Origins of viscoelastic dissipation in self-assembled organic monolayers

PDF Version Also Available for Download.

Description

Although self-assembled monolayers (SAMs) are promising candidates for interfacial lubricants in micro-electromechanical systems, the relationship between the monolayer structure and its viscoelastic properties is not understood. Using Acoustic Wave Damping (AWD), the authors have measured the complex shear modulus of linear alkane thiol monolayers, HS(CH{sub 2}){sub n{minus}1}CH{sub 3} denoted as C{sub n}, on Au(111)-textured substrates. The AWD technique measures the elastic energy storage and dissipative loss within a SAM adsorbed onto the electrodes of a quartz crystal microbalance. For C{sub 12}, C{sub 14} and C{sub 18} SAMs, the storage modulus increases with alkane chain length, but the loss modulus exhibits ... continued below

Physical Description

8 p.

Creation Information

Shinn, N.D. & Michalske, T.A. April 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Although self-assembled monolayers (SAMs) are promising candidates for interfacial lubricants in micro-electromechanical systems, the relationship between the monolayer structure and its viscoelastic properties is not understood. Using Acoustic Wave Damping (AWD), the authors have measured the complex shear modulus of linear alkane thiol monolayers, HS(CH{sub 2}){sub n{minus}1}CH{sub 3} denoted as C{sub n}, on Au(111)-textured substrates. The AWD technique measures the elastic energy storage and dissipative loss within a SAM adsorbed onto the electrodes of a quartz crystal microbalance. For C{sub 12}, C{sub 14} and C{sub 18} SAMs, the storage modulus increases with alkane chain length, but the loss modulus exhibits no systematic correlation. To investigate the origins of energy dissipation, the authors used a new, high-sensitivity oscillator circuit to simultaneously monitor the adsorption kinetics and acoustic damping during monolayer growth from the gas phase. For both C{sub 9} and C{sub 12} thiols, the dissipation in the growing monolayer can be correlated with distinct two-dimensional fluid phases and the nucleation and growth of condensed-phase islands.

Physical Description

8 p.

Notes

OSTI as DE98005538

Source

  • Spring meeting of the Materials Research Society, San Francisco, CA (United States), 13-17 Apr 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98005538
  • Report No.: SAND--97-3129C
  • Report No.: CONF-980405--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 658206
  • Archival Resource Key: ark:/67531/metadc702984

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 14, 2016, 9:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shinn, N.D. & Michalske, T.A. Origins of viscoelastic dissipation in self-assembled organic monolayers, article, April 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc702984/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.