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Abstract

Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which
are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices
to define the space of protein conformations. Because various crystal lattices provide discretizations
of the same physical phenomenon, it is reasonable to expect that there will exist “invariants” across
lattices related to fundamental properties of the protein folding process. This paper considers whether
performance-guaranteed approximability is such an invariant for HP lattice models. We define a master
approximation algorithm that has provable performance guarantees provided that a specific sublattice
exists within a given lattice. We describe a broad class of crystal lattices that axe approximable, which
further suggests that approximability is a general property of HP lattice models.

1 Introduction

Crystal lattice models are vehicles for reasoning about the protein folding phenomenon” through analogy.
Crystal lattices are infinite periodic graphs that are generated by translations of a “unit cell” that fill a
two or three-dimensional space. In polymer science many important results have been obtained through the
use of lattice models [9, 17]. In the context of protein folding, lattices provide a natural discretization of
the space of protein conformations. The sequence of amino acids that defines a protein can be viewed as a
path labeled with amino acids on vertices. A conformation of a protein is a self-avoiding embedding of this
path into a lattice, where each vertex of the path is mapped to a vertex of the lattice and edges of the path
are mapped to edges of the lattice. With every conformation we can associate an energy value using rules
defined by the model, which take into account the neighborhood relationship of the amino acids.

In this paper we consider algorithms for protein structure prediction for crystal lattice models. Lattices
models of protein folding have provided valuable insight into the general complexity of protein structure
prediction problems. For example, protein structure prediction has been shown to be NP-hard for a variety
of lattice models [3, 4, 6, 13]. ‘This lends credibility to the general assumption that protein structure prediction
is an intractable problem. These results are complemented by analyses of protein foldkg algorithms that
prove worst-case performance guarantees for a variety of lattice models [1, 7, 12, 15]. These results show that
near-optimal protein structures can be quickly constructed, and they can be generalized to simple off-lattice
protein models [15].

Of particular interest here is the design of algorithms that can be applied to a variety of lattice models.
Results that transcend particular lattice frameworks are of significant interest because they can say something
about the general biological problem with a higher degree of confidence. In fact, it is reasonable to expect
that there will exist algorithmic invariants across lattices that fundamentally relate to the protein folding
problem, because lattice models provide discretizations of the same physical phenomenon.
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a specmc lattlce Iormulatlon.

This paper considers whether performance guaranteed approximation algorithms can be applied to a
wide range of lattice models. We consider approximation algorithms for the hydrophobic-hydrophilic model.
This model categorizes amino acids as hydrophobic (nonpolar) or hydrophilic (polar), and the energy of
a conformation is equal to the number of hydrophobic-hydrophobic contacts. We describe two “master”
approximation algorithms that can be applied to lattices that contain a general sublattice that we call a
Iatticoid. Latticoids impose a structure in which a skeleton of hydrophobic contacts can be constructed,
thereby lea&ng to foldlng algorithms whose performance can be analyzed. ” In the particular case of the
square two-dimensional lattice, the Iatticoid describes the structure used in the approximation algorithms
described by Hart and Istrail [12].

We prove that our master approximation algorithms have performance guarantees for a class of lattices
that includes most of the lattices commonly used in simple exact protein folding models, e.g. two- and three-
dimensional square lattice [9, 11, 19], the diamond (carbon) lattice [20], the face-centered-cubic lattice [5]
and the 210 lattice used by Skolnick [21]. Furthermore, this class encompasses a large number of other
lattices studied in crystallography. These results extend and consolidate our previous results in Hart and
Istrail [14].

2 Lattice Models for Protein Folding

Lattice models for protein folding cau be distinguished by at least five properties:

1. An alphabet of types of amino acids that the model considers;

2. The set of protein instances represented as sequences from this alphabet;

3. An energy formula specifying how the confirmational energy is computed;

4. Parameters for the energy formula;

5. A crystal lattice that provides a dkcretization of the conformation space.

For example, the hydrophobic-hydrophilic (HP) model [81can be described as follows. The alphabet used
in an HP model is A = {O, 1},and the set of protein instances is the set of binary sequences a = {O, 1}+.
Each sequence s c a is the (hypothesized) hydrophobic-hydrophilic pattern of a protein sequence, where 1
represents a hydrophobic amino acid, and O represents a hydrophilic amino acid. We will refer to ‘s as a
protein instance. Contact energies are used in thk model, so the energy formula is an energy matrix, ~.
The energy matrix is indexed by the alphabet symbols, S = (e(a, b))a,~e~. For HP models, e(a, b) = –1 if
a = b = 1, and e(a, h) = O otherwise, Conformations for the HP model have been commonly studied for the
a square or cubic lattices.

We consider protein folding models on a large class of crystal lattices, including the square lattice. Crystal
lattices are infinite periodic graphs that are generated by translations of a “unit cell” that fill a two- or three-
dimensional space (e.g., see Ashcroft and Mermin [2]). Examples of unit cells for crystal lattices are shown
in Figure 1.

We can characterize crystal lattices in graph-theoretic terms as follows. A unit ceU is a volume of space
(in two or three dimensions), that can be translated to fill all of space, such that

1. the volume contains a graph with finitely many points

2. edges that pass through the surface of the volume connect graphs in neighboring unit cells.

From this definition, it follows that connectivity between unit cells is symmetric. Consider three adjacent
unit cells generated by translating a unit cell in a single direction, c1C2C3.If there is an edge connecting c1
and cz, then there must exist an sinilar edge connecting C2and C3.



We have previously addr&sed the issue of algorithmic invariance in our hardness results for lattice
models [13]. This analysis considers a simple empirical potential model that uses a distance-related energy
with an unbounded number of amino acid types [22]. Our results extend the NP-hardness argument of Unger
and Moult [22] to all three-dimensional lattices that have a single, infinite connected component. Thk result
nrnvi fim st van rw- =w!r!mce for the intra ct,ihility of protein foIding problems because of its independence from
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Figure 1: Examples of crystal lattices: (a) cubic, (b) diamond, (c) cubic with planar diagonals, and (f)
hexagonal.

Let G be an infinite periodic graph generated by translations of a unit cell. G is connected if there exists
a path between any two vertices in G. Consider the graph derived from G in which vertices represent unit
cells and edges represent a connection between two unit cells. If G is connected then thk corresponding
graph is connected, which is a property common to physical crystal structures. An (ideal) cry:tal lattice,
L, is a connected infinite periodic graph generated by translations of a unit cell. A wblattice L of L is a
subgraph of L that is obtained by removing edges and vertices from L.

One can interpret a protein sequences = sl ...Sm as an m-vertex node-labeIed path, where for 1< i < m,
node i is labeled with si. The path has m – 1 edges that are called bonds. A conformation C of a protein
sequence s in a lattice L is a path in the lattice in which the protein sequence is embedded, i.e., the protein
vertices are mapped one-to-one to lattice points, and protein bonds are mapped to the corresponding lattice
edges. The energy of a conformation of the protein sequence s in L is typically computed using distances
in the lattice. For example, in the HP model the energy is a function of the number of “contact edges.” A
contact edge is a lattice edge that is not a protein bond (in the embedding) but has both endpoints labeled.
In HP models, contact edges with 1s at their endpoints have weight –1 while all other contact edges have
weight O.

The native conformation of a protein is the conformation that has biological function. According to the
Thermodynamic Hypothesis the native conformation of a protein is the conformation with the minimum
energy among the set of alI conformations. Consequently, given a sequence s and a lattice model, the protein
foldlng structure prediction problem is to find a native conformation of s in L. This problem is known to
be NP-hard for the square and cubic lattices [4, 6], but performance-guaranteed approximation algorithms
have been developed for severrd common lattices (e.g. square, cubic and face-centered-cubic lattices).

Let ZL (s) be the energy of the conformation generated for protein instances on lattice L by algorithm -2?L,
and let OPTL (s) be the energy of the optimal conformation of s on L. A standard performance guarantee
used for approximation algorithms is the asymptotic performance ratio Rm (ZL ) [10]. If Rm (Z~) = I-, then
as ZL is applied to larger protein instances, the value of solutions generated by ZL approaches a factor of T

of the optimum. Here, “large” protein instances have low confirmational energy at their native state, which
may be independent of their length. Since ZL (s) < 0 and OPTL (s) < 0, both of these ratios are scaled
between O and 1 such that a ratio closer to 1 indicates better performance.

The following lemma will be used to prove asymptotic performance guarantees for the approximation
algorithms that we consider.

Lemma 1 Let A be an approximation algorithm such that for a sequence s A(s) < –Af(s) + B, for
constants A >0 and B z O, and for a function j such that ~(s) ~ O for all S. If OPTL (s) 2 –cf(s) – ~,
for constants C’> O and D ~ O, then Rm (A) ~ A/C.

Proof. From the definition of Rd(s) we have

RA(s) =
A(s) –Af(s) + B

OF’TL(S) 2 –cf(S) – ~ “
(1)



‘ Let SN = {s I OPT(3) < IV} and R! = inf{Rd(s) I s c SN}. For s c SN, ~(s) ~ –(IV + D)/C. Since

Rd(9) is monotonically increasing for ~(s) z O, we have

RA(s) >
A(f’v+D)/c+B

N+2D ‘

for s c SN. Thus

R: ~
.4(iv+ D)/c+ B

N+2D ‘

and from the definition of Rm (A) [10] we have

R@(d) = Sup{r I R~ 2 r,N ● z} 2 #I&Rfi = A/C.

3 Master Approximation Algorithms for the HP Model

We now describe two paradigms for designing master approximation algorithms for the HP model that
can be applied to a wide range of lattices. HP models abstract the hydrophobic interaction process in protein
foldlng by reducing a protein to a heteropolymer that represents a predetermined pattern of hydrophobicity
in the protein. This is one of the most studied lattice models for protein folding, and despite its simplicity,
the model is powerful enough to capture a vaxiety of properties of actual proteins [9].

The first master approximation algorithm that we describe captures two aspects of the protein folding
algorithms described by Hart and Istrail [12]: (1) the selection of a foldlng point that balances hydrophobicity
and (2) the skeleton of contact edges that forms the hydrophobic core. We call thk the bipartite master
approximation aigon”thm because it is applicable to crystal lattices that can be described as a bipartite graph.
These crystal lattices have the property that two 1’s can be endpoints of a contact edge only if there is an
even number of eIements between them.

The second master approximation algorithm is related to approximation algorithms that have been
developed for the triangular lattice [1]. For lattices that contain odd-length cycles, each hydrophobic amino
acid can often be placed adjacent to all other hydrophobic amino acids in the chain. We call these lattices
ncinbipartite to reflect that the lattice does not explicitly enforce a bipartite labeling the hydrophobias,
and to provide a performance guarantee for a nonbipartitie lattice it suifices to generate a chain of contacts
that connect a fraction of all hydrophobias in a protein sequence. The nonbipartite master approximation
algon”thm is applicable to nonbipartite lattices to form such a chain.

3.1 Protein Sequence Structure in the HP Model

This section summarizes key definitions concerning the structure of protein instances from Hart and
Istrail [12]. Let s = s],.. ., Sm be a protein instzmce, si = {O, 1}. Let 1(s) equal the length of the sequence

~.z (s) equal the length of the longest sequence of zeros ins, and let ill~~~(s) equal the length ofs. Let M
the shortest sequence of zeros in s. Finally, let E(s) equal the number of adjacent elements in the sequence,
sj and Sj+l for which S3 = 1 and sj+l = 1.

An instance s can be decomposed into a sequence of blocks. A block bi has the form bi = 1 or bi =
1ZiI 1 . . . Zi~ 1, where the Zij are odd-length sequences of O’s and k ~ 1. A block separator Zi is a sequence
of O’s that separates two consecutive blocks, where l(zi) ~ O and .l(z~) is even for i = 1, ..., h – 1.Thus s is
decomposed into zoblzl . . . bhZh. Since l(z~) ~ O, this decomposition treats consecutive 1’s as a sequence of
blocks separated by zero-length block separators. Let N(bi) equal the number 1’s in bi. Thus the sequence

010101 1 1 10101 Oooo<olglo>
~vv~

bl bz b3 bd bs

gives us l(z) = (1,0,0, 0,4,0) and N(b) = (3,1, 1,3,4).
It is useful to divide blocks into two categories: z-blocks and y-blocks. For example, let xi = b2i

and let yz = b2i–1. Let B. and Bv be the number of x-blocks and y-blocks respectively. Further, let



X = X(s) = ~~1 lV(Z~) and’Y = Y(s) = ~~1 N(w). Let T.(s) equal the number of endpoints ofs that
are 1‘s in x-blocks, and let TV(s) equal the number of endpoints ofs that are 1‘s in y-blocks. We assume
that the division into z- and y-blocks is such that X ~ Y and if X = Y then T.(s) 2 TV(S). For example,
the sequence

go Zo w *1 !/2

can be represented as ~Ogo21~ozzglzs~lzAy2zs, where Z(z) = (1, 0,0,0,4, O), ~(x) = (1, 3), and ~(Y) =
(3,1,4).

A superblock B~ is comprised of sequences of blocks as follows:
Bi = bilzil . . .zi,_lbih. Let IVZ(B~) equal the sum of iV(b~), where bj are x-blocks in B~. Let IVV(Bi)
equal the sum of N(bj ), where bj are y-blocks in Bi. Finally, let IV(Bi) = NZ(Bi) -t-Nv(Bi).

Note that two 1’s can be endpoints of a contact edge only if there is an even number of elements between
them [12]. It follows from our detiltion of blocks that two 1’s within a block cannot be in contact. Further,
any pair of 1’s take from blocks bk and bj may be in contact only when ]k – j I is odd. This makes it clear
that 1’s from an r-block can only be in contact with 1’s from an y-block.

3.2 The Bipartite Master Approximation Algorithm

Consider the following deflrdions.

Definition 1 Given a path p in a lattice L from a to 6, let dP(a, b) be the length of p. A path p from
‘0 there exist paths p~ for every k c Z’” such thata to b is polynomial extensible if for some y E Z

dP, (a, b) = dp(a, b) + YICand there exists a polynomial time algorithm that given p and k constructs pk.
If ~ = 2, then we say that these paths are polynomial evenly extensible. The collection of the paths of a
polynomial extensible path p is called the extension of p in L.

Definition 2 Given polynomial extensible paths p from a to b and q from c to d, we say that p and q are
extensible disjoint if their extensions are vertex disjoint.

Definition 3 A bipartite latticoid, ~, of a bipartite lattice L is an infinite graph that contains an infinite
sequence of contact edges (ai, bi) with the following properties:

● There is a polynomial evenly extensible path p? from ai to ai+l and polynomial evenly extensible path
p! from b$to bi+l,

● There is a constant K >0 such that for every i and j, dPf(aij ai+l ) = dP:(bj, bj+l) = 2K, and

● The set of paths {p;, p! I i = 1,...} are mut@.ly extensible disjoint.

The dilation of the bipartite latticoid is Ai = K.

Figure 2 illustrates the structure of a bipartite latticoid. Because the paths Ai are evenly extensible,
the paths Bi and Ci can be constructed in polynomial time. Furthermore, the vertices in {Ai, Bi, Ci} and
{Aj, Bj, Cj} do not intersect. Figure 3 shows two bipartite latticoids of the two-dimensional square lattice,
Lo. The dilation of La is 2, and the dilation of fi~ is 3.

The bipartite master approximation algorithm takes a bipartite latticoid ~ and selects a single folding
point (turning point) that divides a protein instance into a y-superblock B’ and an x-superblock B“. The
folding point is selected using “Subroutine 1“ from Hart and Istrail [12]. Subroutine 1 selects a folding point
that balances the hydrophobicity between the z-blocks and y-blocks on each half of the folding point. The
following lemma describes the key property of the foldlng point that is selected.

Lemma 2 (([12], Lemma 1)) The folding point selected by Subroutine 1 partitions a protein instance s
into two superblocks B’ and B“ such that either

IVV(ll’) ~ [(Y -t 1)/21 and IVz(B”) ~ [X/2]

Ng(B’) ~ [Y/21 and O&JB”) ~ [(X+ 1)/21.
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F@ure 2: A symbolic illustration of the structure of bipartite latticoids.

After selecting the foldlng point, the conformation of the two superblocks is dictated by the bipartite
Iatticoid ~. The bipartite latticoid specifies the placement of the contact edges between the superblocks,
as well as the conformation of the loops within each superblock that connect the contact points. These
loops follow the path of the polynomially extensible path in the latticoid. The embedded structure of
protein sequences in the Iatticoid generahzes the notion of “normal form” that was used to describe the
approximation algorithms in Hart and Istrail [12].

Decomposition into z- and y-blocks requires a single pass through the protein instance, and the selection
of the folding point via Subroutine 1 requires linear time. The construction of the final conformation requires
polynomial time to create the paths for the loops between contact points. Thus the computation required
by Algorithm A2 to construct a conformation for a given latticoid is polynomial.

Let A2 (s) represent the energy of the final conformation generated by Algorithm A$. The performance
of Algorithm At can be bounded as follows.

Lemma 3

Proof. Let B’ and B“ be the two halves of the protein sequence identified by Subroutine 1, and suppose
that II’ forms a y-superblock and B“ forms a z-superblock. From Lemma 2 we know that NV(H) ~ [X(s) /21
and IVz(B”) ~ [X(s) /21. On a square or cubic lattice, these two halves of the sequence could be aligned to
form at least [X(s) /2] hydrophobic contacts.

In the dilated latticoid, the minimum distance between consecutive contacts is 2AL. Considering B’, it
follows that there can be AL – 1 y-hydrophobias between y-hydrophobias at contact points (e.g. consider
a sequence of the form (10)~ 1). Thus in the worst case the minimum number of contacts that can be
guaranteed is

PxY2’1+1~[%1+1
Here, we add one to this term to account for the fact that the folding point may be between consecutive 1’s
in the sequence. ■

Let J(L) be the maximum degree of aIl vertices in L. Proposition 1 presents the asymptotic performance
ratio for Algorithm At where ~ is a latticoid of L.
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Figure 3: Two possible bipartite latticoids of Lo: (a) ~~, and (b) ~~. Dark lines indicate edges that are
used for some protein conformation. Dashed lines indicate the remaining edges in Lo. The contact edges are
the vertical edges of the center bolded horizontal row.



‘ Proposition 1 Let ~ be a Iatticoid of L. Then W’(AJ z l/(2 AL(J(L) – 2)).

Proof. Since L is a crystal lattice generated by a unit cell, 4(L) is finite. It follows from the fact that
L is bipartite that OPT’(s) ~ – (d(L) – 2)X(s) – 2. The bound on Rm (Ai) follows from Lemma 1 and
Lemma 3. ■

To illustrate the application of the bipartite master approximation algorithm, consider its application
to the diamoncJ lattice, which has previously been used in lattice models for protein folding (e.g. see [20]).
The latticoid L; can be embedded in the diamond lattice as follows. Consider the labeled unit cell for a
dkunond lattice in Figure 4a. Observe that the cycles (A, F, B, D, G, C, A) and (C’, G, D, A, H, B, C) can be
embedded into the latticoid ~~. FigureA4b illustrates this embedding, along with neighbors of the members
of these two cycles. To show that all of L; can be embedded, we need to extend the sublattice both vertically
and horizontally. We can do this by exploiting the relationships between vertices in Figure 4b. The path
(D, A, F, B, C) can be extended to a cycle (D, A, F, B, C, 1, D) by observing that between every C and D
vertex is an 1 vertex. The path (H, B, D, 1) can be extended to a cycle (H, B, D, 1, C, A, H) by observing
that every 1 vertex is adjacent to a C vertex and every H vertex is adjacent to an A vertex.. Similarly, the
path (1, D, A, F) can be extended to the cycle (1, D, A, F, B, C, 1). Figure 4Cshows the expanded embeddmg.

To extend the sublattice verticzdly and horizontally, it suffices to shift the expanded embedding to extend
paths to cycles using the cycles that exist in the expanded embedding. It follows that the latticoid ~~ can
be embedded into the diamond lattice, since it is a sublattice of the embedded sublattice. Note that the unit
cells used by this embedding comprise one slice through the three-dmensional lattice.
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Figure 4: Embedding the ~~ latticoid into a diamond lattice: (a) labeled unit cell, (b) embedding onto plane
of unit cells with embedded latticoid, and (c) extending this embedding.

Figure 5 demonstrates this embedding for a particular conformation. Grey and black solid lines between
vertices in each unit cell indicate the edges of the diamond lattice that are used to embed a square lattice for
which one dimension is dilated to length two. Edges not used for this embedding are omitted. The solid lines
illustrate a conformation of a protein on thk lattice that the bipartite master approximation algorithm would
generate. Now 6(L) = 4 for the diamond lattice L, so it follows from Proposition 1 that lW(AL) = 1/8.

3.3 The Nonbipartite Master Approximation Algorithm

This section describes a nonbipartite master approximation algorithm. Figure 6 illustrates the structure
of a nonbipartite Mticoid, which is formally defined as follows.

Definition 4 A nonbipartite latticoid, ~, of a nonbipartite lattice L is an infinite graph that contains an
infinite sequence of contact edges (a~, hi) with the following properties:

● There is a polynomial extensible path p: from a~ to a~+l (~ = 1),

. There is a constant K > 0 such that for every i and j, dpf (ai, ai+l ) = % and



Figure 5: Illustration of the embedding of the bipartite latticoid fifi into a diamond lattice.



● The set of path~ {p$,p~~l I i = 1, . . .} are mutually extensible disjoint.

The dilation of the bipartite latticoidis A~=Ic.

The nonbipartite master approximation algorithm places hydrophobias along the path of a~’s in such a
manner that as few hydrophobias are placed outside the path as possible. Note that because the hydrophobic-
hydrophobic contacts are constructed along a path, the extensible paths may lie on either side of this path.

● m.

cl

● 00

ai ai+l a i+2

Figure 6: A symbolic illustration of the structure of nonbipartite Iatticoids.

For a nonbipaxtitate latticoid ~, the dilation A~ is the minimal length of a path from ai to ai+l. Thus the
nonbipartite master approximation algorithm guarantees that at least [N(s) /ALJ hydrophobic amino acids
Iie along the path of ai ‘s. Given this, we can prove the followi~g performance guarantee for a nonbipartite
master approximation algorithm B on lattice L with latticoid L.

Proposition 2 Rm(l?L) ~ 2/( A~(6(L) – 2)).

Proof. We can bound the energy of the optimal conformation by OPT(s) 2 –(J(L) – 2) N(s)/2 – 2
since every hydrophobic has J(L) neighbors that can form contacts. Now B(s) < – llV(S)/At] + 1 <
–IV(s) /AL +2. Thus bound on Rm (Bi) follows from Lemma 1. N

4 A Complexity Theory for Protein Folding on Crystal Lattices

In this section we extend the methods used in the previous section to provide a framework for analyzing
the design of efficient approximation algorithms with provable performance guarantees on lattices. The
uni~lng theme is polynomial approximabilit y asymptotic within a constant of optimal. This theory defines
polynomial embedding reductions from one lattice to another, and relates the approximability on the first
lattice to the approximability on the second. Further, thk theory includes a notion of completeness, which
defines the “hardest” members in the class.

A core of a lattice L is a set of latticoids D(L) = {~1, ~2 ,.. .}, where D(L) is finite or countably infinite.
We will use lattice cores to extend the role of the latticoid in our previous analysis. Specifically, a lattice
core can contain multiple latticoids of the same lattice. For example, we could have D(Lo) = {~~, ~#} from
Figure 3.

Folding algorithms in a lattice L1 can be transferred to folding algorithms in another lattice L2, a folding
“reduction”, if the sublattice used in L1 by the approximation algorithm can be embedded in L2. Note
that this reduction does not require that we explicitly embed the sublattice of L1 in L2. Instead, we simply
need a polynomial algorithm for reaping a specific conformation in L1 into a corresponding conformation in
L2 that preserves an interesting set of hydrophobic contacts. However, this reduction does require that L1
and L2 be consistent, which means that either they are both bipartite or nonbipartite lattices. Consistency
ensures that the bounds on the optimal conformation are similar for both lattices.

For example, consider the bipartite master approximation algorithm described in Section 3. To illustrate
how this could be applied to the diamond lattice, w~ described how the ~~ latticoid can be embedded



into the diamond lattice. Ho’wever, it is not necessary to generate the conformations for this algorithm in
the diamond lattice itself. Instead, we can generate conformations in the cubic lattice such that they are
constrained to lie on the ~~ latticoid, and subsequently use the mapping graphically described in Figure 4C
to construct a conformation in the diamond lattice.

Polynomial embedding like this should be easy to construct because the unit cells in each lattice have a
a finite description, and the symmetries in the crystal lattice are with respect to the neighboring cells (and
thus also of finite description). Let 2L refer to the set of sublattices of lattice L. This notion of reduction is
formalized in the following definition.

Definition 5 A polynomial embedding reduction of LI to Lz via core D(L1 ) is a polynomial time fimction

$: 2A’ + 22’ such that

1.

2.

3.

4.

5.

L1 and Lz are consistent,

LI E D(L1),

ii is a sublattice of Lz,

~(~1) is lattice isomorphic to ~z (i.e. graph isomorphic), and

the time complexity for mapping ~ 6 2LI into & is polynomial in the number of vertices and edges
of L.

If there is a polynomial embedding reduction from LI to L2 via core D(LI), we write L1 ccq~l) L2.

Let ~L(s) = X(s) if L is bipartite and N(s) otherwise. We say that a lattice L is polynomial kernel-
approzimable if there is a polynomial algorithm A and constants az, BL c Z’” such that for all protein
instances s, A(s) < ‘~L t.z (s) + PL. This type of approxhnability reflects the energetic guarantees provided
by all of the approximation methods that have been described in the literature. Consequently, we describe
the square, cubic, triangular and face-centered cubic lattices as polynomial kernal-approximable [1, 7, 12].
WJesay that a class of lattices L is polynomial kernel-approximable if for every L E L, L is polynomial kernel-
approximable, and let PKAL be the class of polynomial kernel-approximable lattices. From Lemma 1 and
the fact that the vertex degree in lattices is finite, it follows that VL E PKAL there exists a constant TL >0

such that Rw (A) ~ ~L.
Now consider a lattice L with core D(L). We say that L is polynomially core kernal-approximable if for all

-&D(L), L is polynomial kernal-approximable with an algorithm At that generate conformations strictly
on ~. If L is polynomially core kernal-approximable then clearly L E PKAL. The following lemma shows
how a lattice core can be used to ensure the approximability via a reduction.

Lemma 4 Consider L1 with core D(L1) that is polynomially core kernal-approximable. If L1 ~~(~,) L2,
then Lz c PKAL.

Proof. If LI CXD(L,) Lz then there exists a sublattice & that is graph isomorphic to a sublattice

~1 c D(L1). Since L1 is polynomially core kernal-approximable there exists an approximation algorithm Z
for ZI such that Z(S) < –aL.fL (s)+ ,6L for constants a~ and ,8L. Now consider an approximation algorithm
~ that applies aJgorithmAZ to an instance s, and then applies the reduction to map the conformation in
L1 to a conformation in L2. Clearly, Y(s) = 2(s), so algorithm Y generates conformations in L2 such that
Y(s) < ‘~LfL (s)+ PL. By the consistency of the reduction, it follows that Lz 6 PKAL. m

The central concept of the complexity theory is the notion of completeness defined as follows.

Definition 6 Let L be a class of lattices. A lattice L is called L-complete via core D(L) if

1. L E L, and

2. VL’ E L, L KD~L] ~’.



Similar to the theory of N’P-completness, if any member of the complete set is core-approximable then
we can design polynomial approximation algorithms for all lattices in the class.

Theorem 1 Let L be a lattice with core D(L). If L is L-complete and polynomially core kernal approx-
imable, then Z ~ PKAL.

Proof. Consider an arbitrary L’ E Z. Since L is poIynomially core kernal-approximable, from Lemma 4
we know that the fact that L IXD(L) L’ implies that L’ E PKAL. Since thk applies to all L’, L ~ PKAL. H

5 Approximable Lattices for the HP Model

In this section we describe a class of lattices L for which performance guaranteed approximation algo-
rithms exist. L is a broad class of lattices that includes many of the lattices previously used in lattice models
for protein foldlng. Thk class of lattices is divided into bipartite and nonbipartite lattices, which we describe
separately. See Sands [18] and Wells [23] for further details on many of the lattices that we describe below.

Consider the square lattice L and the coke D(L) = {~~, fi#}. We can apply the bipartite master
approximation algorithm to show that L is polynomially core kernal approximable. We now describe a class
of lattices L for which L is Z-complete via D(L):

●

●

●

●

Square and Cubic Lattices: The square lattice is clearly a sublattice of the three-dimensional cubic
lattice. Further, the square lattice can be simply embedded into Bravais lattices like the triclinic
and triagonal lattices [18], which simply rescale and shift the angles of the cubic lattice (e.g. see
Figure 7(a)).

Diamond and Flourite Lattices: In Section 3.2 we saw how fi~ could be embedded in the diamon
lattice. Figure 7(b) shows a flourite lattice structure, for which the diamond lattice is a sublattice. It
follows that the square lattice has a polynomial embedding reduction into the flourite lattice via D(L).

Generalized Cartesian Lattices: Several researchers have considered generalized lattices that take
points from the square or cubic lattice but defined a generalized neighborhood for edges and contacts.
For example, Figure 7(c) shows the neighborhood for the “210 lattice” that Skolnick and KoIinkski [21]
use to place a-carbons. In this lattice, the a-carbons are connected by the 3D generalization of the
“knight’s walk” in chess.

Now consider a lattice L’ formed with a symmetric generalized neighborhood. Let (a, b) represent a
neighborhood move on this lattice. From the symmetry of the neighborhood structure, it follows that
(b, a), (–a, –b), and (–b, –a) are also neighbors. To realize the embedding of the cubic lattice in L’,
we equate the edge (1, O) with (a, b) and the edge (O, 1) with (b, a). Using these vectors as a basis, the
integral combinations of them form a cubic lattice. Figure 7 illustrates this embedding for the “21O
lattice”.

Note that a generalized basis can generate either a nonbipartite or bipartite lattice of edges. If the lattice
is bipartite, then this reduction suffices to show that the square lattice has a polynomial embedding
reduction into the generalied Cartesia lattice Lt.

Hexagonal Lattice: The latticoid ~~ can be embedded into the hexagonal lattice by noting that the.
extensible paths are generated shifting the initial path around adj scent hexagons. Figure 8 illustrates
the extension of a path between two hydrophobias that form the hydrophobic core of the conformation.
This type of extension is easy to generate, so the reduction is polynomial. The catalog of lattices in
Wells [23] contains many bipartite three-dimensional lattices into which the hexagonal lattice can be
embedded. It follows that the square lattice has a polynomial embedding reduction into all of these
lattices.

We have shown that the square lattice has a polynomial embedding reduction into all of these lattices
using D(L). Thus L is L-complete via D(L). Since L is polynomially core kernal-approximable, it follows
that Z c PKAL.
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Figure 8: Illustration of the embedding of extensible paths from ~~ into the hexagonal lattice. Figure (a)
shows the initial path that is extended by two in (b), (c) and (d).



< - 5.1 Nonbipartite Lattices

Consider thetriaWla lattice ~mdthecore D(~) ={~o}illustrated in Fi~re 9(a). Wecan apply the
nonbipartite master approximation algorithm to show that ~ is polynomially core kernal approximable. We
now describe a class of lattices C’ for which ~ is Z-compIete via D(L):

. . .

. (a) .
.
. . .

, . .
. . .
● ✎ ✎

(b)

Figure 9: Illustration of (a) the nonbipartite Iatticoid used by the nonbipartite master approximation algo-
rithm in L’, the triangular lattice. This latticoid can be embedded in the faced centered cubic lattice as
shown in (b).

●

●

●

Face Centered Cubic: Consider a single plane of faces for a face centered cubic lattice. Figure 9(b)
illustrates how Lo can be embedded on this face. Thus the triangular lattice has a polynomial embed-
ding reduction into the face centered cubic lattice.

Body Centered Cubic: Consider a single plane of faces for a face centered cubic lattice. On top
and behind each square of points lies a point that is in contact with each point on the square. This
sublattice of edges has the same connectivity structure as a single plane of faces for the face centered
cubic lattice. Consequently, the triangular lattice has a polynomial embedding reduction into the body
centered cubic lattice.

3D Close Packed: Close packed lattices are composed of layers of 2D close packed lattices. These
layers can be put in contact in several dtierent ways, providing an infinite number of possible close
packings in 3D. The 2D close packed lattice structure is simply the triangular lattice structure, so these
lattices are polynomially core kernal approximable.



.
We have shown th$t the triangular lattice has a polynomial embedding reduction into all of these lattices

using D(~). Thus ~ is .C’-compiete via D(~). Since ~ is polynomially core kernal-approximable, it follows
that C’ c PKAL.

6 Discussion

We have described master approximation algorithms for bipartite and nonbipartite lattices that illustrate
how performance guaranteed approximation algorithms can be applied to a wide range of crystal lattices.
The general applicability of these master approximation algorithms is limited to graphs for which latti-
coid subgraphs can be efficiently embedded. Consequently, these results fall short of demonstrating that
performance guaranteed approximability is an algorithmic invariant for crystal lattices.

However, the classes of lattices described in the previous section, ,C and L’ include a wide range of
lattices that have played a significant role in the analysis of protein structure prediction. Although the
master approximation algorithms do not necessarily provide the best provable performance guarantees in
all cases, their applicability to such a broad range of well-studied lattices does indicate that there is some
measure of lattice independence for reasonable lattice graphs. Thk suggests that the algorithmic mechanisms
used to generate these approximate conformations may play a role in biological systems.

Although our analysis has focused on simple chain models, we expect that it can be simply generalized
to more structured protein models. For example, Hart and Istrail [15] and Heun [16] describe performance
guaranteed approximation algorithms for a side-chain lattice model. These results are applicable to square,
cubic, face-centered cubic and extended cubic lattice models. We conjecture that these results can, in fact,
be similarly be extended to a broader range of well-studied lattice models.
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