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Abstract

This is the description of the recipe for the construction of confidence lim-

its recommended by the “Search Limits Committee” for the use of the DØ

collaboration.

I. INTRODUCTION

In this note, we present the recipe recommended by the “Search Limits Committee” for

the construction of confidence intervals. In another note, currently in preparation, we will

present the rationale for this recipe, a critique of the current literature on this topic, and

several examples of the use of the method. This note is intended to fill the need of the

collaboration to have a reference available until the more complete note is finished.

Section II introduces the notation we use in this note, and Section III contains the

suggested recipe.

II. NOTATION

For discrete A, we use the symbol P (A|B) to represent the probability of proposition A,

given that proposition B is true. When dealing with a continuous parameter x, we define a
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differential probability density ρ(x|B), such that, given B, the probability of the continuous

variable being between x and x + dx is given by P (x|B) = ρ(x|B) dx.

In the probabilities below, I represents any relevant prior information in the problem,

and its presence emphasizes the fact that all probabilities are contingent upon other specified

information, and that it is improper to combine probabilities contingent upon different prior

information.

III. THE RECIPE

We recommend the use of the Bayesian technique for the setting of confidence intervals,

and present the following recipe for the construction of such limits.

1. Define the model. For the case of new particle searches,1 there is only one accepted

model: the expected number of events µ is related to the signal cross section σ, the

signal efficiency ε, the integrated luminosity L, and the expected background b, as:

µ = b + Lεσ . (3.1)

In different analyses, one may replace b by some more complicated expression, con-

taining perhaps a sum of many terms, each of which is a product of background

acceptances, background cross sections, branching fractions, and the integrated lumi-

nosities.

2. Determine the likelihood function for the data, given the model. In the case of counting

experiments, one conventionally accepted likelihood function is the Poisson distribu-

tion with expectation value (mean) µ. Given some expectation value µ, the probability

of observing k events is

1We limit our discussion to the case of counting experiments, and leave the discussion of spectrum

analysis to another paper.
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P (k|µ, I) =
e−µµk

k!
, (3.2)

where I reflects all the information used to build µ, as well as the assumption about

the relevance of the Poisson distribution for describing the results. With the above

model, the likelihood function is simply

P (k|σ,L, ε, b, I) =
e−(b+Lεσ)(b + Lεσ)k

k!
. (3.3)

It is worth emphasizing that the above is the probability for observing k events, given

some σ, L, ε, and b, and not the probability that σ, L, ε, or b, are right.

3. Assign the prior probabilities for all parameters. One must next use the available

information (such as the knowledge of the integrated luminosity, within some bound

of uncertainties) to assign prior probabilities to each of the parameters in the problem.

In general, the prior can contain correlations between the parameters. In many cases,

the correlations can be neglected; if so, then the prior is factorizable into a product of

independent priors. In most cases, the prior can be factored into P (σ|I) and P (θ|I),

where θ represents all the parameters except σ.

Often (but not necessarily always!), when there is an estimate of both the value and

uncertainty in a given quantity, the appropriate distribution for a prior is a Gaussian.

In general, the principle of maximizing the Shannon Entropy [1] can be imposed to

determine an appropriate prior.

Because the theory of “uninformative priors” is the least well-developed portion of

Bayesian statistics, the choice of prior for the cross section for signal poses a problem.

We suggest using a flat prior probability density of finite range:

ρ(σ|I) =


1/σmax if 0 ≤ σ ≤ σmax

0 otherwise ,
(3.4)

where σmax is chosen sufficiently large that the likelihood function for σ > σmax is

negligible. We also suggest that the dependence of the result on the nature of the
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prior be investigated to assess the sensitivity to the choice. The prior of most interest

is the so-called Jeffreys prior:

ρ(σ|I) = lim
α→0
β→∞


0 if σ < α

1/[σ ln(β/α)] if α ≤ σ ≤ β

0 if σ > β ,

(3.5)

where the limits are to be taken only at the end of the calculation, and not at some

intermediate step.

Unless the lower limit α for the Jeffreys prior has some finite positive value, the poste-

rior probability density for σ will contain divergent integrals when there is background

(b > 0). This will also be the case for k = 0, when there is no background. Confidence

limits will therefore not be able to be determined in such situations. Nevertheless,

even for these cases, the integrals for the means and variances in σ converge, and can

still be calculated.

It should be recognized that the divergence of the posterior density for σ based on the

Jeffreys prior is such that smaller values of α lead to more stringent limits on cross

sections relative to those given by flat priors, and, in this sense, the flat prior of Eq.

(3.4) is more “conservative”.

4. Apply Bayes’ Theorem to find the posterior probability.

Bayes’ Theorem relates the pre-data knowledge of the parameters (the prior probabil-

ities) to the post-data knowledge of the parameters (the posterior probabilities), with

the linkage being the likelihood function and a normalization constant. In general, we

can write:

P (A|BC) =
P (B|AC)P (A|C)

P (B|C)
. (3.6)

The denominator in Eq. (3.6) is determined by the normalization condition

∑
all A

P (A|BC) = 1 . (3.7)
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When applying these ideas to probabilities over ranges of continuous variables, it

should be recognized that Eq. (3.6) is specified in terms of probabilities (at discrete

values), and not probability densities. Especially when normalizations are ambiguous,

this may require great care. Under such circumstances, it is always better to evaluate

the ratio in Eq. (3.6) over some specified range of the continuous parameters, rather

than take the ratio of the individual mutiplicative terms. This will avoid “paradoxes”

that can arise from an incorrect approach to the limit when the sum in Eq. (3.7)

becomes an integral.

To apply Bayes’ Theorem to our problem, we identify the following relationships:

• A reflects the probability of the cross section being between σ and σ + dσ, the

integrated luminosity between L and L+ dL, the signal efficiency between ε and

ε + dε, and the background count between b and b + db.

• B reflects the k events observed in the data.

• C contains all relevant prior knowledge. This includes the descriptions of the

knowledge of the parameters σ, L, ε, and b, as well as the assumptions that went

into the entire model.

Thus, Bayes’ Theorem for our problem becomes:

P (σ,L, ε, b|k, I) ∝ e−(b+Lεσ)(b + Lεσ)k

k!
P (σ|I)P (L, ε, b|I) , (3.8)

where the constant of proportionality is determined by the condition

∫ ∞

0
dσ

∫ ∞

0
dL

∫ 1

0
dε

∫ ∞

0
db ρ(σ,L, ε, b|k, I) = 1 . (3.9)

5. Remove nuisance variables. Because the interest is in σ, and not in L, ε, or b, the last

three (L, ε, and b) are often termed nuisance parameters. To remove any dependence

on the nuisance variables, Eq. (3.8) is integrated over them. The result is the posterior

distribution for σ:
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ρ(σ|k, I) =
∫ ∞

0
dL

∫ 1

0
dε

∫ ∞

0
db ρ(σ,L, ε, b|k, I) . (3.10)

6. Use the resulting posterior probability distribution to calculate quantities of interest.

The full information of the Bayesian analysis is contained in the posterior density

function for σ. However, for some problems, less information is sufficient. For example,

in a search for some new phenomenon, the relevant issue is usually the upper limit

on the cross section (σUL), calculated by integrating Eq. (3.10). This upper limit,

specified at some level of confidence of 100× β%, is defined by:

β =
∫ σUL

0
dσ ρ(σ|k, I) . (3.11)

When the posterior distribution for σ is peaked significantly away from zero, it may

be more appropriate to quote the mean and the variance of the distribution — and to

claim discovery!
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