
P M)qrmpwvaou

A Scalable Process-NIanagement Environment
for Parallel Programs*

Ralph Butlerl, William C;ropp2. and Ewing Lusk2

1 University of North Florida
2 .+rgonne National Laboratory

Abstract. W-e present a process management system for parallel pro-
grams such as those written using MP1. .* primary goal of the system,
which we call MPD (for multipurpose daemon), is to be scalable. By this
we mean that startup of interactive parallel jobs comprising a thousand
processes is quick, that signals can be quickly deIivered to processes, and
that stdin, stdout, and stderr are managed intuitively. Our primary
target is parallel machines made up of clusters of SNIPS, but the system
is also useful in more tightly inteawated environments. We describe how
MPD enables much faster startup and better runtime management of
MPICH jobs. We show how close controi of stdio can support the easy
implementation of a number of convenient system utilities, even a parallel
debugger. MPD is implemented and freely distributed with NIPICH.

1 Introduction

A parallel programming environment may be viewed as comprising three inter-
acting components: a job scheduler, which decides what resources a parallel job
consist ing of multiple processes will run on; a process manager, which starts
and terminates processes and provides them with a number of services; and a
parallel library such as MP1, which a parallel application calls upon for com-
munications. Since these components need to communicate with one another,
they are often integrated into a single system. An important research question
is to determine to what extent they can be separated from one another with
well-defined interfaces so that they can be independently developed. A further
research question is whether the resulting system can be made scalable to jobs
involving thousands of communicating processes. In this paper we focus on the
process manager component. We describe a design and an implementation we
caIl MPD (for multipurpose daemon) that provides both fast startup of parallel
jobs and a flexible run-time environment that supports parallel libraries.

In Section 2 we summarize related work. In section 3 we state our explicit
design goals, how these goals lead to implementation decisions, and interesting
features of the resulting system, including how it can be used to create a par-
allel debugger out of an existing single-process debugger. Section 4 summarizes

* This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31- 109-Eng-38.

The submitted manuscript has been created
by the University of Chicago as Operator of
Argonne National Laboratory (“Argonne”)
under Contract No. W-31 -109-ENG-38 with
the U.S. Department of Energy. The U.S.
Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government.

DISCLAIMER

This repo~ was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of anY
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or refiect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are
produced from the best available original
document.

,

preliminary experiments that make us optimistic about the usefulness of MPD
as a process manager for large-scale systems. We conclude with a summary of
progress to date and a description of our future plans.

The NIPD system is in use and is available as open source as part of the
MPICH system, obtainable from http: //www.mcs.anl.gov/mpi/mpich.

2 Related Work

All parallel computing environments that support execution of truly parallel
programs (those in which any two processes can communicate with one another)
have had to address at least some of the issues that we address with MPD.
Parallel programming systems, such as PVM [10], P4 [7], and implementations
of MP1 such as MPICH [13] and LAM [6] all provide some mechanism for starting
and running parallel programs, often with a specialized daemon process.

Many systems are intended to manage a collection of computing resources
for both single-process and parallel jobs; see the survey by Baker [3]. Typically,
these use a daemon that manages individual processes, with emphasis on jobs
involving only a single process. Widely used systems include PBS [17], LSF
[18], DQS [8], and Loadleveler/POE [14]. The Condor system [15] is also widely
used and supports parallel programs that use PVM [19]. Other, more specialized
systems, such as MOSIX [4] and GLUnix [11], provide a form of single-system
image support for clusters.

Harness [5, 16] shares with MPD the goal of supporting management of par-
allel jobs. Its primary research goal is to demonstrate the flexibility of the “plug-
in” approach to application design: providing a wide range of services, whereas
the MPD system focuses more specifically on the design and implementation of
services required for process management of parallel jobs, including high-speed
startup of large parallel jobs on clusters and scalable standard 1/0 management.
The book [9] provides a good overview of metacomputing systems and issues.

3 Design of MPD

In this section we describe our goals in constructing MPD and outline the sys-
tem’s architecture.

3.1 Goals

Several explicit goals have governed the design of the MPD system.

Simplicity The persistent (across jobs) part of the system should be simple
and robust. In the long run we expect this part to be runnable as root. If
its behavior isn’t completely transparent we will never be able to convince
system administrators to do so.

Speed Startup of parallel jobs should be quick enough to provide an interactive
‘feel,” so that large but short jobs make sense. Large (in number of processes)
but short (in time) characterizes system utilities such as those described
in [12]. Our immediate target is to start 1000 processes in a few seconds,
while still providing a way for such processes to establish contact with one
another. Our long-term goal is to support management of 10,000 processes.

Robustness The persistent part of the system should be at least moderately
fault-tolerant. Unexpected crash of one machine should not bring down the
whole system. There should be no single “master” process.

Scalability The complexity or size of any component should not depend on the
number of components.

Individual Process Environments It should be possible to start a parallel
job in which the executable files, environment variables, and command-line
arguments are different for each process. It should be possible to collect
return codes individually from processes.

Collective Identity of a Parallel Job It should be possible to treat a par-
allel job as a single entity that can be suspended, continued (signaled, in
general), or killed collectively as if it were a single process. The system
should manage stdin, stdout, and st derr in a useful and scalable way and
allow them to be redirected as if the parallel job were a single process. An
important component of a job’s collective identity is its termination. All re-
sources allocated for the job, such as files, System V IPC’S, other processes,
etc., must be reliably freed, even if the job terminates abnormally.

It is explicitly not a goal of the MPD system to provide scheduling services,
which we believe to be a separate function from process management.

3.2 Deriving the Design from the Goals

The goals of simplicity and robustness lead us to adopt a multicomponent sys-
tem. The daemon itself is persistent (may run for weeks or months at a time,
starting many jobs), typically one instance per host in a TCP-connected net-
work. J4anager processes will be started by the daemons to control the applica-
tion processes (clients) of a single parallel job and will provide most of the MPD
features. The goal of speed requires that the daemons be in contact with one
another prior to job startup, and the goals of scalability and “no master” suggest
that the daemons be connected in a ring.1 The services that the managers will
provide (see Section 3.3) suggest that they be in contact as well, and the fastest
way for them to form these connections is to inherit part of the ring connectivity
of the daemons. Separate managers for each user process support the individual
process environments. The goal of having a collective identity for a parallel job
leads us to treat the mpirun or mpiexec process as such a representative, and
use it to deliver signals and stdin to application processes and collect stdout

1 While a ring is not ultimately scalable, it is more so than the typical star used in
many process management systems, and our experiments have shown it feasible for
the 1000-daernon domain.

and stderr output from them. This suggests that the mpirun process connect
first to the claemon ring in order to start the job, and then switch the connection
to the manager ring in order to control the job. The goal of speed suggests that
these latter connections be restricted to a process running on the same host,
either the daemon itself or a persistent gateway process if the daemon is run as
root, so that authentication can be through the file system (a Unix rather than
a network socket). We refer to all such processes as console commands. Finally,
in order that this infrastructure be available to support MP1 programs or other
parallel tools, there needs to be client Zibrarg that each application process may
use to interact with its manager.

We do not specify how the daemons are started or connected, since the system
provides a number of alternatives, and the process need not be particularly fast.
A console command is started by the user, either interactively or under the
control of a batch scheduler. The daemons fork and exec the managers, which
use information given them by the daemons to connect themselves into a ring,
then fork and exec the clients. The startup messages traverse the ring quickly,
so most forking, execing, and connecting take place in parallel, leading to fast
startup even for large jobs. The situation is then as shown in Figure 1, where the

,/
./.’

----- ____ _

console

0---0:,.-0.......0 0 “ien’s...............................
Fig. 1. Daemons with console process, managers, and clients

clients may be application lMPI processes. Solid lines represent sockets, except for
the vertical ones, which represent pipes. The dashed lines represent the trees of
connections for forwarding stdout and st derr, and the dotted lines represent
potential connections among the client processes. The dot-dashed line is the
original connection from console to local daemon on a Unix socket, which is
replaced during startup by the network connection to the first manager.

3.3 Interesting Features

Space restrictions prevent a complete description of all the features and capa-
bilities of the MPD system, but in this section we mention a few highlights.

Security Whenever a process advertises a “listener” socket and accepts connec-
tions on it, the possibility exists that an unknown or even malicious process

will connect. This is particularly dangerous if the process accepting the con-

nection can start processes as the MPD daemon can. We currently use the
“challenge-response” system described in p20]. In the long run, we expect to
modify this component of the system to use more elaborate schemes and ex-
tend them to other connections such as client/gateway authentication. This
will have little impact on the job startup speed since the daemon component
startup is separate from job startup.

Fault Tolerance If a daemon dies, this fact is detected and the ring is reknit.
This provides a minimal sort of fault tolerance, since the ring remains intact.
A new MPD daemon can be inserted in the ring where the old one was, but
this process is not (yet) automatic.

Signals Signals can be delivered to client processes by their managers. We cur-
rently use this capability in two specific ways. First, signals delivered to a
console process are propagated to the clients, so that a parallel application as
a whole can be suspended with cntl-Z, continued, and killed with cntl-c,
just as if it were a single process. Second, in the ch_p4mpd device in the
IMPICH implementation of MPI, client processes can interrupt one another
with requests to dynamically establish client-to-client connections. Such re-
quests go up into the manager ring from the originating client, around the
ring to the manager of the target process, which signals its client.

Support for MPI Implementations Currently MPD provides direct support
for the MPICH implementation of MPI. The clq4mpd device distributed
with Version 1.2 of MPICH makes direct calls to the client library compo-
nent of the MPD system to find out a process’s rank, where other processes
are and how to cent act them, etc. In our next major release of MPICH,
the support will be indirect, through a general parallel-library-to-process-
manager interface we will describe elsewhere.

On clusters of SMPS, it is easy to specify that multiple processes are to
be started on the same machine and share memory. Specifically, mpirun -np
180 -g 2 cpi starts processes in groups of two and places in their environ-
ment a key that can be used to acquire group-attached shared memory and
other information needed to set up multimethod communication for an MPI
implement ation. Other communication mechanisms (such as VIA) will be
supported over time.

Handling Standard 1/0 Mangers capture the stdin and stdout of their
clients, and forward it up a pair of binary trees of socket connections, each
manager merging stdln and stdout from its client with that from each of
its two children. A command line option tells the managers to provide a rank
label on each line of output from their clients.

Standard input (to mpirun, for example) by default is delivered to the
client managed by manager O. This seems to be what most MP1 users ex-
pect, and what most MP1 implementations do. (The MPI standard does not
specify.) However, control messages can be used to change this behavior to
direct stdin to any specific client, or broadcast it to all clients.

Client Wrapping The semantics of the Unix fork and exec system calls pro-
vide us with useful benefits. When a manager forks a client process, for

example, it first sets up the manager-client pipes for control messages and
standard 1/0. The “lower” ends of these pipes are inherited by any pro-
cess that the client forks. Thus even though the client is not using any
of the client library, managers can manage clients that themselves run the
“rear’ application process. We call this scheme client wrapping. Thus mpirun
-np 16 nice -5 myprog lowers the priority of a parallel job to be run on
one’s colleagues’ workstations, and mpirun -np 16 pty myprog can be used
when myprog needs to be attached to a terminal (otherwise our capture of
st din and stdout modifies their buffering behavior). (The program pt y is
distributed with the MPD system.)

Putting It All Together The combination of 1/0 management, especially redi-
rection of stdin, line labels on stdout, and client wrapping can be surpris-
ingly powerful. We have used these features of the MPD system to add an
option to mpirun that invokes gdb as a client wrapper and dynamically redi-
rects stdin. While mpirun -np 3 cpi runs cpi directly as an MP1 job,
mpirun -np 3 -d cpi runs each cpi process under the control of (wrapped
by) the gdb debugger. (Other sequential debuggers could be used, but are
not yet supported.) Thus multiple instances of gdb are being run. Output of
the gdb’s is labeled by process rank. The “ (gdb)” prompts are intercepted
by the mpirun process and counted, so that it can issue an “(mpigdb)”
prompt when one has been received from each process. In addition, mpirun
-d uses the “z” command (one of the few single letters not already claimed
by gdb) to redirect stdin to a specific gdb instance or to all processes. Thus
processes can be stepped and breakpoints can be set either collectively or
individually, and collectively printing a variable will provide all values with
rank labels. An example terminal session showing how this works can be
seen at http: //www.mcs.anl.gov/mpi/mpich/mpd/mpigdb.script.

4 Experiments

Most development of MPD has been on workstation networks where startup of
32-process jobs on five workstations is virtually instantaneous, compared with
the approximately 1.5 seconds per process required by the ch.p4 version of
MPICH. An early test of the feasibility of using the ring topology showed that
a message could make 1024 hops around the ring in less than .4 seconds, which
gave us confidence that the ring would not impose scalability limits, at least in
the near term. Recently we began experiments on Chiba City, a testbed for par-
allel computer science research [1]. We performed one set of tests on 211 nodes
connected by Fast Ethernet. We were interested only in process startup time,
and so tested execution of trivial parallel jobs. Typical experiments included

time mpirun -np 211 hostname
time mpirun -np 422 -g 2 hostname

We found that starting 211 processes (one on each node) and collecting the
stdout output of hostname took about 2 seconds to execute. Starting twice as

many processes (one for each cpu) took about 3..5 seconds. including setting up
the relatively complex stdout tree and collecting the output. Sending a message

around the ring of 211 MPD daemons took only .13 seconds. More experiments
are ongoing, and we will soon be able to report on MP1 jobs on Chiba City.

5 Future Development

The existing MPD system, consisting of daemons, managers, console commands,
and client library, meets our goals of simplicity, robustness, and scalability. It is
used for fast startup of MP1 jobs and others on systems with hundreds of ma-
chines. The flexibility of its stdio control mechanism has provided unexpected
benefits, such a “poor man’s” parallel debugger. It meets our goals for the col-
lective identity of a parallel job. It does not yet meet all of our goals with respect
to individual process environments, although that is coming very soon.

In the near term, we expect to use the system to implement the dynamic
process creation part of MPI-2 in NIPICH. The design presented here, with a
simple daemon and a separate manager process providing most of the features
needed by user jobs, allows the daemons to be run as root while the managers are
run as user processes. We expect to begin running the daemon as root on some
large-scale multi-user systems, in order to provide a persistent job management
system. This will require increased attention to security issues as well as a precise
definition of how MPD will interoperate with a full-featured scheduling system
such as the Maui scheduler [2]. We believe that the MPD daemons can also begin
to provide more services, such as run-time performance monitoring.

In the long run, as machines grow from hundreds to thousands of nodes, our
rings of daemons and managers may have to grow into a more sophisticated
structure, such as rings of rings, in order to continue to provide fast startup. We
anticipate that this can be done without substantially changing the MPD design
presented here. We will also need a more sophisticated output merger in order
to provide scalable stdout, for example for large-scale parallel debugging.

In summary, we are finding the MPD system already a useful contribution on
one’s parallel programming environment, and expect its applicabilityy to expand
in the near future. We also view its design as a valuable starting point for future
research into large-scale parallel job execution environments.

References

1. Chiba City home page. http: //www.mcs.anl.gov/chiba.
2. The Maui Scheduler home page. http: //maui-scheduler. mhpcc.edu/new-doc,

http: //www.mhpcc.edu/maui.
3. M.A. Baker, G.C. Fox, and H.W. Yau. Review of cluster management software.

NHSE Review, l(l), May 1996.
4. .Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX distributed op-

erating system: load balancing for UNIX, volume 672 of Lecture Notes in computer
Science. Springer-Verlag Inc., New York, NY, USA, 1993.

.5. \Iicah Beck, Jack J. Dongarra, Graham E. Fagg, (3. Al Geist, Paul Gray,
James Kohl, Mauro Migliardi, Keith Moore, Terry Moore, Philip Papadopoulous,
Stephen L. Scott, and Vaidy Sunderam. HARNESS: A next generation distributed
virtual machine. International Journal on Future Generation Computer Systems,
15(5/6), 1999.

6. Greg Burns, Raja Daoud, and James Vaigl. L-AM: .An open cluster environment
for MP1. In .John W. Ross, editor, Proceedings of S’upercomputing Symposium ’94,
pages 379–386. University of Toronto, 1994.

7. Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel
programming system. Parallel Computing, 20:547-564, .4pril 1994.

8. DQS home page. http: //www.scri.fsu. edu/-paskdqsqhtmlml.
9. I. Foster and eds. C. Kesselman. The Grid: Blueprint for a New Computing ln-

frastrwture. Morgan Kaufmarm, 1999.
10. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and

Vaidy Sunderam. PVM: Parallel Virtual ,lIachine-A User’s Guide and Tutorial
for Network Parallel Computing. MIT Press, Cambridge, MA, 1994.

11. Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat, and
Thomas E. .Anderson. GLUnix: .4 Global Layer Unix for a network of workstations.
Software-Practice and .Ezperience, 28(9):929–961, July 1998.

12. William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. In
Proceedings of the Scalable High-Performance Computing Conference, pages 56-62.
IEEE Computer Society Press, 1994.

13. William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI Message-Passing Interface stan-
dard. Parallel Computing, 22(6):789-828, 1996.

14. IBM. Loadleveler: Using and Administering, version 2 release 1 edition, November
1998. SA22-7311-00.

15. M. J. Litzkow, M. Livny, and LM.W. Mutka. Condor – A hunter of idle workstations.
In Proc. 8th Intl. Conf. on Distributed Computing Systems, pages 104–111, San
Jose, Calif., June 1988.

16. M. Migliardi and V. Sunderam. PVM emulation in the harness metacomput-
ing system: A plug-in based approach. In J. J. Dongarra, E. Luque, and Tomas
Margalef, editors, Recent advances in parallel virtual machine and message pass-
ing interface: 6th European P VM/MPI Users’ Group Meeting, Barcelona, Spain,
September 26–29, 1999: proceedings, volume 1697 of Lecture Notes in Computer
Science, pages 117-124, Berlin, Germany / Heidelberg, Germany / London, UK /
etc., 1999. Springer-Verlag.

17. PBS home page. http: //pbs.mrj.com/.
18. Load Sharing Facility (LSF). http: //www.platform. corn.
19. J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cycles

of workstation clusters. Future Generation Computer Systems, 12(1):67-85, May
1996.

20. Andrew S. Tanenbaum. Computer iVetworks. Prentice Hall, third edition, 1996.

