AC losses in conductors based on high {Tc} superconductors

PDF Version Also Available for Download.

Description

In electrical power devices, ac losses from a superconductor is a primary factor which determines their usefulness as commercial power equipment. For this reason, extensive studies have been carried out on the losses of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag, [Bi(2223)/Ag], tapes. These studies were mostly limited to a single isolated tape. However, a conductor in a power device is surrounded by other conductors and the precise magnetic field distribution around it is very different from that for a single conductor carrying currents or in ac fields. Since the precise field distribution in and around a superconductor is critical in ... continued below

Physical Description

25 pages

Creation Information

SUENAGA,M. March 17, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In electrical power devices, ac losses from a superconductor is a primary factor which determines their usefulness as commercial power equipment. For this reason, extensive studies have been carried out on the losses of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag, [Bi(2223)/Ag], tapes. These studies were mostly limited to a single isolated tape. However, a conductor in a power device is surrounded by other conductors and the precise magnetic field distribution around it is very different from that for a single conductor carrying currents or in ac fields. Since the precise field distribution in and around a superconductor is critical in determining the losses, it is very important to measure and to understand the losses in Bi(2223)/Ag tapes which are surrounded by other tapes as in a power device. Taking this fact into consideration, recently the authors have studied ac losses in stacks of Bi(2223)/Ag tapes in parallel and perpendicular applied fields and shown that they can calculate the losses in these cases utilizing the critical state model if a number of appropriate factors about properties of the tape are taken into a consideration. However, in a power device such as a transformer, magnetic fields near the ends of a solenoid vary from parallel to perpendicular with the tape face. Thus, it is important to learn the behavior of the losses in the stacks of Bi(2223)/Ag tapes with respect to the variations in the angle between the applied field direction and the tape face. In order to accomplish this, they measured the angular dependence of the losses in the stacks which were made from two different Bi(2223)/Ag tapes. Here they report this result and discuss under what conditions they can calculate the losses with a reasonable accuracy. The angular dependence of the losses in ac applied fields were measured using a series of stacked Bi(2223)/Ag tapes having the angles with the direction of applied fields of 0, 7.5, 15, 30, 45, 60, and 90 degrees. The measured values of the losses were compared with the calculated values. The calculations were performed using the measured losses for the 0 and 90 degrees orientations and assuming the losses can be separated for the currents circulating in the plane of and across the tapes. It was shown that at very high fields, i.e., well above the full penetration fields, this assumption was justified by the observed good agreement between the measured and the calculated losses for both tapes. However, at the low fields, significant deviations between the calculated and the measured were seen for both of the tapes. One possible contributing factor to this discrepancy is the non-ideal shape of the tape cross sections. This can causes the field distribution near the edges of the slabs to deviate from that for an assumed uniform infinite slab. This makes the actual fields at the edge regions to be greater than the applied fields. Thus, the losses will be higher than those calculated. Although not having a full understanding of the losses at low fields is of concern, it will not be of a great importance in the designs of power devices in practice. This is due to the fact that the values of the losses at low fields are orders of magnitudes lower than those at high fields and thus the primary concern for the power device development is the reduction of the losses at high fields.

Physical Description

25 pages

Source

  • Other Information: PBD: 17 Mar 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: BNL--67513
  • Report No.: 600301020
  • Grant Number: AC02-98CH10886
  • DOI: 10.2172/759046 | External Link
  • Office of Scientific & Technical Information Report Number: 759046
  • Archival Resource Key: ark:/67531/metadc702951

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 17, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 6, 2015, 10:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

SUENAGA,M. AC losses in conductors based on high {Tc} superconductors, report, March 17, 2000; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc702951/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.