The role of cation exchange in controlling groundwater chemistry at Aspo, Sweden

PDF Version Also Available for Download.

Description

Construction-induced groundwater flow has resulted in the mixing of relatively dilute shallow groundwater with more concentrated groundwater at depth in the underground Hard Rock Laboratory (HRL) at Aespoe, Sweden. The observed compositional variation of the mixed groundwater cannot be explained using a conservative mixing model. The geochemical modeling package EQ3/6, to which a cation-exchange model was added, was used to simulate mixing between the two fluids. The results of modeling simulations suggest that cation exchange between groundwater and fracture-lining clays can explain the major element fluid chemistry observed in the HRL. The quantity of exchanger required to match simulated with ... continued below

Physical Description

3 p.

Creation Information

Viani, B.E. & Bruton, C.J. January 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Construction-induced groundwater flow has resulted in the mixing of relatively dilute shallow groundwater with more concentrated groundwater at depth in the underground Hard Rock Laboratory (HRL) at Aespoe, Sweden. The observed compositional variation of the mixed groundwater cannot be explained using a conservative mixing model. The geochemical modeling package EQ3/6, to which a cation-exchange model was added, was used to simulate mixing between the two fluids. The results of modeling simulations suggest that cation exchange between groundwater and fracture-lining clays can explain the major element fluid chemistry observed in the HRL. The quantity of exchanger required to match simulated with observed fluid chemistry is reasonable and is consistent with the observed fracture mineralogy. This preliminary study establishes cation exchange as a viable mechanism for controlling the chemical evolution of groundwaters in a fracture-dominated dynamic flow system. This modeling study also strengthens their confidence in the ability to model the potential effects of fracture-lining minerals on the transport of radionuclides in a high level nuclear waste repository.

Physical Description

3 p.

Notes

INIS; OSTI as DE95011440

Source

  • International high-level radioactive waste management conference: progress toward understanding, Las Vegas, NV (United States), 1-5 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95011440
  • Report No.: UCRL-JC--119724
  • Report No.: CONF-950570--19
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 71316
  • Archival Resource Key: ark:/67531/metadc703054

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1995

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 23, 2016, 12:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Viani, B.E. & Bruton, C.J. The role of cation exchange in controlling groundwater chemistry at Aspo, Sweden, article, January 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc703054/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.