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EMITTANCE GROWTH DUE TO NOISE AND ITS SUPPRESSION 
WITH THE FEEDBACK SYSTEM IN LARGE HADRON COLLIDERS 

V. LEBEDEV, V. PARKHOMCHUK, V. SHETSEV, G. STUPAKOV 

Superconducting Super Collider Luboratory * 
2550 Beckleymeade Ave. 

Dallas, TX 75237 

The problem of emittance growth due to random fluctuation of the magnetic field in hadron 

colliders is considered. Based on a simple one-dimensional linear model, a formula for an emittance 

growth rate as a function of the noise spectrum is derived. Different sources of the noise are analyzed 

and their role is estimated for the Superconducting Super Collider (SSC). A theory of feedback 

suppression of the emittance growth is developed which predicts the residual growth of the emittance 

in the accelerator with a feedback system. 

1 INTRODUCTION 

Future large hadron colliders such as LHC and especially the Superconducting Super Collider (SSC) will have a 

circumference of tens of kilometers. That means that h e  revolution frequency in these machines comes into the 

range of several kilohertz. Typically, the level of the external noise (such as ground motion, current ripple, etc.) 

increases when one goes to smaller frequencies so that noise effects that probably were not an issue of concern for 

smaller storage rings might seriously degrade the performance of largemachines. For the proton colliders with the 

beam energy of tens of TeV, the synchrotron radiation is still weak enough to counteract the noise effects. 

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 
NO. DE-AC3.5-89ER40486. 



Depending on the frequency of the noise, we can distinguish two mechanisms of the beam perturbation. At low 

frequencies (much less than the revolution frequency), the noise produces a distortion of the closed orbit of the 

beam. For the SSC, these effects have been previously considered in References 1-5. However, if the spectrum of 

the noise extends up to the resonant betatron frequencies fo IY-nl, where fo is the revolution frequency, v is the 

tune and n is an integer, it resonantly drives the betatron oscillations of the beam. Due to decoherence, these 

oscillations rapidly translate into the growing emittance of the beam with the growth rate that is proportional to the 

noise spectrum at the resonant frequency.6-9 

An effective way to suppress the emittance growth caused by the noise is based on the use of a feedback system 

that monitors the amplitude of the betatron oscillations and tries to damp them applying appropriate kicks to the 

beam. If the feedback system damps beam oscillations faster than they decohere, the emittance growth will be 

strongly suppressed compared to the case without feedback. 

In this paper, we first address the problem of emittance growth due to random fluctuation of the dipole 

magnetic field B. Basing on a simple one-dimensional linear model, in Section 2, we derive a formula for an 

emittance growth rate as a function of the noise spectrum. In Section 3, we analyze different sources of the noise 

and estimate their role for the SSC. For completeness, in this section, we also included results of the consideration 

of the emittance growth due to the fluctuation of the gradient of the magnetic field B’. In Section 4, we develop a 

theory of feedback suppression of the emittance growth and calculate the residual growth of the emittance in the 

accelerator with a feedback. 

In a subsequent paper, we will present results of computer simulations which confirm the predictions of the 

analytical theory of this paper and also take into account additional effects not covered by the simple theory of the 

present paper. 
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2 EMI'ITANCE GROWTH DUE TO EXTERNAL NOISE 

2.1 General Considerations 

Considering particle motion in an accelerator, we will be neglecting coupling between vertical and horizontal 

degrees of freedom and will use the following variables: 

where X stands for the particle deviation with respect to the closed orbit, /3 is the beta function and s is the path 

length along the orbit. 

Assume that the magnetic field in one of the magnets is perturbed by an amount SB(t) and varies with time. 

This perturbation may be due to random (time dependent) displacements of a quadrupole or fluctuations of the 

current in a dipole magnet. 

Each turn when a particle passes through the magnet, the particle experiences a kick that changes its 

momentum from p top', 

where the change of the momentum Ap, is related to the perturbation of the magnetic field, 

In Eq. (3) P is the particle longitudinal momentum, I is the length of the magnet, Bois the beta function at the 

position of the magnet, Tis the revolution period, and n is the turn number. Taking into account that free betatron 

oscillations are described by the following transformation of the variables x andp, 

X I  = xcos8 + psin8, p' = -xsin8 + pcos8, (4) 
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where 0 stands for the betatron phase, we can write down the result of N successive passes through the magnet, 

N-1 

XN = Ap. sin,u(N-n) + xocos@N + &), 
n=O 

where ,u = %v, Y is the tune and xo and eo are the initial amplitude and phase of the oscillations. 

Throughout this paper, we will be assuming that 6B(t) is a stationary random function characterized by its 

correlation function Kds(z), 

where the angular brackets denote the averaging. Using Eq. (3) we will also define the correlation function of the 

kicks, 

so that 

Related to the correlation function K(z) is the corresponding spectral density (or, briefly, spectrum) S(o). It is a 

positive even function of the frequency w ,  S(w) 2 0, S(w) = S ( 4 ) .  According to the Wiener-Khintschin 

theorem, the spectrum can be found as a Fourier transform of the correlation function: 

m 00 

Note the concept (frequently used in many publications) of white noise that corresponds to the noise spectrum and 

does not depend on the frequency, S(o) = const. 
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2.2 Growth of the Amplitude of the Betatron Oscillations 

Using Eq. (5 )  we can now calculate the averaged square of xN, (xi). In doing so, we will utilize the condition 

(AP,) = o,* 

To facilitate the summation in Eq. (10) we express Kdp in terms of the spectral density SAP using Eq. (9), 

m 

The summation in Eq. (1 1) can now be performed explicitly. We are interested here in the limit of large N, 

formally N + 00. As is shown in the Appendix, in this limit Eq. (1 1) reduces to the following one 

where 8 is the revolution frequency, 8 = k / T ,  and 

A special discussion is neededif one applies Eq. (13) for the white noise. Formally, putting S(w) = const into 

Eq. (13) gives the infinity on the right-hand side. This happens because the usual definition of the white noise 

assumes that it has the correlation function oe d (z) and, hence, the infinite value of (dB’). For our problem, it is 

more convenient to change this definition so as to understand white noise as the one with the correlation time 

*This condition can always be met by the proper choice of the equilibrium closed orbit. 
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much less than the revolution period. In other words, the white noise in a magnet produces uncorrelated kicks on 

the beam, ( A p d p , )  = 0 if n z m, and 

where d,, is the Kroneker symbol. Putting this equation into Eq. (10) and performing the summation, one easily 

arrives at Eq. (12) with the following E(Y), 

From Eq. (13) it follows that due to the presence of the noise the average square of the single particle 

displacement linearly grows with time. This time dependence is typical for diffusion processes, in our case the 

diffusing quantity being the amplitude of the betatron oscillations. The only spectral components that contribute 

to the growth of the amplitude have the fresuency equal to that of the betatron sidebands. For the SSC,'O the 

revolution frequency fo = Q/k = 3.4 kHz and the nominal fractional part of the tune, { Y } ,  is equal to 0.28. 

This gives the lowest resonant frequency of the noise equal to {v}f0 = 960 Hz. 

2.3 Tune Spread and the Emittance Growth 

In the above derivation the motion of only one particle of the beam has been considered. Since the first term on the 

right-hand side of Eq. (5 )  does not depend on the particle initial amplitude and phase, random dipole kicks will 

drive coherent oscillations of the beam as a whole. However, the tune spread in the beam causes phase mixing of 

different particles and results in decohering of betatron oscillations on a time scale equal to the inverse spread of 

the betatron frequencies. 
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There are several sources of the tune spread in hadron accelerators. First, because of the finite energy spread of 

the beam, it stems from the chromaticity of the machine. Second, the tune spread is generated by nonlinear 

elements in the lattice such as sextupoles and octupoles as well as higher-order multipoles in the magnets. Finally, 

in colliders, the dominant contribution to the tune spread usually comes from the beam-beam interactions. In our 

further considerations we will assume that the tune spread is determined by the collisions of the beams. In this 

case, for round beams and the Gaussian particle distribution function, the rms tune spread can be related to the so 

called interaction parameter 6, 

which, in the limit 

betatron frequency spread is equal to 

4 1, coincides with the betatron frequency shift. In accordance with Reference 8, the rms 

A v ,  0 . 2 ,  

where the bar denotes averaging over the particle distribution function. In Eq. (16), NpMic* is the number of 

particles in the bunch and E is the beam emittance. For the SSC, E = 1.8 - for two interaction regions and 

two times as much if four interaction regions will be operating. This gives decoherence time tdccoh = 1 /fdv, 

0.8 - 0.4 S. 

Decoherence rapidly translates dipole beam oscillations driven by external noise to the growing emittance of 

the beam. In accordance with the standard definition of the beam emittance E ,  it is equal to the square of the offset 

7 



?averaged over the particle distribution function of the beam.* With so defined E one can rewrite Eq. (12) in 

terms of emittance, 

An important characteristic of the noise effect is the derivative d(&)/dt which gives the rate of the emittance 

growth, 

We put the index 0 on the left-hand side of Eq. (19) to emphasize that this growth of emittance occurs without a 

feedback system in the machine. 

Two remarks should be made in connection with Eq. (19). First, as follows from Eq. (13), only the noise at a 

discrete set of frequencies contributes to the emittance growth. However, due to the betatron fresuency spread in 

the beam, the resonant frequency of different particles deviates from the frequency (n - v)Q, resulting in a finite 

resonance width do,, = AvQ. Hence, more rigorously, rather than having exactly the frequency (n - v)Q the 

resonant noise occupies the frequency range A o,es in the vicinity of this value. One can neglect the resonance 

width and use Eqs. (19) and (13) if the noise spectrum does not change appreciably within the width of the 

resonance do,. 

Second, it turns out that the above derivation is only valid if the tune is not too close to nonlinear resonances of 

the machine. Analytical study of these resonances in the presence of the external noise is a cumbersome problem. 

1 -  - -  *This definition of emittance is equivalent to E = -(xz + 3 , because in our case x2  = p 2  2 
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We will address this issue in a subsequent paper devoted to results of computer simulation of the emittance 

3 SOURCES OF EXTERNAL, NOISE AND ESTIMATES OF THEIR EFFECT 

The main sources of the noise in accelerators which produce transverse kicks on the beam are quadrupole 

vibrations and fluctuations of the magnetic field in the bending magnets and kickers. In this section, we will 

estimate a tolerable level of the noise in a collider without a feedback system. 

3.1 Vibrations of Quadrupoles 

Quadrupole vibrations are caused by both ambient seismic ground motion and man-made noise that is 

inevitably generated on the machine site by flows of coolant, operating vacuum pumps, etc. In many cases, it is 

impossible to trace the exact origin of these vibrations. Measurements in different sitesl1-l4 show that the 

amplitude and spectrum of the ground motion may differ by several orders of magnitude depending on local 

conditions of the site and the time of day. Some examples of such spectra are shown in Figure 1. It clearly 

demonstrates that the spectral density of the ground motion strongly decreases with the frequency. This feature 

explains why the noise effects are typically negligible for small rings and might be important for machine with a 

low revolution frequency such as SSC and LHC. 

To estimate the emittance growth arising from random vibrations of the quadrupoles, note that in this case, dB 

is proportional to the average over the length of the magnet displacement of the quadrupole d, 

dB(t) = B‘d(t), 

where B’ stands for the gradient of the magnetic field in the quadrupole. Using the definition of the focal length of 

the quadrupole f4, fq = cP/elB’, one can easily express E(v) in terms of the spectrum of the displacement SAW) 
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To obtain a rough estimate of a tolerable level of magnet vibrations we assume that the vibration spectrum is the 

same for all of the quadrupoles and there is no correlation between displacements of the different quadrupoles in 

the ring (this is a reasonable assumption taking into account that the relevant frequencies are in the range of a 

kilohertz and above). Let us also assume FODO lattice, so that the quadrupoles are located at the positions of 

maximum and minimum values of the beta function. Summing Eq. (2 1) over all quadrupoles of the ring one finds 

where N&s the total number of cells and ~,,j3min, are the maximum and minimum vales of the beta function in 

the cell. Note also that for the FODO lattice @, + #?&)/fi = 8 tan(dp/2)/L where dp is the phase advance 

through a full FODO period and L is the length of the half cell. For the SSC, dp = go",  

L = 90 m, N,,, = 392, (the number of cells in the arcs) and the nominal value of the emittance 

E = 4.7 - lo-' cm. Requiring that the emittance doubling time be larger than 20 hours (that is approximately 

twice the synchrotron radiation cooling time) one finds the following limitation on the noise spectrum: 

For comparison, note that for the white noise this level of vibrations corresponds to the rms quadrupole 

displacement d, = 1.1 . 10-4pm. 
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Since the noise spectra rapidly falls down with the frequency, the dominant term on the left-hand side of 

Eq. (23) is the one with the lowest frequency. As is said above, for the nominal tune in the SSC, this frequency is 

equal to 960 Hz and the inequality (23), in fact, gives an upper limit for the noise at this frequency. 

In the kilohertz range of frequencies, a quadrupole having the length of several meters does not oscillate as a 

rigid body but rather experiences bending and torching deformations around its axes. If the wavelength of such 

deformations is much smaller than the length of the magnet, the averaged along the orbit perturbation of the 

magnetic field is suppressed in comparison with the case when the magnet displaces as a whole. In other words, 

the displacement d in Eq. (20) is becoming effectively smaller than the amplitude of the ground motion. However, 

analysis shows15 that such a suppression is counteracted by multiple mechanical resonances of the magnet body 

which can significantly amplie the vibrations at the resonant frequencies of the magnet. 

Note also a specific mechanism of the magnetic field perturbation if the vacuum tube has an inner liner with 

sufficiently high conductivity. Since high frequency perturbations of the magnetic field are frozen in the liner, its 

vibrations will perturb the magnetic field on the orbit even if the quadrupole itself is at rest. 

3.2 Dipole Field Flucruar'ons 

The effect of the bending magnetic field fluctuations can be easily estimated with the use of Eq. (13) for the 

function 2 and assuming that the fluctuations are independent and have the same spectrum in all of the bending 

magnets. For the sake of simplicity, we will also assume that these fluctuations are represented by the white noise 

and will make use of Eq. (15). For the SSC parameters, with the total number of bending magnets Nwmt = 4200 

and the requirement that the emittance doubling time be less then 20 hours, this gives the following tolerable level 

of fluctuations in a magnet 
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Note that magnetic field fluctuation will be somewhat suppressed by the skin effect in the walls of the vacuum 

chamber (orland liner) which can prevent the ac magnetic field component from penetrating the chamber. For the 

SSC, attenuation due to this effect is expected to be about 10-20, which substantially loosens the tolerances for the 

current fluctuation in the dipoles. On the other hand, freeze of the magnetic field into the beam pipe walls might 

also have a detrimental effect as a result of vibration modes that change the shape of the beam pipe cross section 

(e.g., making the cross section elliptical rather than circular). Such modes perturb the dipole field inside the beam 

pipe modulating it with the frequency of the vibrations. 

To avoid confusion, we have to emphasize here that magnetic field fluctuations can also be produced by the 

power supply ripple. However, in contrast to a wide-band noise, the main components of the ripple are usually 

concentrated at several well defined frequencies and one can, in principle, avoid their detrimental influence by 

detuning the working point of the machine away from these frequencies. On the other hand, any random noise in 

the power ripple will add to the perturbation of the magnetic field caused by other sources. 

3.3 Quadrupole Field Fluctuations and Vibrations of Sextupoles 

We have considered above fluctuations of the dipole magnetic field in the beam orbit. The time dependent 

perturbations of higher order magnetic multipoles can also blow up the beam emittance. For the quadrupole field 

perturbation that can be generated either by vibration of the sextupoles or current fluctuations in the quadrupoles, 

the problem has been studied in References 16 and 17. Here we present the results of these papers and give the 

estimates of the effect for the SSC. 
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For a Gaussian density distribution of the beam, the emittance growth rate caused by random fluctuations of the 

gradient of the magnetic field in a magnet of length 1 is given by the following formula:17 

where bo is the beta function at the position of the magnet and S,. is the spectral density of the fluctuation of the 

gradient of the magnetic field B’. 

Note, that in contrast with Eq. (13), resonant frequencies that contribute to the emittance growth are the 

sidebands of the double betatron frequency. This feature has a simple physical explanation: fluctuations of the 

quadrupole field bring about modulation of the tune and make the particle motion unstable via the parametric 

resonance. As is known, this resonance occurs at the double frequency of the oscillator. 

One can use Eq. (25) to make an estimate of a tolerable level of fluctuations of the gradient of the magnetic field 

in quadrupoles. For the SSC, assuming white noise and taking into account that the number of quadrupoles in the 

ring is Nqvad = 800 each of which has the focal length fq = 60 m. Half of the quadrupoles are located at the 

positions with the local maximum of /3, Po = 305 m giving the dominant contribution to the emittance growth. 

Again, requiring the emittance doubling time to be larger than 20 hours, one finds from Eq. (25), 

6B’, 
B’ - I 6*10-’. 

The gradient of the magnetic field on the orbit can also be perturbed by vibrations of the sextupole magnets. As 

a feed down of an offset of a sextupole by the distance done finds the following perturbation of the gradient of the 

magnetic field 

d3’ = B”d. 
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Using Eq. (27), one can rewrite Eq. (24) in terms of the spectral density of the vibrations 

For the SSC, according to collider specifications, the product B"Z for about 400 sextupoles located near the 

focusing quadrupoles is equal to 2.4 . lo3 T/m. Being located at the positions with the local maximum of the 

beta function, /lo = 305 m, these sextupoles make a dominant contribution to Eq. (28). Taking the nominal 

collider parameter Pc = 20 TeV and requiring the emittance doubling time be more that 20 hours one finds, 

2 s ~ ( 2 V  - n)sz) 5 1.5 e 1 0 - 5 p 2 / ~ z .  
n- - m 

As was mentioned above, for a rapidly decreasing spectrum of the noise, the dominant term on the left-hand side 

of Eq. (29) is the one with the lowest frequency. For the nominal tune in the SSC, this frequency is equal to 

1.52 kHz and the inequality (29) gives, in fact, an upper limit for the noise level at this frequency. Comparing it 

with Eq. (23) we notice that this limitation is much less stringent than that originating from the quadrupole 

vibrations. 

4 EMITTANCE GROWTH SUPPRESSION WITH A FEEDBACK SYSTEM 

4.1 Basics of the Feedback Theory 

A transverse feedback system allows one to suppress the emittance growth due to excitation of the betatron 

oscillations by external noise. The system monitors the offset of the beam centroid and tries to correct it by kicks 

that are proportional to this offset applied a quarter of the betatron wavelength downstream. In this section, we 

develop a simple model of such a feedback which finally will allow us to predict the level of the residual emittance 

growth in the accelerator. 
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We consider here a model of an idealized feedback system with a sufficiently broad frequency band so that it 

can resolve the motion of each bunch in the machine. Let XI denotes the beam displacement at the position of the 

pick-up electrode (point 1). The kicker located a quarter of the betatron wavelength downstream (point 2) deflects 

the beam by an angle a, 

XI a = g -  m' 
where B1 and #Iz are the values of the beta function at the positions of the pick-up and the kicker electrodes andg is 

the dimensionless amplification factor (gain) of the feedback system. Using the definition of momentum p 

according to Eq. (l), one can find the change in the momentum Ap,, produced by the kick, 

XI AP,  = ,&a = g- = gxl. 
Js; 

Noting that because the points 1 and 2 have 90" phase difference, x1 = - p z ,  and we can express dp, in terms of 

the beam momentum at the point 2, 

4, = - 8Pz. 

Since the kicker does not perturb the beam coordinate x,, it is easy to write down, in matrix notation, the 

transformation of the variables x and p resulting from a passing through the feedback system, 

where x,  and p 2  refer to the initial and x ' ,  and p ' ,  -to the final state of the beam and F is the transformation 

matrix. To obtain a complete transformation M that includes the beam motion along the ring outside the feedback 
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system one has to combine the transformation (33) with that of Eq. (4), multiplying the matrix F by the standard 

rotation matrix R, 

) (34) M =  R F =  ( - sinp cosp y g )  = ( - sinp (1 -g)cosp 
cosp cosp (1 - g)sinp 

The influence of the feedback on the beam motion is characterized by the eigenvalues A,, of the matrix M. A 

simple calculation yields, 

Analysis shows* that Pl,J < 1 only if g < 2. That means that the feedback system damps oscillations for g < 2 

and would amplify them if g > 2. If the gain g satisfies the inequality, 

both eigenvalues have equal modula smaller than one, U1l = U,I = ,/- < 1. 

The damping decrement y in general case can be found as 

y = fominI(l - U1l),(1 - U201, 

where fo is the revolution frequency. In the limit g Q 1, this gives 

Remembering that the beam decoheres on a time scale t,, = (f&lv,)-'. in order for the feedback system to 

suppress the beam oscillations before they decohere, we have to require the decrement y be much larger than the 

inverse decoherence time t; that is, 
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g + Av,. (37) 

4.2 Suppression of Emittance Growth by a Feedback System 

A feedback system is able to damp a single noise kick but for the steady state noise producing many kicks on each 

turn of the beam, a residual level of the oscillations still survive. These residual oscillations combined with the 

decoherence cause the emittance growth, although with growth rate lower than the original emittance growth 

given by Eq. (19). 

A key problem for the theory of feedback is the prediction of the residual emittance growth of the beam in the 

accelerator. We will calculate it using a simple model and considering, fmt, the motion of the beam particles after 

a single noise kick that displaces the beam distribution function, as a whole, by Ax, Ap in the phase plane. Without 

the feedback, decoherence eventually translates this initial displacement into the incremental increase of the 

emittance, de, = (Ax2 + d p 2 ) / 2 .  Below, we will calculate the increase of the emittance with the feedback. 

Denote the coordinate of the centroid of the beam by X and the averaged momentum of the beam by p. In the 

absence of the feedback they satisfy the following equations, 

Eqs. (38) describe the betatron oscillations of the centroid neglecting the effect of decoherence. 

Assuming g 4 1, it follows from Eq. (36) that the damping occurs on a time scale of many turns around the 

ring. In this case, instead of considering the transformation with the matrix M, we adopt here an approach based on 

a differential equation for X and p. The feedback adds kicks according to Eq. (32) to the motion described by 

Eqs. (38). In the limit of small g, these kicks must be added to the second of Eqs. (38) as follows 
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where the periodic delta function, 

accounts for periodicity of the kicks. Neglecting higher order harmonics produced by the kicks we will average 

the &function over 6 and keep only the time independent component, 

With this substitution, combining first of the equations (38) with Q. (39) yields, 

This is the equation of adampedoscillator. Since we are assuming that g 4 1 and, hence, g / p  4 1 we can find an 

approximate solution of Eq. (42) in the following form 

X = e-@/*(dxc0~6 + dpsin6), p = e-@/*(- dxsin6 + dpcos6), (43) 

where d x  and dp are the initial values of x' and p, respectively, produced by a noise kick. These equations 

demonstrate that an initial perturbation exponentially dies out with the decrement equal to that obtained from the 

matrix analysis, Eq. (36). 

Now when we have found the dependence pversus 6 and know the interaction with the feedback system, we 

can solve for the motion of each particle of the beam. To t h i s  aim, we will solve the equation of motion for a 

particle having the tune which slightly differs (by the amount dv) from the tune Y of the centroid of the beam. In 

our notation, these equations have a form: 
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2 
dP de = p ,  - de = - (1 + 9) x - g$(e). 

In the limit g - 0, they govern the motion of a linear oscillator with the tune v + d Y ,  and the g-term accounts for 

the interaction with the feedback. Analogous to Eq. (42), using Eqs. (43) and (44) one finds 

Integrating this equation with the initial values 

x(t = 0) = xo + A x ,  P(t = 0) = po + dp, 

where xo and po give the position of the particle in the phase plane before the displacement, one finds the 

following result in the limit of large e, 

x = (xo + y d p ) c o s [ ( l  ++)e] + (Po  - g w v d x )  sin[ (1 + +)e]. 

From these equations we see that if dv f 0, the feedback does not restore the initial values xo and po which the 

particle had before the noise kick, but rather slightly changes them. This residual perturbation will eventually 

evolve, on much larger time scale associated with the decoherence process, to an incremental increase of the 

emittance de.  To find d e ,  one has to average (2 + p2) /2  over the particle distribution function. In doing so one 

finds that the linear terns in d x  and dp cancel and the result is 

de=- 16.ZWd&o, 
&? (47) 

where A&, = (Axz + Ap2) /2  is the increase of the emittance that would occur if there were no feedback in the 

system. 
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After we have considered one kick and shown that the increase of the emittance with the feedback is suppressed 

according to Eq. (47) we can generalize this result for many independent uncorrelated kicks. If inequality (37) 

holds, that is the damping time is much smaller than the decoherence time, one can consider that the feedback 

reacts independently to each noise kick on the beam. In this case increases in the emittance due to single noise 

kicks are simply summed up giving the following emittance growth 

where ( d(s)/dt)o is given by Eq. (19). 

Now let us add the effect of the errors associated with the measurements of the position of the beam. For a 

wide-band feedback system, one can expect these errors to be a white noise with the mean square equal to Pmke. 

This noise generates additional kicks on the beam according to Eq. (3 1). 

g2 
B1 

A p L e  = -Pmde Y (49) 

which, in turn, without feedback would cause the emittance growth 

With the feedback, this term must be added to (d(s) /dt) ,  in Eq. (48) giving, 
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As an illustration of the using of Eq. (51) we show in Figure 2 how the emittance doubling time 

-1  
T = eO(d(e)/dt) in an accelerator with the feedback depends on the level of external noise (measured in terms 

of the emittance doubling time without feedback, To = c0( d ( ~ ) / d t ) i ' )  and the accuracy of the Beam Position 

Monitor (BPM). Figure 2 clearly demonstrates that in order to suppress the emittance growth one has to have a 

good resolution of the BPM (small values of X,,,), otherwise turning on of the feedback system might even 

decrease the emittance doubling time in the machine. 

5 CONCLUSION 

In this paper we presented a derivation and analysis of emittance growth due to external random noise in a hadron 

accelerator. The theory predicts that the rate of the emittance growth is proportional to the values of the noise 

spectrum at the betatron sideband frequencies folv - nl. It is important to emphasize here that the mechanism 

which is responsible for growth of the emittance of the beam is the tune spread, though formally d Y does not enter 

Es. (19). 

We also considered the work of the feedback system and derived the residual emittance growth rate. If the gain 

of the feedback is much larger than the tune spread in the beam, g % d Y,, one finds a decrease in the growth rate 

proportional to g2 according to Eq. (51). In the opposite knit, g 4 dv,, the feedback would not suppress the 

emittance growth because decoherence proceeds faster than damping. Internal noise of the feedback has been also 

be included in the theory in terms of the accuracy of the BPM. 
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APPENDIX 

To calculate the sum 

N- 1 

sinp(N - n)sinp(N - rn) a = C eionn-m) 

nm-0 

from Eq. (1 1) in the limit N + 03, first, we express sine in terms of the exponential and perform the summation: 

where C.C. denotes the complex conjugate. In the limit N - 03, the following identities are valid 

where 

= I  

Now, note that 8(oT - pd(wT + p )  is identically equal to zero, unless v is equal to half an integer-the 

possibility excluded for an accelerator. The only term that is left in Eq. (A.2) is 

Putting (AS) in Eq. (1 1) gives Eqs. (12) and (13). 
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F I G m  1. Spectra of ground motion at different sites: 1- Ref. 11,2 - Ref. 12,3 -Ref. 1,4 - Ref. 13. 
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FIGURE 2. Emittance doubling time T as a function of the feedback gain g, for different values of To and X,,& 

0.5 p. Other parameters are: 8, = 350 m, dv, = 1.8.10-4. 
I -  To= 10 h, Xmk = 3.5 ~ 2 -  To= 10 h, X,,=O.5 ~ , 3 - T 0 =  lo&, XMe=3.5  W, 4 -  T o = 1 O h ,  X d e =  
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