Instrument uncertainty effect on calculation of absolute humidity using dewpoint, wet-bulb, and relative humidity sensors

PDF Version Also Available for Download.

Description

As part of the US Department of Energy`s Advanced Desiccant Technology Program, the National Renewable Energy Laboratory (NREL) is characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The experimental data will provide industry and end users with independent performance evaluation and help researchers assess the energy savings potential of the technology. Accurate determination of humidity ratio is critical to this work and an understanding of the capabilities of the available instrumentation is central to its proper application. This paper compares the minimum theoretical random error in humidity ratio calculation for three common measurement methods to ... continued below

Physical Description

10 p.

Creation Information

Slayzak, S. J. & Ryan, J. P. April 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

As part of the US Department of Energy`s Advanced Desiccant Technology Program, the National Renewable Energy Laboratory (NREL) is characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The experimental data will provide industry and end users with independent performance evaluation and help researchers assess the energy savings potential of the technology. Accurate determination of humidity ratio is critical to this work and an understanding of the capabilities of the available instrumentation is central to its proper application. This paper compares the minimum theoretical random error in humidity ratio calculation for three common measurement methods to give a sense of the relative maximum accuracy possible for each method assuming systematic errors can be made negligible. A series of experiments conducted also illustrate the capabilities of relative humidity sensors as compared to dewpoint sensors in measuring the grain depression of desiccant dehumidifiers. These tests support the results of the uncertainty analysis. At generally available instrument accuracies, uncertainty in calculated humidity ratio for dewpoint sensors is determined to be constant at approximately 2%. Wet-bulb sensors range between 2% and 6% above 10 g/kg (4%--15% below), and relative humidity sensors vary between 4% above 90% rh and 15% at 20% rh. Below 20% rh, uncertainty for rh sensors increases dramatically. Highest currently attainable accuracies bring dewpoint instruments down to 1% uncertainty, wet bulb to a range of 1%--3% above 10 g/kg (1.5%--8% below), and rh sensors between 1% and 5%.

Physical Description

10 p.

Notes

OSTI as DE98004459

Source

  • Solar 98: renewable energy for the Americas conference, Albuquerque, NM (United States), 14-17 Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98004459
  • Report No.: NREL/CP--550-24523
  • Report No.: CONF-980641--
  • Grant Number: AC36-83CH10093
  • Office of Scientific & Technical Information Report Number: 654070
  • Archival Resource Key: ark:/67531/metadc702911

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 28, 2016, 6:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Slayzak, S. J. & Ryan, J. P. Instrument uncertainty effect on calculation of absolute humidity using dewpoint, wet-bulb, and relative humidity sensors, article, April 1998; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc702911/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.