Deposition of fuel pellets injected into tokamak plasmas

PDF Version Also Available for Download.

Description

Pellet injection has been used on tokamak devices in a number of experiments to provide plasma fueling and density profile control. The mass deposition of these fuel pellets defined as the change in density profile caused by the pellet, has been found to show an outward displacement of the ablated material from that expected by mapping the theoretical ablation rate onto the flux surfaces. This suggests that fast transport of the pellet ablatant occurs during the flow along field lines that may be driven by {del}B drift effects. A comparison of the deposition of pellets from different machines shows similar ... continued below

Physical Description

7 p.

Creation Information

Baylor, L.R.; Jernigan, T.C. & Hsieh, C. June 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Pellet injection has been used on tokamak devices in a number of experiments to provide plasma fueling and density profile control. The mass deposition of these fuel pellets defined as the change in density profile caused by the pellet, has been found to show an outward displacement of the ablated material from that expected by mapping the theoretical ablation rate onto the flux surfaces. This suggests that fast transport of the pellet ablatant occurs during the flow along field lines that may be driven by {del}B drift effects. A comparison of the deposition of pellets from different machines shows similar behavior. Initial results from alternative injection locations designed to take advantage of the outward ablatant drift is presented.

Physical Description

7 p.

Notes

INIS; OSTI as DE98003586

Source

  • Annual meeting of the American Nuclear Society, Nashville, TN (United States), 7-12 Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98003586
  • Report No.: ORNL/CP--98520
  • Report No.: CONF-980606--
  • Grant Number: AC05-96OR22464;AC03-89ER51114
  • Office of Scientific & Technical Information Report Number: 658452
  • Archival Resource Key: ark:/67531/metadc702724

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Aug. 1, 2016, 6:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Baylor, L.R.; Jernigan, T.C. & Hsieh, C. Deposition of fuel pellets injected into tokamak plasmas, article, June 1, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc702724/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.