Electron Bernstein wave electron temperature profile diagnostic

PDF Version Also Available for Download.

Description

Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. where the plasma frequency is much greater than the electron cyclotron frequency, as in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition. Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron ... continued below

Physical Description

572 Kilobytes pages

Creation Information

Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J. et al. July 20, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. where the plasma frequency is much greater than the electron cyclotron frequency, as in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition. Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large perpendicular wavenumber. This paper reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub o} {approximately} 2 kG, <n{sub e}> {approximately}10{sup 13} cm{sup {minus}3} and T{sub e} {approx} to 10 -- 200 eV. Results are presented for electromagnetic measurements of EBW emission, mode-converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode converted EBW radiation temperature was found to be less than or equal to T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance, where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for overdense plasmas.

Physical Description

572 Kilobytes pages

Notes

INIS; OSTI as DE00758660

Source

  • Other Information: PBD: 20 Jul 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3476
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/758660 | External Link
  • Office of Scientific & Technical Information Report Number: 758660
  • Archival Resource Key: ark:/67531/metadc702843

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 20, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 15, 2016, 9:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J. et al. Electron Bernstein wave electron temperature profile diagnostic, report, July 20, 2000; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc702843/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.