Corrosion Protection of SiC-Based Ceramics with CVD Mullite Coatings

May 1, 1997

Report Prepared by
Vinod Sarin and Michael Auger
Boston University
Manufacturing Engineering
15 St. Mary’s Street
Boston MA 02215

under
ORLN/Sub/94-SS110/02

for

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
Managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-96OR22464

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
Corrosion Protection of SiC-Based Ceramics with CVD Mullite Coatings

May 1, 1997

Report Prepared by
Vinod Sarin and Michael Auger
Boston University
Manufacturing Engineering
15 St. Mary’s Street
Boston MA 02215

under
ORLN/Sub/94-SS110/02

for

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
Managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-96OR22464
Abstract

Introduction

Thermodynamic Analysis

Kinetic Considerations

Experimental Methods

Results and Discussion

Effect of Input Gas Stoichiometry
The Effects of Depletion
The Effects of Post-Deposition Thermal Treatment

Corrosive Environment Studies

Oxidation Environment
Na2 SO4, O2 Environment
Coal Slag Environment

Conclusions

Acknowledgments

Distribution Lists
Abstract

For the first time, adherent crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance its corrosion/oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments. These corrosive environments include thermal, Na₂SO₄, O₂, and coal slag.

Abstract

For the first time, adherent crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance its corrosion/oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments. These corrosive environments include thermal, Na₂SO₄, O₂, and coal slag.
INTRODUCTION

Silicon carbide ceramics are the leading candidate materials for use as heat exchangers in advanced combined cycle power plants because of their unique combination of high temperature strength, high thermal conductivity, excellent thermal shock resistance, and good high temperature stability and oxidation resistance. Ceramic coatings are being considered for diesel engine cylinder liners, piston caps, valve faces and seats, piston rings, and for turbine components such as combustors, blades, stators, seals, and bearings [1]. Under such conditions ceramics are better suited to high temperature environments than metals.

Si₃N₄ and SiC are limited by their susceptibility to specific high temperature corrosive environments, including fossil fuels. These environments include but are not limited to hot gas streams containing trace amounts and combinations of impurities such as SOₓ, NaCl, and O₂ [2]. Combined with the inherent liability of monolithic ceramics to contact stress failure, this corrosion resistance limitation has lead to the development of protective coatings. Innumerable coatings have been developed throughout the last seven decades yet none has met the complex internal requirements of high temperature engines [3].

Mullite has been targeted as a potential coating material for silicon based ceramics such as Si₃N₄ and SiC. In addition to traditional refractory applications, mullite has received considerable attention as a high temperature material because of its unique ability to retain its strength, resist creep, and avoid thermal shock failure at elevated temperatures [4,5,6,7]. At atmospheric pressure, mullite is the only stable crystalline compound in the Al₂O₃-SiO₂ system. Stoichiometric mullite is quoted as 3Al₂O₃•2SiO₂ yet exists between 57 and 74 mole% Al₂O₃. The crystal
structure of mullite is a modified defect structure of sillimanite ($\text{Al}_2\text{O}_3\cdot\text{SiO}_2$) in which the mullite stoichiometry is achieved by substituting Si^{4+} ions with Al^{3+} ions in the tetrahedral sites and forming an oxygen vacancy [8,9]. The well accepted defect structure is expressed as $\text{Al}^{\text{VI}}_2(\text{Al}^{\text{IV}}_{2-2x}\text{Si}_{2x})\text{O}_{10-x}$ where x denotes the amount of missing oxygen and VI and IV denote six-fold and four-fold coordination. Stoichiometric mullite is orthorhombic and theoretically fits between sillimanite ($x=0$) and alumina ($x=1$) [10]. This full solid solution range has not been achieved in practice and mullite rarely exists beyond 76 mol% alumina with conventional processing. Solid solubility depends on the formation process and the cooling rate with extreme Al_2O_3 concentrations resulting from temperatures in excess of 2000°C and rapid cooling rates.

Previous attempts to grow mullite coatings by various processing methods have met with limited success [11]. Most commonly reported techniques require a post deposition heat treatment to convert the amorphous alumina-silicate into crystalline mullite [12,13]. Deposition of plasma sprayed mullite coatings have been reported; however, inherent porosity in the coatings resulted in migration of corrodants through the coating after a few hundred hours [14]. To overcome these deficiencies, the direct formation of chemically vapor deposited (CVD) mullite coatings has been investigated. The CVD process results in dense adherent coatings with the ability to control microstructural and morphological properties.
THERMODYNAMIC ANALYSIS

Equilibrium thermodynamics was performed on the AlCl₃-SiCl₄-CO₂-H₂ system to establish equilibrium reaction products at various operating conditions. This analysis has been detailed in previous publications [15,16] and were used to create CVD phase diagrams that help establish guidelines for input conditions for producing mullite and other compounds at equilibrium. The overall equilibrium reaction yielding mullite from the reactant gases utilized in the CVD process is theorized to be the following:

\[6\text{AlCl}_3 + 2\text{SiCl}_4 + 13\text{CO}_2 + 13\text{H}_2 \rightarrow 3\text{Al}_2\text{O}_3\cdot2\text{SiO}_2 + 13\text{CO} + 26\text{HCl} \] (1)

Thermodynamic analysis was performed using a wide range of conditions including temperatures between 800 and 1200°C and system pressures between 2 and 150 torr. The results of the previous analysis determined that low concentrations of chlorides need to be used to obtain high deposition efficiency and carbon free deposits.

KINETIC CONSIDERATIONS

A comprehensive thermodynamic analysis is necessary but not sufficient for understanding the CVD process parameters required to grow mullite coatings. Analyzing the kinetic steps, in particular the rate limiting step, involved in the coating deposition is also essential. Current studies focus on collecting experimental data concerning the kinetics of CVD mullite formation using AlCl₃, SiCl₄, H₂, and CO₂. Kinetic considerations are being taken from the formation of the
well established oxide coatings AlₙOₙ and SiO₂ using chloride reactants. The formation of Al₂O₃ proceeds via this hydrolysis reaction:

\[
\text{CO}_2(g) + \text{H}_2(g) \rightarrow \text{CO}(g) + \text{H}_2\text{O}(g) \tag{2.1}
\]

\[
2\text{AlCl}_3(g) + 3\text{H}_2\text{O}(g) \rightarrow \text{Al}_2\text{O}_3(g) + 6\text{HCl}(g) \tag{2.2}
\]

It has been shown that the reaction rate of AlCl₃ with O₂ is extremely slow while AlCl₃ reacts vigorously with H₂O. AlCl₃, H₂, and CO₂ exhibit a moderate reaction rate and avoid homogenous nucleation [17]. The reaction proceeds via reaction (2) where reaction (2.1) is labeled the water-gas shift reaction. It has also been stated that SiO₂ is formed via the hydrolysis mechanism at 1000°C, yet it is unclear whether SiO₂ can easily form via another mechanism [18].

Experimentally it has been found that the rate is proportional to the concentration of both reactants (assuming the reaction is irreversible). Hence the rate equation for H₂O production is

\[
R_{\text{H}_2\text{O}} = k[\text{CO}_2]^n[\text{H}_2]^m \tag{3}
\]

In this equation, \(k \) is called the rate constant for this reaction. It is independent of concentration yet will vary with temperature according to the Arrhenius relation. The factors \(n \) and \(m \) refer to the rates of the equation and are not necessarily equal to the stoichiometry of the formation equation. For instance if \(n = 1 \) the reaction is considered first order with respect to carbon dioxide.
The water-gas shift reaction has been extensively studied due to its applicability to metal oxide reactions [19]. Analysis of the reaction over the temperature range 400 to 1050°C suggest separate low temperature and high temperature reaction paths. The low temperature reaction path is dominant at temperatures below 800°C and is extremely sensitive to trace impurities such as oxygen. The high temperature reaction is homogenous and dominant at temperatures in excess of 800°C. The respective low and high temperature mechanisms (determined by measuring CO concentration) are as follows:

\[
\text{Low Temperature: } \frac{d[C_O]}{dt} = 7.6 \times 10^4 \exp\left(-\frac{39,200}{RT}\right) [H_2]^{1/3} [CO_2] \\
\text{High Temperature: } \frac{d[C_O]}{dt} = 1.2 \times 10^{13} \exp\left(-\frac{78,000}{RT}\right) [H_2]^{1/2} [CO_2]
\]

*activation energy is stated in cal/mole

The activation energy of SiO₂ and Al₂O₃ on Si substrates varies according to experimental conditions. Two similar studies performed in cold-walled CVD reactors state an SiO₂ activation energy of 82 kcal/mol [20], and an Al₂O₃ activation energy of 34.8 kcal/mol [21]. These separate studies agree with numerous experimental observations in which Al₂O₃ deposition is particularly sensitive to trace impurities in the gas mixture resulting in homogenous (powdery) nucleation [22]. These previous kinetic studies have been used as guides for CVD mullite yet may not be used directly as the kinetics of the mixed chloride reaction will vary from the kinetics of the separate systems.
EXPERIMENTAL METHODS

A CVD reactor consisting of a vertically hot-walled reactor with a resistively heated three-zoned furnace was used for the experiments. Polished bars of 3 x 4 x 20 mm Hexaloy SiC (Carborundum Company, Niagara Falls, NY) were used as substrates. AlCl₃ was formed \textit{in situ} by flowing Cl₂ with Ar as a carrier and diluant through heated Al chips. SiCl₄ vapor was introduced by evaporating the liquid at room temperature. CO₂ and H₂ were mixed with the chlorides prior to entering the deposition reactor. Excess H₂ was present to ensure complete reduction of the metal chlorides to form HCl before exiting the reactor. The deposition technique is detailed in previous literature [23]. All depositions reported in this study were performed at 950°C and a total pressure of 75 torr. All coatings were characterized through x-ray diffraction (XRD) and scanning electron microscopy (SEM). Selected coatings were characterized with electron diffraction, transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM).

RESULTS AND DISCUSSION

Effect of Input Gas Stoichiometry

The effect of the input Al:Si ratio on the resultant mullite coating was investigated. The ratio of Al:Si was varied from pure SiO₂ to pure Al₂O₃ with composite coatings varying between 1:1 to 4:1. Experimentally there are numerous methods to achieve the desired input Al:Si molar ratios. The two methods explored in this study are 1) varying the total partial pressure of metallic
chlorides \((P_{MCl}) \) by altering the flow rate of AlCl\(_3\) and holding the flow rate of SiCl\(_4\) constant and
2) holding \(P_{MCl} \) constant and varying both AlCl\(_3\) and SiCl\(_4\) to achieve the desired ratio.

The effect of varying the Al:Si ratio through varying \(P_{MCl} \) is shown in Figure 1. An initial increase in growth rate is seen as AlCl\(_3\) is introduced at an Al:Si ratio of 1:1 and \(P_{MCl} \) of 0.33 torr.
The coatings produced at a 1:1 ratio and \(P_{MCl} \) of 0.33 torr were not usually mullite when examined through XRD and exhibited a high degree of non-uniformity. TEM analysis revealed that these coatings were a nano-crystalline mixture of \(\gamma\)-Al\(_2\)O\(_3\) and amorphous SiO\(_2\). This nano-crystalline layer was evident in all samples tested at all input ratios. Details of similar structural analysis may be found in a previous study [24]. The growth rate of the coating continues to decrease as the AlCl\(_3\) flow rate is increased to an Al:Si ratio of 4:1 and \(P_{MCl} \) of 0.93 torr.
The degree of homogenous nucleation (powder formation) and non-uniformity in the coating continued to increase as the Al:Si ratio increased. The surface morphology of the coating becomes more faceted as the input Al:Si ratio increases. Previous studies of CVD mullite coatings have shown that increased Al content increases the faceted nature of the coating [17].
Mullite coatings grown with an input Al:Si ratio of 2:1 were uniform, fine grained, and highly faceted with a growth rate of 3 \(\mu \)m/hr. The growth rate for Al\(_2\)O\(_3\) stated in Figure 1 is an average value taken from several literature sources under similar conditions. Attempts to deposit Al\(_2\)O\(_3\) using mullite processing conditions resulted in significant homogenous nucleation. Pure SiO\(_2\) coatings under these conditions were found to be amorphous.

The effect of varying the Al:Si ratio by increasing \(P_{MCl} \) on the initial nano-crystalline region is shown in Figure 2. The thickness of the nano-crystalline region decreases as the input Al:Si ratio increases. Compositional analysis on the 2:1 and 3:1 samples, carried out in an STEM.
using a 40nm electron probe, indicate a variation in the Al:Si ratio across the thickness of the coatings. The Al:Si ratio near the substrate is very low, a typical value is 0.326 and is presumed to be SiO₂ at the substrate coating interface. The Al:Si ratio increases as the analysis proceeds through the nano-crystalline region. The coating begins to grow as (001) textured columnar mullite at the point where the Al:Si ratio is between 2.93 and 3.77. This ratio overlaps with the known Al₂O₃ solid solubility of mullite (2.76-3.33). The Al:Si ratio continues to increase through the nano-crystalline region with maximum values approaching 7:1 at the top of the coating. The presence of a nano-crystalline region suggests that mullite is not forming directly as thermodynamics suggests but rather as Al₂O₃ and SiO₂ separately. These molecules are absorbed on the surface of the silicon-based substrate with SiO₂ initially preferred. Mullite nucleates when the Al:Si ratio of the initial nano-crystalline coating reaches a critical value close to that of stoichiometric mullite.

Figure 3 illustrates the effect of growth rate upon the second method of controlling the input Al:Si ratio by maintaining the P_{MCr} at 0.53 torr and varying both AlCl₃ and SiCl₄ to achieve the desired ratio. The constant P_{MCr} value was 0.53 torr, the same value for the 2:1 coatings grown in Figure 1. Unlike in the varying P_{MCr} matrix the coatings grown at all mixed oxide compositions were uniform, fine-grained, and faceted mullite coatings. The degree of homogenous nucleation did not visually change throughout the mixed oxide range. Growth rates of coatings with an input Al:Si ratio of 1:1, 2:1, and 4:1 did not vary significantly, however the growth rate of coatings grown at the stoichiometric mullite input ratio of 3:1 was significantly larger. Figure 4 indicates the X-ray diffraction pattern of the mullite coating grown under the Al:Si ratio of 3:1 with a P_{MCr} of 0.53 torr at 950°C and a total pressure of 75 torr.
The Effects of Depletion

Depletion through deposition and homogenous nucleation in a hot-walled reactor usually results in non-uniform coatings. Excessive homogenous nucleation results in powdery non-adherent coatings. Mullite deposition has the added complexity of multiple components. In an attempt to better understand the effects of depletion upon the uniformity of CVD mullite, a 10 cm long sample of Si$_3$N$_4$ (Norton NT154) was placed parallel to input gas flow, as illustrated in Figure 5. The coated sample was sectioned and analyzed. There is a temperature gradient along the length of the sample with deposition at the bottom of the sample occurring at 930°C and the deposition at the top was 980°C. Such a gradient is common in industrial CVD depositions to minimize the effects of depletion. Increased temperature is required to maintain a constant growth rate with increasingly depleted reactants. A constant growth rate was maintained along the entire length of the sample. SEM micrographs reveal that the coating becomes increasingly faceted from the bottom to the top. This is due to the increasing Al:Si ratio evident in the EDS quantitative analysis performed on each section.

The Effects of Post-Deposition Thermal Treatment

Post-deposition heat treatments were conducted on SiC coated samples with coatings grown by varying P_{MCIS} to achieve different Al:Si input ratios. Studies were conducted on mullite coatings grown at Al:Si input ratios of 1:1, 2:1, 3:1, and 4:1, as well as SiO$_2$. Separate coating sets were thermally treated in a vacuum tight chamber at atmospheric pressure in a flowing Ar environment at 1000°C for 100 hours, 1200°C for 100 hours, and 1350°C for 4 hours. The
structures of mullite coatings on SiC grown at an input Al:Si ratio of 2:1 and heat treated under these conditions are shown in Figure 6. As the temperature of the annealing treatment increased the surface structure became increasingly featureless. X-ray diffraction of the coatings after heat treatment indicated that the only crystalline phases present were mullite and SiC.

Figure 7 illustrates the surface structure of coatings produced with different input Al:Si ratios by varying the partial pressure of metallic chlorides (P_{MeCl_2}) after annealing at 1350°C for 4 hours. The coating grown with an input Al:Si ratio of 2:1 is relatively featureless as compared to the coating grown with an input ratio of 4:1. The coatings grown with a larger Al:Si input ratio maintained their surface structure better than the coatings grown with a lesser input Al:Si input ratio. The surface structure of mullite coatings can be controlled during thermal treatments without any apparent adverse effects upon the integrity of the coating.

Grain growth did occur in the mullite coating as indicated in Figure 8 which compares the same coating before and after annealing at 1350°C. Grain growth is particularly evident in the resolution of the (120),(210) peak doublet post-anneal. Grain growth most likely occurred through the conversion of columnar mullite grains into a coarse grained and textured mullite coating.

Uncoated and amorphous SiO$_2$ coated SiC were subjected to elevated temperatures for comparative purposes. The X-ray diffraction patterns of Figures 9 and 10 indicate that both the native and deposited amorphous SiO$_2$ crystallized at elevated temperatures. The SiO$_2$ peak is evident in both the uncoated and initially amorphous SiO$_2$ coated SiC at 22° (2θ). An SiO$_2$
crystalline phase is not evident in mullite coated samples that have been heat treated to 1000°C, 1200°C, or 1350°C.

Corrosive Environment Studies

Preliminary experimentation has begun to determine the degree of protection provided by mullite coatings on silicon-based ceramics in corrosive environments. Different corrosive environments may require mullite coatings with slightly different properties. This degree of control may be achieved with CVD mullite coatings.

Oxidation Environment

CVD mullite coated SiC was tested in an O₂ rich environment at 1000°C for 100 hours [25]. As shown in Figure 11 an extremely low weight gain is observed past 30 hours of exposure. The extremely low weight change (little formation of oxide) is shown as the weight change versus square root of time (assuming parabolic oxide growth kinetics) for times greater than 30 hours. At this point, there is no statistical difference in the growth kinetics between mullite coated with an input Al:Si ratio of 2:1 \((P_{\text{MCl}_2} = 0.53 \text{ torr}) \), 3:1 \((P_{\text{MCl}_2} \text{ of 0.53 torr}) \), and the slow diffusion rate of O₂ through the protective SiO₂ layer that forms on SiC.
CVD mullite coated Si₃N₄ was subjected to a corrosive environment containing Na₂SO₄ and O₂ at 1000°C for 100 hours [26]. The specimens were typically loaded with about 5 mg/cm² of Na₂SO₄ and exposed to a flowing oxygen environment in a quartz tube heated to 1000°C. The use of an oxygen environment results in a basic molten salt (i.e., high Na₂O activity), thus facilitating the corrosive reaction of Na₂O with native SiO₂ seen on silicon based substrates according to the reaction:

\[
\text{Na}_2\text{SO}_4(\ell) \rightarrow \text{Na}_2\text{O}(s) + \text{SO}_3(g) \quad (6.1)
\]

\[
\text{Na}_2\text{O}(s) + x\text{SiO}_2(s) \rightarrow \text{Na}_2\text{O} \cdot x(\text{SiO}_2)(l) \quad (6.2)
\]

The results of uncoated Si₃N₄ and mullite coated Si₃N₄ after exposure are shown in Figure 12. The presence of a Na-containing glassy phase is observed to a depth of \(\approx \) 20 μm below the initial substrate surface in the uncoated sample. Yttrium (used as a sintering aid in Si₃N₄) migrated through the grain boundaries of the substrate to the substrate surface, resulting in the formation of a yttrium depleted zone of \(\approx \) 10 μm. The mullite coated sample was relatively unaffected by the corrosive environment. It was found from TEM study that the remainder of the coating as well as the underlying Si₃N₄ substrate were not affected either microstructurally or compositionally by the corrosion exposure.
Coal Slag

With the desire to tailor CVD mullite coatings on ceramic heat exchangers in coal-fired systems for power production, CVD mullite coated SiC samples were exposed to corrosive coal slag at 1260°C for 300 hours [27]. Chemical composition of the coal slag is given in Table I. Corrosive coal slag will form extreme porosity and dramatic pit formation in unprotected SiC. After 300 hours of exposure all mullite coatings (Al:Si input ratios 2:1, 3:1, 4:1 achieved through varying P_{MCl_4}) exhibited excellent protection. Generally, mullite grown with a lower input Al:Si ratio exhibited a more corrosion resistant surface as shown in Table II. This trend agrees with the as deposited SEM analysis of mullite coatings in which an input Al:Si ratio of 2:1 (P_{MCl_4} 0.53 torr) produced a more uniform coating than an input Al:Si ratio of 4:1 (P_{MCl_4} 0.93 torr).

CONCLUSIONS

Through the use of thermodynamic and kinetic analysis crystalline mullite coatings have been deposited via chemical vapor deposition upon silicon based materials such as SiC and Si$_3$N$_4$. Altering process parameters such as deposition temperature and reactant partial pressure has resulted in mullite coatings with varied physical and chemical properties such as crystal structure, surface morphology, and chemical composition. Preliminary results have indicated that mullite coatings form an effective barrier to corrosion in high temperature corrosive environments including Na$_2$SO$_4$-O$_2$, oxidation, and jet burner exhaust.
Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion System Materials Program, and Fossil Energy AR&TD Materials Program under contract numbers DE-AC05-840R21400 and SC-19X-SS110C with Martin Marietta Energy Systems, Inc. The authors would like to acknowledge Dr. Woo Lee, Dr. Tom Strangman, and Dr. Peter Tortorelli for corrosion testing, Ping Hou for TEM analysis, Dr. S. Basu for invaluable discussions, and Dave Stinton for his guidance.
REFERENCES

25. Testing performed by Dr. Tortorelli of Oak Ridge National Laboratory, Oak Ridge, TN

Figure 1: Growth rate of mullite vs. reactant Al:Si ratio and variable metallic chloride partial pressure.
Figure 2: Nano-crystalline layer thickness of mullite coatings vs. reactant Al:Si ratio. Inset is the typical microstructural evolution of mullite coatings on silicon-based materials.
Figure 3: Growth rate of mullite vs. reactant Al:Si ratio at a constant metallic chloride partial pressure (P_{MCle}) of 0.53 torr.
Figure 4: X-ray diffraction pattern of mullite on SiC deposited at 950°C, 75 torr, Al:Si reactant ratio of 3:1, and P_{MCH} of 0.53 torr.
Figure 5: Difference in surface structure and chemical composition of mullite grown on Si₃N₄ where the sample is placed parallel to reactant gas flow.
Figure 6: Surface structure of mullite as deposited, annealed in Ar @ 1000°C for 100 hours, annealed @ 1200°C for 100 hours, and 1350°C for 4 hours.
Figure 7: Surface structure of mullite after annealing in Ar @ 1350°C for 4 hours for coatings grown with an Al:Si input ratio of A) 2:1, B) 4:1.
Figure 8: X-ray diffraction pattern for a mullite coating A) As Deposited, B) After annealing in Ar @ 1350°C for 4 hours.
Figure 9: X-ray diffraction patterns for uncoated SiC, A) As deposited, B) Heat treated in Ar @ 1000°C for 100 hours, C) @ 1200°C for 100 hours.
Figure 10: X-ray diffraction patterns for SiO₂ coated SiC, A) As deposited, B) Heat treated in Ar @ 1000°C for 100 hours, C) @1200°C for 100 hours, D) @1350°C for 4
Figure 11: Relative weight change of uncoated SiC and mullite coatings grown at reactant Al:Si ratios of 2:1 and 3:1 on SiC vs. (oxidation time)$^{1/2}$ in a flowing air environment @ 1000°C. [Tortorelli Ref. 25]
Figure 12: Comparison between, A) Uncoated Si$_3$N$_4$ and B) Mullite coated Si$_3$N$_4$ subjected to a Na$_2$SO$_4$-O$_2$ environment at 1000°C. White areas on the material surface are the result of corrosion. [Woo Lee Ref. 26]
Table I: Chemical composition of coal slag which resulted from coal burned at Illinois Power Company Baldwin Plant. Commonly referred to as Baldwin coal slag. [Breder, Ref. 27]

<table>
<thead>
<tr>
<th>Oxide</th>
<th>wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>53.4</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>18.6</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>17.6</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.7</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.0</td>
</tr>
<tr>
<td>CaO</td>
<td>7.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.9</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0.0</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1.7</td>
</tr>
<tr>
<td>SO$_3$</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table II: Observations of mullite grown with different input Al:Si ratios on SiC and exposed to Baldwin coal slag for 300 hours at 1260°C. [Breder, Ref. 27]

<table>
<thead>
<tr>
<th>Al:Si (Input Ratio)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:1</td>
<td>Very Clean, no pitting observed</td>
</tr>
<tr>
<td>3:1</td>
<td>Clean, possible beginning of pit formation</td>
</tr>
<tr>
<td>4:1</td>
<td>Clean, possible beginning of pit formation</td>
</tr>
<tr>
<td>Uncoated SiC</td>
<td>Corrosion beginning</td>
</tr>
<tr>
<td>Organization</td>
<td>Address</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>DOE</td>
<td>Office of Vehicle and Energy R&D</td>
</tr>
<tr>
<td>DOE</td>
<td>Pittsburgh Energy Technology Center</td>
</tr>
<tr>
<td>Dow Corning Corporation</td>
<td>3901 S. Saginaw Road, Midland, MI 48686-0995</td>
</tr>
<tr>
<td>EC Technologies</td>
<td>3614 Highpoint Drive, San Antonio, TX 78217</td>
</tr>
<tr>
<td>Electric Power Research Institute</td>
<td>P.O. Box 10412, 3412 Hillview Avenue, Palo Alto, CA 94303</td>
</tr>
<tr>
<td>European Communities Joint Research Centre</td>
<td>Petten Establishment, P.O. Box 2, 1755 ZG Petten, The Netherlands</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
<td>Materials Science & Engineering (0245), Bunger-Henry Building, Room 276, Atlanta, GA 30332-0245</td>
</tr>
<tr>
<td>Idaho National Engineering Laboratory</td>
<td>P.O. Box 1625, Idaho Falls, ID 83415</td>
</tr>
<tr>
<td>Lawrence Livermore National Laboratory</td>
<td>P.O. Box 808, L-325, Livermore, CA 94550</td>
</tr>
<tr>
<td>National Materials Advisory Board</td>
<td>National Research Council, 2101 Constitution Avenue, Washington, DC 20418</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory</td>
<td>P.O. Box 2008, Oak Ridge, TN 37831</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Code 431, 800 N. Quincy Street, Arlington, VA 22217</td>
</tr>
<tr>
<td>Shell Development Company</td>
<td>WTC R-1371, P.O. Box 1380, Houston, TX 77251-1380</td>
</tr>
<tr>
<td>Tennessee Valley Authority</td>
<td>Energy Demonstration & Technology, MR2N58A, Chattanooga, TN 37402-2801</td>
</tr>
<tr>
<td>The Johns Hopkins University</td>
<td>Materials Science & Engineering, Maryland Hall, Baltimore, MD 21218</td>
</tr>
</tbody>
</table>