	91.5	95	123.5	73.5
22	84.5	107.5	128.5	02.5
23	88.5	97	108.5	77.5
24	85	86	99	73.5
25	91.5	99	114	80.5
26	97	94	98	80
27	102	99	108	89
28	86.5	77	100.5	73.5
Mean	90.58	95.28	109.37	81.52

TELE 12
,THE Q BCORUS IN QUANTITATIVE RYIATLONOHTP, FROBLEM SOLVING, ARITHERTIC VOCABULARY, AND FUNDABEIVLAL OPERATIONS OF THE SEVENTE CTAD管, GROUP B, ATHZR A PLRTOD OF NOMMA INSTRUCTION

Pupil Number	C Scores			
	Quan. Rel.	prob.	Arith. Voeab.	Tund. op.
1				
2	88.5	77	86.5	74.5
3	90	90	94	82.5
4	77.5	88	80	83.5
5	06.5	105	89.5	86
6	71	91.5	31.5	33.5
7	90	86	88.5	81.5
8	67	93.5	86	88.5
9	75	84	89.5	76
10	90	84	85	79.5
11	83	22.5	89.5	85
12	90	91.5	85	89.5
13	67	97	89.5	85
14	83.5	81	85	73.5
15	77.5	91.5	83.5	75
16	84.5	77	75	83. 5
17	77.5	81	79.5	75
18	90	84	79.5	89.5
19	77.5	97	86.5	71.5
20	79.5	86	93.5	76.5
21	71	88	69.5	93.5
82	81.6	75	76.5	88.5
Mean	77.31	82.7	+ 80.31	83.52

was 90.58 ; in problem aolvine, the gan o soore was 96.20; In arithattc vocabulary, the men C score was 107.37; and in fundamental operationa, the mean 0 gcore was al. 52.

Table 12 prescats the ata obtaned crom the analytical tegt given Group B , the non-control group of the aevexth grace, attar perion of norwal ingtraction wth no special stresa placed on voesbulary. In quantitatiwe ralationships, the mean 0 score was 77.31; in problem solving the mesn 0 seore was ©t.7; in arithwetio wooabulary, the man G acore พas 60.32 : and in runamental operations, the mean core was bs.b2.

Aftor these testa were all completed. it was posaible to compare the results and determine the erficacy, if any, of tho spocial instruction given the two control eroups in the study of thenatical rocabulary. Table 13 preaents the man 0 scores of all the groups at the beginning of the stuos and at the ont of twelve wewka.

When these nean 0 scores of the different groups were anglyzed and tabulated, it was cound the croum ${ }^{n}$, of the a娄帾 grade, the non-control eroup, had gained 9.25 points in Guentitabive relstronships, 5.60 points in problet poiving, 11.01 points in mathematical vocabulary, ond 5.08 points in fundmental operations. Group of the sixth grade, the control group. had gained 9.49 points in gatatitative reletionshipa, 7.0s points in problem solving, 20.75 points in arithwatic vocabulary, and 9.54 points in fundasental operations.

TABLE 13

 SEVEMTH GRADE HKINEMETO GLASSES AF THE

BOCINNINC OR THE GTUDY Am ATHER A WERIOD OF THELVE WBYKS

Group	Grade	Test	mean 0 seores			
			Quan. Rol.	$\begin{aligned} & \text { Frob. } \\ & \text { Solv. } \end{aligned}$	Arith. vocab.	Fund. op.
A	6	1	73.76	82. 91	76	75.43
A	6	2	82.01	36.49	87.01	80.51
B	6	1	69.85	76.44	68.73	66.71
E	6	2	79.33	34.12	89.46	76.25
A	7	1	82.83	90.92	60.76	78.26
\ldots	7	2	90.58	95.28	109.37	81.52
B	7	1	77.5	79.81	77.25	75.15
g	7	2	77.31	82.7	80.31	83.52

Group A of the seventh grade, the control group, Egined 9.75 panten quantitetive relationships, feined 4.36 points in problem soiving, 20.61 goints in arithmetic vocabulary, and 4.54 points in fundamental oporations.

Group B_{B} of the seventh grade, the non-control group lost 0.19 points in quantitative relationmips, gainod e. 89 points in problem solving, 3.06 points in arithmetic vocabulary, end 8.37 points in fundemental operetions.

These ata sbow that the control groups, in both instences, nede subotantial geins in almozt all operations over those of the non-control eroups, and made outctendine gains in arithmetic vocabulary. The conclugion is reached that apecial inatruction in vocabulary of arithmetio aida the papil in all arithmetio operations.

CONCLUSIONS

The following conclusions were arawn from this study:

1. The control group in the sixth grade which was given special vocabulary arill gained 1.23 more points in tive relationships, 2.00 points more in problem solving, 9.74 more points in arithmetic vocabulary, and 4.46 more points in fundamental operations than the non-control group. This indicates that the special drill given Group B, the control group, was beneficial to the pupils in aiding them in all form of arithmetic operations.
2. Group B of the sixth grade, the control group, was lower in its mean intelligence quotient than Group A; this indicates that the control group benerited even more than the non-control because it made more gains in soite of the lower intclligence quotient.
3. The control group in the seventh grade, Croup A, made 9.94 more points in quantitative relationshfps, 1.47 more points in problem solving, 17.55 more points in arithmetic vocabulary, and 3.83 more points in fundamental operations, than the noncontrol group. The conclusion is reached that the special drill given the control group aided them in all arithmetio operations.
4. Group A of the seventh grade, the control group, had e higher mean average intelilgent quotient than Group B, the
non-control group. In this instance the group with the highest intelligence quotient made the most gains.
5. The study shows that the special drill aided the children more in quantitative relationships and arithmetic vocabulary than it did in problem solving and fundamental operations. The least gain made was in fundamental operations.
6. Rach of the control groups made outstanding gains In arithmetic vocabulary. This shows that the drill did have a beneficial effect on the children, and that they did not learn the mathematical vocabulary of themselves and without help as well as those with special instruction.
7. The reaction of the writer to the study is this:
A. She believes that the special vocebulary drill was of much help to the children in all arithmetic operations.
B. The favorable results, in her opinion, justified the extra time and attention needed to cariy on the study.
8. She recommends special vocabulary arill to all teachers who wish to aid their children master more easily the operations involved in solvine arithmetic problems.

ATPMTH

atout	benesth	cord	exaly
above	bealdes	eorreet	esarn
account	betreen	corresponding	carnings
accumulata	beyond	cost	eitter
acouracy	b1g	count	cmpty
scourate	b111	couple	end
sere	block	credte	cnlorare
add	borrow	cube	cnough
addena	both	cuble	entire
adation	boukht	cate	ecual
adative	breadth	dey	eguallty
arter	bushel	cosit	equetion
again	but	debt	equilateral
aliguot	buy	decede	eautvalent
011	oblculate	Gectuml	Estimate
allowarice	calculation	decresse	even
elwost	concel	Geduot	evar
already	concelletion	deep	cvery
also	onpecity	degree	exact
alctude	cerwy	Cenorinste	txample
always	cksh	denomination	excced
mone	cent	fenominetor	crecot
amount	center	Geposit	expecta
and	century	depth	exolude
ancle	change	dinmeter	exemetse
annex	charee	difference	expenaiture
amnual	chesp	dett	expenee
another	cheok	ctae	expmensive
answer	circle	OMmenstons	express
any	clroular	d.tsinish	cetand
6plece	ctreuramerace	discourt	秋tra
approxtabe	clear	dustrnce	fret
Eres	ooin	atitant	factor
crithmetic	collect	alvice	far
sround	coluan	4tpitend	fre
at	combination	avicioility	farther
avertage	combine	duvialon	fest
sway	momsercial	duisor	foe
beck	comatission	bollar	feet
Dackwerd	common	dourle	fey
balance	compensation	covn	P136h
barrel	computation	cownvar¢	pleare
base	compute	dozen	111
berare	cone	due	flam
begin	conaccutive	turinge	fret
below	contain	each	following

100t	11．ght	of	purchase
form	11ke	often	guadrilateral
former	11絾安	onit	quantity
forward	ine	on	guart
trection	linear	once	guarter
frogucnty	11ttle	only	quire
from	1．0an	operation	quotient
crull	long	order	redius
further	10：3	other	rete
gain	lot	ounce	ratio
fallon	10w	out	resm
8111	matce	outside	recelpte
ereph	many	over	reciprocel
great	neximam	Ove	rectarele
cross	\％eesure	own	rectancular
group	measarement	poid	reauce
bele	matale	paif	reauction
Lelves	M11e	perallel	remaln
beavy	mileage	part	romainder
befent	mill	partial	Pent
ntigh	\％Initum	past	rent
hogshead	renuend	pay	rapeat
morizontal	minus	peyable	rebpectively
nour	mirube	payment	reat
buncredweight	money	peot	result
lagroper	month	penny	ratail
in	more	per	return
insecuracy	most	peroent ge．	rod
insocurate	nueh	perimeter	round
inch	nultiplo	piece	row
Eneluáe	multiplicand	pint	selary
inclusive	multiplication	plus	sale
4ncone	multiolser	point	save
incorrect	multiply	portion	savinga
1 norease	neram	pounds	score．
inside	near	precede	seesion
installment	net	prefix	second
integer	never	present	section
interest	next	previous	3614
1 into	nictel	price	serins
invert	no	prine	sevoral
invest	none	pranclpal	share
Investment	notring	problem	ahort
fust	now	proceeds	日18n
1arge	number	procesa	since
1ast	numeral	produet	single
late	mureration	protit	\％${ }^{\text {a }}$
letter	numerstor	protitable	\％all
least	numerieal	pronpt	matler
1．ft	oblome	proot	501d
lemeth	ocosalorgly	proper	solution
less	odd	prove	solve

some
sometines
space
spend
spent
square
straight
subtract
subtraction
subtrahend
succesmive
sufficient
sum
surface
table
take
tall
term
terminate
then
there
thick
thickness
third
time
times
together
ton
took
total
toward
trianele
triangular
twice
under
unequal
unit
unlike
up
upon
upper
upwerd
usually
veluable
value
vertical
volume
wages
week
weight
whole
wholesale
wide
width
粒机
without
worth
yard
year
altogether
Arabic number
at the rate of
common denominator
count by twos
cubic foot
cubic inch
cubie yard
decimal point
denomingte number
greatest oomon divisor
hundreds' column
Imoroper frection
least common multiple
lone aivision
Lowest common denominator
lowest terms
mixed number
per cent
per yard (foot, etc.)
proper fraction
reasonable answer
Roman number
short division
squere foot
square inch
square mile
squere rod
square yard
take away
teas' colum
thousandths' column
total amount
triel quotient
unit fraction
unit of measure
units column
What part of
whole number

BTE 10QTAREY

Brown, J. C. A gumary of sone zicriticent conclusions Eeached by investigators \%elative to ftithmetion,

 OI Maucation, $1935, \mathrm{p} .289$.

 Investhetions elatine to arlthwetio, " gupplementary sucationel Monograghs, wo. 27, chicaco repartment of Erucation; biversity of chicago. 19fs. pp.3-4.
 cinn and Cowpany lyme.

Chase, V. F., Mhe DLemposis snd Treatment of ome Combon Tificulties in solving Arithmetie probloms," Journel

Duncan, F. F., "The statherstle Vacabulary, Tournal of "aucetional gegearch, Xx (1934), 64.

Kinney, 2. B., problea solving and the Lemguage of fercentere The Journel of fusiness tacetion, $x(1935)$, 24.

Gevenson, P. F., pifflculties in froblem Golvinet, Joumsl of pucational Reseterch, Al (1925), 96.
 and rollow- Wp Mork gulletin in groblers golvine: Boomineton, ITTnois, quilo chool ablighlne compay, 1532.
 (i934), 44.

[^0]:

