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Executive Summary 

MFIX (Multiphase Flow with Interphase exchanges) is a general-purpose hydrodynamic 
model for describing chemical reactions and heat transfer in dense or dilute fluid-solids flows, 
which typically occur in energy conversion and chemical processing reactors. The calculations 
give time-dependent information on pressure, temperature, composition, and velocity distributions 
in the reactors. The theoretical basis of the calculations is described in the MFIX Theory Guide 
(Syamld, Rogers, and O’Brien 1993). Installation of the code, setting up of a run, and post- 
processing of results are described in MFIX User’s manual (Syamlal 1994). 

Work was started in April 1996 to increase the execution speed and accuracy of the code, 
which has resulted in MFIX 2.0. To improve the speed of the code the old algorithm was 
replaced by a more implicit algorithm. In different test cases conducted the new version runs 3 to 
30 times faster than the old version. To increase the accuracy of the computations, second order 
accurate discretization schemes were included in MFIX 2.0. Bubbling fluidized bed simulations 
conducted with a second order scheme show that the predicted bubble shape is rounded, unlike 
the (unphysical) pointed shape predicted by the first order upwind scheme. This report describes 
the numerical technique used in h4FIX 2.0. 
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1 Introduction 

MFIX is a general-purpose hydrodynamic model for describing chemical reactions and 
heat transfer in dense or dilute fluid-solids flows, which typically occur in energy conversion and 
chemical processing reactors. MFIX is written in FORTRAN and has the following modeling 
capabilities: multiple particle types, three-dimensional Cartesian or cylindrical coordinate systems, 
uniform or nonuniform grids, energy balances, and gas and solids species balances. MFIX 
calculations give time-dependent information on pressure, temperature, composition, and velocity 
distributions in the reactors. With such information, the engineer can visualize the conditions in 
the reactor, conduct parametric studies and what-if experiments, and, obtain information for the 
design of multiphase reactors. 

The theoretical basis of MFIX is described in a companion report (Syamlal, Rogers, and 
O'Brien 1993). The current version of MFIX uses a slightly modified set of equations as 
summarized in Appendix A, however. The installation of the code, the setting up of a run, and 
post-processing of results are described in MFIX User's manual (Syamlal 1994). The keywords 
used in the input data file are given in a readme file included with the code. This report describes 
the numerical technique used in MFIX 2.0, which resulted from work started in April 1996 to 
increase the execution speed and accuracy of the code. 

To speed up the code, its numerical technique was replaced with a semi-implicit scheme 
that uses automatic time-step adjustment. The essence of the method used in the old version of 
MFIX was developed by Harlow and Amsden (1975) and was implemented in the K-FIX code 
(Rivard and Torrey 1977). The method was later adapted for describing gas solids flows at the 
Illinois Institute of Technology (Gidaspow and Ettehadieh 1983). In MFIX 2.0 that method was 
replaced by a method based on SIMPLE (SemiImplicit Method for Pressure Linked Equations), 
which was developed by Patankar and Spalding (Patankar 1980). Several research groups have 
used extensions of SIMPLE (e.g., Spalding 1980, Fogt and Peric 1994, Laux and Johansen 1997), 
and this appears to be the method of choice in commercial CFD codes (Fluent manual 1996, Witt 
and Perry 1996). Two modifications of standard extensions of SIMPLE have been introduced in 
MFIX to improve the stability and speed of calculations. One, MFIX uses a solids volume 
fraction correction equation (instead of a solids pressure correction equation), which appears to 
help convergence when the solids are loosely packed. That equation also incorporates the effect 
of solids pressure, which is a novel feature of the MFIX implementation that helps to stabilize the 
calculations in densely packed regions. Two, MFIX uses automatic time-step adjustment to 
ensure that the run progresses with the highest execution speed. In various test cases conducted 
MFIX 2.0 was found to run 3-30 times faster than the old version of the code. 

To improve the accuracy of the code, second-order accurate schemes for discretizing 
convection terms were added to MFIX. Reducing the discretization errors is harder when first- 
order upwind (FOU) method is used for discretizing convection terms. For example, FOU 
method leads to the prediction of pointed bubble shapes in simulations of bubbling fluidized beds. 
This unphysical shape, caused by numerical difision, could not be corrected with certain 
affordable grid refinement. With the same grid, however, the use of a second-order accurate 
discretization scheme gave the physically realistic rounded bubble shape (Syamlal 1997). 

2 



This report is organized as follows: The discretization methods for the convection- 
di&sion terms are described in Section 2. That information is used in Section 3 to derive the 
discrete analog of the scalar transport equation, which is a prototype of the multiphase flow 
partial differential equation. The next step of solving the set of discretized equations is outlined in 
Section 4. Sections 5-9 describe the equations used in the various steps of the solution algorithm. 
Section 10 describes the final steps in the solution algorithm: the under relaxation procedure used 
for stabilizing the calculations, the linear equation solvers, the calculation of residuals used for 
judging the convergence of iterations, and the method of automatic time-step adjustment. 
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E 2 Discretization of Convection-Diffusion Terms 

2.1 First-Order Schemes 

The transport equations contain convection-diffusion terms of the form 

The stability and accuracy of the numerical scheme critically depend upon the method used for 
discretizing such terms. It is straightfonvard to discretize the terms using a Taylor series 
expansion. In fluid dynamics computations, however, a control volume (CV) method is usually 
preferred. CV method invokes the physical basis of the derivation of conservation equations and 
ensures the global conservation of mass, momentum and energy even on coarse grids (Patankar 
1980). At a sufficiently fine grid resolution the two methods would yield the same, accurate 
solution. The CV method is more attractive in practical computations, since a fine grid is seldom 
affordable. 

When the convection-diffision (advection) term is integrated over a CV (shaded region in 
Figure 2.1) 

i-1 i- 1/2 i i+ 1/2 i+ 1 

E P W 

Figure 2.1 The control volume and node locations in x-direction 

we get 

The calculation of diflksive fluxes at the CV faces is a relatively simple task: For example, 
the diffusive flux at the east-face can be approximated to a second order accuracy by 
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The discretization of the convection terms is a more difficult task and the rest of this 
section will deal with that task. 

From Equation 2.2 the discretization of the convection term is clearly equivalent to 
determining the value of + at the CV faces (Ge and +,,,). A simple interpolation such as 

called central differencing, gives second order accuracy. However, in convection-dominated 
flows, typical of gas-solids flows, this method introduces spurious wiggles in the solution and 
leads to an unstable numerical scheme. A well-known remedy for stabilizing the calculations is 
the upwind discretization scheme 

This method is only first-order accurate and is diffusive. 

The motivation for the upwind scheme can be found in the analytical solution for a steady, 
one-dimensional, source-fiee flow 

where the cell Peclet number (P), the ratio of the convective flux to the dfisive flux, at the east 
face is given by 

P 'Axe P, = r (7) 

Low values of P show that diffision is the dominant mechanism of transport at the scale of the 
grid size, and large values of P show that convection is dominant. 



m. 

The analytical solution is plotted in Figure 2.2. At a large value of Peclet number =lo) 
the cell face value of @ (at x = 0.5) is nearly identical to the upstream value of +, and upwind 
differencing would be adequate to represent the face value of 4. At small Peclet numbers the 
upwind method is less accurate. An upwind bias, nevertheless, is evident in the solution, and it is 
a common feature of all practical discretization schemes for convection. 

1 

0 
0 0.2 0.4 0.6 0.8 1 

X 
Figure 2.2. Analytical solution of a steady, 
1 -D, convection-diffusion equation 

A more accurate discretization of the convection-difision flux, motivat 
analytical solution, is the exponential scheme 

d b! the 

(8) 

The exponential scheme is computationally expensive, and, hence, cheaper approximations such 
as the hybrid scheme and the power-law scheme are used in practice. In these schemes upwind 
discretization is used for the convection term. The power-law discretization for the diffisive flux 
at the east face, for example, is given by 

where 
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A (IPI) = [(1-o.11P1)51 

which uses the definition of a double-brackets fbnction 

(0 RrO 

R R>O 
VI = I 

2.2 Higher-order schemes 

For cell Peclet numbers larger than about 6, A(IP1) -+ 0, and the power-law (also, 
exponential) scheme is equivalent to first-order up winding for convection with physical diffision 
switched off The scheme is only first order accurate and does not give accurate results for flows 
in which the effects of transients, multi-dimensionality, or sources are important (Leonard and 
Mokhtari 1990). Higher order discretization methods for convection may be used to increase the 
accuracy. However, higher order schemes produce overshoots and undershoots near 
discontinuities. Such oscillations, apart from being undesirable in the final solution, will also 
hinder the convergence of iterations by producing physically unrealistic intermediate solutions 
(e.g., volume fractions greater than 1 or less than 0). 

Resolving discontinuities in the solution has been a critical need in gas dynamics 
calculations and has motivated the development of higher order schemes that produce no spurious 
oscillations and total variation diminishing (TVD) schemes, Such schemes use a limiter that 
bounds the value of 4 at the CV face, when the local variation in 4 is monotonic. Thus, the 
discretization scheme is prevented from introducing any spurious extrema into the solution. 

Leonard and Mokhtari describe a universal limiter expressed as a fbnction of a normalized 
value of 4. Based on the notation for node locations along the flow direction given in Figure 2.3, 
the normalized value is given by 

Then $u = 0 and +D = 1. The local distribution of 4 is monotonic when 

o r $ c s l  
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Under monotonic conditions the limiter bounds+f in the following manner: 

1. 4f should be between oc and 4D. That is 

U D 

Figure 2.3. Notation for node locations based on the flow direction 

This includes the special case +c = +D, in which case 4f = bC = +D. That is 

2. If @c = @.,wewant 4f = 4c = 4.. Thatis 

3. To avoid nonuniqueness near 6, - 0 define a steep boundary of a finite slope 

for o I, &c s c 

c is a constant about 0.0 lfor steady state simulations. For time marching schemes c is the 

normal direction Courant number (-). u A t  
Ax 
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I 

C 

@-c 

I 

I 

Figure 2.4. Normalized variable diagram 

4. For non-monotonic behavior (4= < 0 or 4c > l), the limiter does not 
impose any constraint other than that the interpolations must be continuous with respect 

> 0 andfinite. curve must pass through (0,O) and (1,l) with - a4f to 4 c; that is, 

The above constraints may be represented on a normalized variable diagram (NVD) shown in 
Figure 2.4. The value of+f calculated by any higher order scheme should be constrained to pass 
through the shaded region to prevent overshoots and undershoots. Second order schemes must 
pass through the point (0.5, 0.75). Methods of order higher than two cannot be represented as a 
single curve on NVD. 

Leonard and Mokhtari have proposed a down wind factor formulation, which simplifies 
the insertion of higher order methods into existing codes by not having to replace the septa- 
diagonal matrix structure of the discretized equations. The steps required for applying the 
formulation to an arbitrary order discretization method are the following: 

1. Compute high-order, multidimensional, upwind biased estimate of 4f 
2. Compute a tentative down wind weighting factor defined as 

3. Limit dwf * in the monotonic region to get dwf. The universal limiter expressed as a 
finction of the down wind factor is shown in Figure 2.5. 
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&!! 

C I 

Figure 2.5. Down wind factor diagram 

4. Compute the new estimate of +f as 

+f = huf 4)D + (1 - &I! 4)c 

Note that even for a higher-order method 4)f is calculated fiom the values of 4 at adjacent nodes, 
the information fiom a wider stencil being contained in the factor &If. 

For several discretization schemes explicit formulas for the down wind factors may be 
derived. The formulas used in MFIX are shown in Table 2.1 and are plotted in Figure 2.6. See 
Appendix C for some derivations. 

'able L Discretization formulas in terms of down wind factors 
Discretization scheme I Down wind factor 

First order up winding 

Central differencing 0.5 

Second order up winding % e  
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Discretization scheme Down wind factor 

[ e -  +C \ 

( 1  - 4 c )  / 

+c van Leer 

Minmod 

MUSCL % max[0, min(2 8,0.5+0.58,2)] 
?h max[O, min( 1 , e)] 

' UMIST 

SMART 

Superbee 

% max[O, min(2 8,0.75+0.258,2)] 

'/1 max[O, min(4 8,0.75+0.258, 2)] 

% max[O, min(l,2 e), min(2, e)] 

1 1  



Discretization scheme 

ULTRA-QUICK 

Down wind factor 

e 

(--i)e 

- 
2 
1 
C 

3c &flcc- 5 0.375 + 0.125 e - 
1 -<&d 

8 - 6 ~  6 
5 -  
6 

0.5 
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Figure 2.6. Downwind factors as a fbnction of normalized 4 
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2.3 Usage of Downwind Factors 

For the convenience of programming we calculate a convection weighting factor ( 5 )  
fiom the down wind factors, which can be computed once and used without fkrther checking the 
flow (wind) direction. The method is illustrated with the calculation of 4 at the east face. The 
node locations are shown in Figure 2.7. Also refer to Figure 2.3 for definitions of node locations 
C, D, and U. 

If ue ;r: 0 (PsC; E z D; W v) 

Figure 2.7. Node locations 

2. Use 6c in a formula fiom Table 2.1 to calculate the down wind factor. 

3. Recalling the definition 

+e = dWf, @D + (1 - dWf,) +c 

calculate E as follows: 
Algorithm 2.2 
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else (E = C; P = D) 

Of = *! 4 p  + (1 - dit ! )  4% 

Ee = 1 - *! 

The value of 4 at the east face, for example, is then written as 

+e = t e+E + Fe+p 

In summary, Equation 2.3 1 is the discretization formula for the convection term and 
Equation 2.3 is the dicretization formula for the diffision term. These formulas will be used in the 
next section to discretize a transport equation. 
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3 Scalar Transport Equation 

In the previous section fokulas for discretizing convection-diffusion terms were derived. 
In this section using those formulas we derive an algebraic (discretized) equation fiom a partial 
differential equation. For this demonstration we use the transport equation for a scalar 4: 

The above equation has all the features of partial differential equations that form the multiphase 
flow model, except the interphase transfer term (Appendix A). The interphase transfer is an 
important aspect of the multiphase flow equations and deserves special attention in the algorithm. 
We postpone its discussion until Section 6. 

3.1 Integration Over a Control Volume 

We will integrate Equation 3.1 over a control volume (Figure 3.1) and write term by term, 
fiom left to right as follows: 

Transient term 

where the superscript ‘0’ indicates old (previous) time step values. 

1- 1 i- 112 1 i+ 112 i+ 1 

E P w 

i+ 32 

Figure 8 Control volume and node locations in x-direction 
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Convection term 

where we have used Equation 2.3 1 from the previous section. 

(h Difision term 

The diffusive fluxes are approximated using Equation 2.3 from previous section. For 
example, the difisive flux through the east face is given by 
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The cell face values of diffision coefficients are calculated using a harmonic mean of the 
values defined at the cell centers (Patankar 1980). For example, 

where we use the definition 

&E 

Axp + AxE f e =  

When the volume fraction of a certain phase changes to zero across a cell face, Equation 3.6 
correctly sets the cell-face diffusion coefficient to zero. This is indeed the physically realistic limit 
as no diffusion can take place across such an interface. An arithmetic average, on the other hand, 
does not have such a physically realistic limit. 

* Source term 

Source terms are generally nonlinear and are first linearized as follows: 
- 

R4 R, - R'++p (39) 

For the stability of the iterations, it is essential that R \ 2 0.  Also, when 4 is a nonnegative field 

variable (such as, temperatures and mass fractions) it is recommended that 
1980). Then the integration of the source term over a control volume gives 

2 Opatankar 

JR4dV 0 Z 4 A V  - R'+$pAV 

3.2 Discretized Transport Equation 

Combining the equations derived above we get 
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I $1 .\ 

AV [ (P: o)p - ( P: mi.) 
At 

where we have defined the macroscopic densities as 

Equation 3.10 may be rearranged to get the following linear equation for 4 

where the subscript nb represents E, W, N, S, T, and B. Before using the above equation for 
determining Q, it is recommended that the discretized continuity equation multiplied by Q be 
subtracted from it. 

The reason for the above manipulation is discussed in detail by Patankar (1980). The 
homogeneous part of the partial differential equation for + has infinite number of solutions of the 
form ($ + c), where c is an arbitrary constant. The finite difference equation for $ must have the 
same number of solutions. Otherwise, small mass imbalances during the iterations may produce 
large fluctuations in the values of @, and the convergence will be adversely affected. It is easy to 
show that the finite difference equations will have the desired property if 

ap = nb (44) 

when the unsteady and source term contributions to ap. are discarded. Patankar calls this 
requirement Rule 4. An equation of the form 3.12 denved from Equation 3.10 will not satisfjr 
Rule 4. 
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The discretized form of continuity equation can be easily obtained fiom Equation 3.10 by 
setting @=l and changing the source term to R,, . Then subtracting @ times the discretized 
continuity equation fiom Equation 3.10 we getz a linear equation of the form 3.12, in which the 
coefficients are defined as follows: 

a E  = De - { e  (Em pm)E (.m), A e  

ap = Eanb + a; + R$ A V  + [ c R m , ] A V  
nb 

b = ap" ai + &,AV + aP [-CR,J AV 

(45) 

(46) 

Unlike single phase flow, multiphase continuity equations have a source term (E Rml) 
that accounts for interphase mass transfer. Since 9 tunes the continuity is equation is subtracted 
out, the term appears in discretized @ transport equation. Including this term in the source term 
would slow convergence, and including it in the center coefficient would destabilize the iterations 
when R,, < 0. Therefore, the term is manipulated as follows so that its contribution to ap is 
nonnegative. Recall the definition of double brackets fknction: 

0 R S O  

R R>O 
CRI = { (55) 
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r ,  

From the above definition it follows that 

R = [R] - [ -R]  

Then the interphase mass transfer term can be written as 

+p C R ,  = +pCCRJ - 4pCC -RJ 
I 1 1 (57) 

The first term on the right-hand side of the above equation contributes to the source term 
(Equation 3.20) and the second coefficient contributes to the center coefficient (Equation 3.21). 

If a power-law discretization is wanted, we will set the convection factor to zero (i.e,, 
[ = 0 and = 1 ) and change D’s to D A( IPI). For example, replace D, in Equation 3.14 by 

De A ( [ P e l )  

where 

(59) 

There are a couple of points to be noted regarding the usage of higher-order discretization 
schemes. In second or higher order discretization schemes the factors are weak hnction of 4. 
Thus, the factors [ in the discretized continuity equation may differ from the corresponding 
factors in the Q transport equation. Then the discretized equation for 4 obtained by subtracting $ 
times the continuity equation will fail to satisfjr Rule 4. Therefore, we make the assumption that 
the convection factors in the discretized continuity equation are the same as those in the $ 
transport equation to satisfy Rule 4. 

The use of higher order methods may result in a violation of Patankar’s RuZe 2 in some 
regions. Rule 2 states that all the coefficients anbin Equation 3.1 1 must have the same sign, say 
positive. The physical basis for this rule is that an increase (or decrease in the value of Q at a 
neighboring cell should cause an increase (or decrease) in the value of dp, not the other way 
around. This rule when combined with Rule 4 also ensures that the discretization produces a 
diagonally dominant system of equations. The rule is strictly satisfied by the above e uations only 

become negative when the local behavior of 8 is monotonic. Such violations of Rule 2 are of no 
concern, since the limiter uses more elaborate considerations to ensure that the solution is 
bounded and physically realistic (also see Appendix C). 

when first order upwinding is used. When hi her order schemes are used, some coe 9s cients may 
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4 An Outline of the Solution Algorithm 
An extension of SIMPLE (Patankar 1980) is used for solving the discretized equations. 

Several issues need to be addressed when this algorithm, developed for single phase flow, is 
extended to solve multiphase flow equations. Spalding (1980) lists three issues, which he rates as 
“the first is obvious, the second rather less so, and the third may easily escape notice.” 

(i) There are more field variables, and hence more equations compared with single phase 
flow. This slows the computations, but does not in itself makes the algorithm any more 
complex. 

(ii) Pressure appears in the three single phase momentum equations, but there is no 
convenient equation for solving the pressure field. The crux of SIMPLE algorithm is the 
’derivation of such an equation for pressure -- the ressure correction equation. The 

exactly (to machine precision). There is no unique way to derive such an equation for 
multiphase flow, since there is more than one continuity equation in multiphase flow. 

(iii) The multiphase momentum equations are strongly coupled through the momentum 
exchange term. Making this term hl ly  im licit for the success of the numerical scheme is 

and Amsden (1975), which is encoded in the K-FIX (Kachina- Fully Implicit Exchange) 
program of Rivard and Torrey (1 977). In the MFIX algorithm the momentum equations 
are solved for the entire computational domain. To make the exchange term implicit all 
the e uations for each velocity component (e.g., u-equations for gas and all solids phases) 

alternative is to use the Partial Elimination Algorithm (PEA) of Spalding (1980), which is 
discussed in Section 6. 

pressure corrections give velocity corrections suc K that the continuity equation is satisfied 

essential. This is the main idea in the Imp P icit Multifield Field (IMF) technique of Harlow 

must B e solved together, which leads to a nonstandard matrix structure. A cheaper 

In granular multiphase flow two other issues critically determine the success of the 
numerical scheme. One is the handling of close-packed regions. The solids volume fraction 
ranges from zero to a maximum value of around 0.6 in close-packed regions. The lower limit is 
easily handled by formulating the linear equations such that nonnegative values of volume fraction 
are calculated. Constraining the solids volume fraction at or below the maximum value is more 
difficult. The formation of close-packed regions is analogous to the condensation of compressible 
vapor into an incompressible liquid. The reaction forces that resist hrther compaction of the 
granular medium result in a solids ressure, which must be distinguished from the fluid pressure. 

1983) models by introducing a state equation that relates the solids pressure to the solids volume 
fraction (or the related void fraction). The solids pressure hnction increases exponentially as the 
solids volume fraction approaches the close- acked limit, and retards krther compaction of the 
solids, This method allows the granular me ium to be slight1 compressible. The granular 
medium may also be considered incompressible as was done y Syamlal and O’Brien (1988). It is 
also the method used in F L E W  code (Fluent Users manual, 1996). In this method no state 
equation for solids pressure is needed. The solids volume fraction at maximum packing needs to 
be specified, which is also an implicit or explicit parameter in the state equation used for the 
slightly compressible case. In later versions of MFIX slight compressibility of packed granular 
medium was reintroduced to accommodate general frictional flow theories. The current 
numerical algorithm also requires that the granular medium be slightly compressible. 

An equation similar to the fluid-pressure correction equation can be developed for the 
solids pressure. Such an equation is solved in F L E W  code (Fluent users manual, 1996). 
MFIX uses a solids v o m e  fraction correction equation instead. The solids pressure correction 
equation requires that 2 does not vanish when€, - 0 . Solids volume fraction correction 
equation does not hav8Qch a restriction, but must account for the effect of solids pressure so 
that the computations are stabilized in close-packed regions. 

This situation was handled in the S e (Pritchett et al. 1978) and IIT (Gidaspow and Ettehadieh 

i B 
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A second issue is the difficulty in calculating field variables at interfaces across which a 

phase volume fraction goes to zero. The field variables associated with a phase are not defined in 
regions where the phase volume fraction is zero, and they may be set to arbitrary values. The 
computational algorithm must not use such arbitrarily set values, however. As an example, in the 
prevlous Section we showed that the use of a harmonic mean for calculating face values of 
diffusion coefficients will prevent the diffUsion of 0 into regions where the phase associated with 
it is absent. The calculation of velocity components at such interfaces is more difficult than scalar 
quantities because of the linearization of the nonlinear convection term. Across an interface 
where the phase volume fraction is nearly zero the normal component of velocity becomes very 
large. Since the product of the phase volume fraction and the velocity component is still nearly 
zero, the error in momentum conservation is negligible. However, the large phase velocities 
quickly destabilize the calculations, and a method is required to prevent such destabilization. 
MFIX uses an a proximate calculation of the normal velocity at the interfaces (defined by a small 
threshold value f! or the phase volume fraction). 

Gas-solids flows are inherently unstable. Steady state calculations are possible only for a 
few cases such as pneumatic (dilute) transport of solids. For vast majority of gas-solids flows, a 
transient simulation is conducted and the results are time-averaged. Transient simulations 
diverge, if too large a time-step is chosen. Too small a time step makes the computations very 
slow. Therefore, MFIX automatically adjusts the time steps, wthin user-specified limits, to 
reduce the computational time. 

An out line of the computational technique is given below. The computational steps during a time 
step shown here are discussed in detail in the subsequent sections. 

23 



Algorithm 4.1 

1. 

2. 

Start of the time step. Calculate physical properties, exchange coefficients, and reaction 
rates. 

* * *  Calculate velocity fields based on the current pressure field: u,, v,, w, (Sections 5 and 
6). 

3. Calculate fluid pressure correction Pg' (Section 7). 

4. 

5 .  

6. 

7. 

8. 

Update fluid pressure field applying an under relaxation: Pg = Pi + opg P:. 

m = 0 to M. (For solids phases, u, chdated in this step is denoted as t: in Step 6). 

Calculate the gradients - for use in the solids volume fiaction correction equation. 
Calculate solids volume&tion correction E, (Section 8). 

Update solids volume fractions ( E,p,in MFIX): em = E: + ups E . Under relax only 
in regions where eo < E 
solids volume fiaction is%creasing. 

I - Calculate velocity corrections fiom P' and update velocity fields: e.g., - .,* + 3 

dPnl 

I 

and E, > 0; Le. where the solids are Gnsely packed and the 

Calculat: veloyity corrections for the solids phases and update solids velocity fields: e.g., 
u, - u, + u, (m= 1 t o m .  

Calculate the void fraction: = E, - 
Calculate the solids pressure from the state equation P, = P,( E, ) . 

- 

E,. (< is usually equal to 1). 
m*O 

9. Calculate temperatures and species mass fractions (Section 9). 

10. Use the normalized residuals calculated in Steps 2, 3, 5, and 9 to check for convergence. 
If the convergence criterion is not satisfied continue iterations (Step 2), else go to next 
time-step (Step 1). 
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5 Momentum Equation 
The discretization of the momentum equations is similar to that of the scalar transport 

equation, except that the control volumes are staggered. As explained by Patankar (1980), if the 
velocity components and pressure are stored at the same grid locations a checkerboard ressure 

unphysical pressure fields. As shown in Figure 5.1, in relation to the scalar control volume 
centered around the filled circles, the x-momentum control volume is shifted east by half a cell. 
Similarly the y-momentum control volume is shifted north by half a cell, and the z-momentum 
control volume is shifted top by half a cell. 

field can develop as an acceptable solution. A staggered grid is used for preventing suc E 

5.1 Discretized Momentum Equation 

Nw N NE 

i + l  i+312 

S 
Figure 5.1. X-momentum equation control volume 

For calculating the momentum convection, velocity components are re uired at the 
locations E, W, N, and S. They are calculated from an arithmetic average of t  a e values at 
neighboring locations: 

A volume fraction value required at the cell center denoted by p is similarly calculated. 

where 

and 

Now the discretized x-momentum equation can be written as 
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The above equation is similar to the discretized scalar transport equation described in 
Section 3, exce t for the last two terms: The pressure radient term is determined based on the 

The interface transfer term couples all the equations for the same component. A procedure for 
decoupling the equations is described in Section 6. 

current value o F Pg (Step 2, Section 4) and is added to t a e source term of the linear equation set. 

The definitions for the rest of the terms in Equation (5.6) are as follows: 

0 ap = E a n b  + ap + R' AVe + [XR,] AVe + S' 
%I nb 

- 
0 0  - b = ap urn + R AVe + um [-xR,,] AVe + km pm)e gx AVe + S urn 

(pm)E DE = 
&E ('3) 

The center coefficient ap and the source term b contain the extra terms S' and S, which 
account for the sources arising fiom cylindrical coordinates, porous media model, and shear stress 
terms. These are described in the next two subsections. 

5.2 Cylindrical Coordinates 
The MFIX cylindrical coordinate system is shown in Figure 5.2. The three momentum 

equations in MFIX notation are as follows: 

26 



0 

Figure 5.2 Coordinate labels in MFIX 

x-momentum equation: 

y-momentum equation: 
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0 z-momentum equation: 

The equations in Cartesian coordinates are obtained fiom the above equations, by setting 
the value of x to 1 and terms specific to cylindrical coordinates to zero. Also, for the fluid phase 
Pm is equal to zero. 

The stress tensor 5 is defined as 

The rate of strain tensor is 

ax 

The stress terms on the right-hand side of the x-momentum equation are as follows: 

28 



which can be rearranged as. 
c 

The first three terms appear in E uation (5.7) as the diffision terms. The other terms are added 
as additional source terms Sf  an 1 S. 

i a' 1 2  

x-momentum sources = P m W m  + - a [ Am fi(Dm)l +- - [ .  x ax 
X ax 

Similarly the additional source terms for the y- and w-momentum equations can be determined 
and are shown below: 

y -momentum sources 1 - 
X 

a + a 
c . 
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P 1 m  u m  wm a 
z-momentum sources = - + - [ A m  (Dm)] X xaz 

5.3 Discretization Formulas 
The discretization formulas for the additional source terms are given below. Refer to the 

control volume dimensions in Appendix B. 
b x-Momentum Equation: 

j$ [ dV = [ dvmle A,, - [ "-1 A ,  
pm ax cIm ax h n  ax se 
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i a  k z 

where 

0 y-Momentum: 

[?!!!I = 0.5 { kmk, j ,  k+l/2 - pm)i, j, k-1/2 + p m X + l ,  j ,  k+l/2 - pm) i+ l ,  j ,  k-1/2} 

'i+l xaz i+112 xi Azk 

(Ilmk+l/2, j+l ,  k - (umk+l/2. j, k 
Ai+l/2, j+l /2 ,  k = [ pmli+l12, j+lB. k b j + , / 2  

Ai-l/2,  j+l/2, k 
A*+lD 

- [ pmli-1/2. j+l/2, k 
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(94) 

z-Momentum: 
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j+l lz .  k+ll2 I - kmk, j+112, k+l (vmz, j+lt2, k 

' i  hk+l12 
= [ prnli ,J+llz,  k + l R  

A i ,  j-112, k+lD 
krn1, j-112, k+l - kmX, j-112. k 

xi Azk+1/2 - [ prnli, j-112, k+112 
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5.4 Zero Center Coefficient 
The center coefficient of the discretized momentum equations may become zero, without 

the right-hand side becoming zero, at control volumes next to interfaces. An exam le of a typical 

the grid near the surface of a fluidized bed. The bottom row of cells with dark shading shows the 
dense bed. The lightly shaded row of cells in the middle has a small amount of solids because of 
slight smearing of the interface. These cells did not have any solids before the iterations began. 
The situation shown occurs afier the first few iterations. The top row of cells is still free of solids. 
We will examine the case of the solids velocity component in the y-direction, which is determined 
from the momentum control volume shown in the figure. 

The average cell face velocities (in c d s )  from an actual case are shown in the figure. The 
solids viscosity values are zero at the six cell centers shown in Figure 5.3, because they are based 
on the conditions at the previous time step. When first order upwinding is used to discretize the 
equations, all the neighbor coefficients become zero; i.e., 

y-momentum control volume outlined with bold lines is shown in Figure 5.3. The K gure shows 

(105) 
- ae - a, = a,, = a, = 0 

Since the cells are initially free of solidsa: is also zero. Therefore, the center coefficienta, is 
zero, when there are no momentum source terms. 

the fluid pressure gradient term 
The right-hand side of Equation 5.4, however, is non zero because of contributions from 

and fiom the gravity term 
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I I I n  I I 
0 I 0 

Figure 5.3. Example of conditions at an interface 

By using the(eJP value (= 0) from the previous time step, we can make the right-hand 
side go to zero and, there by, avoid the singularity in the e uations. This is not a usefbl solution, 

defined. Although the exact value of the velocity is not that important (considering the low value 
of solids volume fraction), the singularity in the discretized momentum equation must be removed 
to continue the computations. This is done by using an approximate momentum balance for such 
cells as illustrated below. 

If (the right-hand side) b > 0 then km) > 0. Now ( v ~ ) ~  = fN(b& + (1 -fN) (b,,,), = (vm) > 0 

since this amounts to making the velocity component unde ?i ned, in a location where it is actually 

because of the free-slip condition at t e fiterface. And P 

and we can solve for the velocity component as 
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5.5 Boundary Conditions 

below. The gas velocity component in the y-direction at an east-wall is used as an example 
(Figure 5.4). The implementation for the other components and locations is analogous. 

The implementation of wall boundary conditions in the linear equation solver is given 

1. Free-Slip wall 
v, (i,j+K, k) - v, (i-1, j+K,  k) = 0 

Free-slip No - slip 
wall wall 

Figure 5.4. Free and no slip conditions at east-wall 

2. No-Slip wall 

v, (i, j+%, k) + v ( i - l , j+%,  k) = 0 m 

3. Partial-Slip wall 

The discretized form of the above equation, for example, at east-wall is 

vm (i, j+%, k) (: + L) + V, ( i - 1 ,  j+% k) ($--!.-) = h v v w  
AXE A% 
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The above equation is a generalized slip condition, which can describe no-slip condition 
(h, + 00 , vw = 0) ,  free-slip condition (h, = 0), and a specified wall velocity 
(h,  -b 0 0 ,  vw + 0 ) .  

4. Velocity Boundary Condition at interfaces 

At interfaces where the solids volume fraction goes to zero a fiee-slip condition is applied. For 
the conditions shown in Figure 5.5 

The following algorithm is used for setting this condition. The interface is identified with a 
threshold value of 6. 

Algorithm 5.1 
~~~ ~~ 

If (E, (i, j, k) 6) then 

I >=-l  (E, (i, j-1, k) > 6) 
a, = 1  

a, = 1  

b = - vs(i, j, k) 

else if (E, (i, j+l, k) > 6) 

else 

endif 
endif 

This algorithm will fail in the rare occasion 
when two interfaces are separated by one 
numerical cell, however. 

5 .  Internal Surfaces 

MFIX allows the specification of 
internal surfaces that se arate two adjacent cells 

impermeable suflaces the normal velocity is 
zero. For semipermeable internal surfaces the 
solids velocity is a user-defined constant and 
gas velocity is calculated as though the internal 
surface is a porous medium. No special 
treatment is needed for the convection terms. 
But always the di&sion across such surfaces is 

with an infinitesimally t R 'n wall. For 

€, 6 

I 
A 

0 

Set this velocity 
component equal to 
that in the north cell 

set to This is done first 'P the Figure 5.5. Free-slip condition at an interface 
linear equations and then subtracting out the 
diffusion contributions for cells neighboring internal surfaces (two cells for scalar equations and 
four cells for velocity components). 

i 
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5.6 Linear Equation Setup 
The linear equations for solving the momentum equation are set up as follows: 

1. Calculate the average velocities at momentum cell faces. 
2. Calculate the convection coefficients E. 
3. Calculate the neighbor coefficients a,. 
4. Modi@ the neighbor co&cients to account for the presence of internal surfaces 
(assumed to be free-slip walls). 
5 .  Calculate the center coefficient and the source vector values. For impermeable walls 
and internal surfaces set all neighbor coefficients to zero and fix the noma1 velocity 
component at zero. z 
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6 Partial Elimination of Interphase Coupling 
As discussed earlier the presence of inte hase transfer terms is a distin ishin8 feature of 

multi hase flow equations in comparison to sing 'p e phase flow equations. Usua r ly, the interphase 
trans P er terms strongly couple the components of velocity and temperature in each phase to the 

the standard septadiagonal matrix is the Parti s Elimination d gorithm of Spalding (1980). The 

corresponding variables in other phases. Decoupling of the e uations by calculating the 
interphase transfer terms from the revious iteration values wi 'f 1 make the iterations unstable or 
force the time step to be very s m d  The other extreme of solving all the discretized equations for 
a certain component together (e.g., equations for ) will lead to a larger, nonstandard matrix. An 
effective alternative that maintains a hgher de ree of couplin between the equations while giving 

algorithm is illustrated with the following model equation: 

(Note that Flm = Fml and Fmm = 0.) 

The corresponding discretized equation is 

which is similar in form to the discretized momentum equations discussed in Section 5 .  

example, consider the case of two-phase flow (M=l): 
We will first explain the problem with a straightforward decoupling of the equations. For 

When F,, - 0 the two equations are decoupled and the solution for (c$,)~, for example, is 

When F,, - 00 the equations are strongly coupled and the solutions are 
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An iteration scheme treating the interphase transfer term merely as a source term will give 
the correct solution for the case of small F but will fail to give the correct solution for the case 
of F,, - 00. Therefore, in such an approacrthe time step must be made sufficiently small so that 
F,, is small in comparkon to bO and bl . For obtaining convergence while using lar8e time steps, 
the iteration scheme must be designed such that it can calculate the above two limiting solutions. 
For this purpose, Spalding (1 980) has suggested the following partial elimination algorithm: 

Solve for (@,)p fiom Equation 6.4 to get 

Substitute this in Equation 6.3 to get 

A similar procedure can be used to derive the equation for the other phase: 

The linear equation sets for +, and +1 are decoupled by treating the last terms in the above 
equations (eq. 6.9 and 6.10) as a source term evaluated with (ql fiom the previous 
iteration. As F,, - 0 and F,, - OJ we can recover the required li&~~o!i%kh s fiom the above 
e uations. Therefore, we expect an iteration scheme based on the above equation to converge for 
al? values of Flo. 

decouple multiphase equations. However, a matrix inversion is necessary for doing the partial 
elimination exactly. An approximate alternative (not yet tested in MFIX) is given in Appendix D. 

The above partial elimination procedure can be extended for multiple phases (M>1) to 
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I '  7 Fluid Pressure Correction Equation 

An important step in the algorithm is the derivation of a discretization equation for 
pressure (Step 3 in Algorithm 4. l), which is described in this section. 

7.1 Formulation 
The discretized x-momentum equations (see Section 5 )  for two phases, for example, are 

and 

+ 6 0  [(.,I, - (%Ip] AV - A, ((Q - ( q w )  

where 0 denotes the fluid phase and Ps = Ps (e1) is the solids pressure. 

As stated in Section 4, first we will solve Equations 7.1 and 7.2 using the pressure field 
P * and the void fraction field E; from the previous iteration to calculate tentative values of the 
vAocity fields -- u; and u; and other velocity components. 

aOp (',*)p = cud)nb + - Ap(Eo*>p ((';)E - (';>W) 
nb 

(130) 

Let the actual values differ from the (starred) tentative values by the following corrections 



P* 

and similar formulas for other components of velocity. 

resulting equations subtract Equations 7.3 and 7.4 to get 
Substitute the corrections (Equation 7.5) into Equations 7.1 and 7.2, and from the 

r 
<'O)p = <.o'>,b - A p ( E i ) p  ((';)E - (';)W) FIO ((.:>p - ( u i ) p )  Av (133) nb 

To develop an approximate equation for fluid pressure correction, we drop the momentum 
convection and solids pressure terms to get 

Note that the above simplifications would not affect the accuracy of the converged solution. They 
may, however, affect the rate of convergence of the iterations. 

From Equation 7.9 we get 

Solving for (u&, we get 

which can be written as 



where 

dop = 

Similarly 

where 

4 p  = (143) 

For the case of more than two phases an approximate formula is given in Appendix D. The 
velocity corrections are given by 

into the fluid continuity equation (Equation 3.9 with& = l), we get an equation for pressure 
correction. 

Substituting the above equation and similar e uations for other components of velocity 
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which can be written in the standard form 

- ap - aE + a, + aN + as + aT + aB 
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- Av c e P&} 
(149) 

After solving Equation 7.19 for the fluid-pressure corrections, the fluid and solids 
velocities are corrected. Note that when the tentative fluid velocity field satisfies the continuity 
equation, the pressure corrections will go to zero. Also the corrected fluid velocity field is such 
that it satisfies the continuity equation. 

7.2 Mildly Compressible Flow 

calculations unstable. In mildly compr 
In compressible flows the term 

the effect of pressure on fluid density. 

AF’ in Equation 7.22 will make the 
lem may be solved by accounting for 

Po = Po (pg) 

When this correction is inserted into the pressure correction equation, only the center- 
coefficient needs to be changed: 
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7.3 Boundary Conditions 
The boundary conditions for the pressure correction equations at the inflow and outflow 

boundaries are formulated as follows. Figure 7.1 shows the fictitious (boundary) cell and the 
adjacent internal cell for two cases. The fictitious cells are shaded. Obviously, no pressure 
correction equation is available for the fictitious cells. The pressure correction equation for the 
adjacent internal cell is modified as follows by using information from the boundary conditions. 

I. ' Specified Velocity 

Equation (7.18) we find that 
For the inflow condition shown in Figure 7.1, by substituting the specified velocity in 

a, = 0 

ap = aE + a, + ah' + aT + aB 
(v0*>, in b (Equation 7.22) is the same as ( v ~ ) ~  specified at the inflow boundary. 

The inflow boundaries at other locations (E, W, N, T, and B) are treated similarly. 

The boundary condition at impermeable walls is similar to that of inflow boundaries since 
the normal velocity is specified as zero. 

2. Specified Pressure 

- - . . .  . . .  

~ . :::: . . . u0r . . . . . . 
. . . .  '.'.'.'.*:.:.:.:.: 
:. . . . ;&: . . 
. . . .  . . . . . . ,  

+ : . :?.: PO.. -5; 
. . . . . . . . . . . . . . . . . . .  

Specified 
velocity 

Figure 7.1. Flow boundary 

rl . . . . . . . . . .  
. . .  . . .  . . .  . . .  ...*.*.:e.:.:.:.:. . . .  . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . .  . . . .  . . . . . . . . . . . . . . . . . . . . . . . . , 

When the pressure 
is specified in the pressure 
correction in that cell is 
zero, and for the conditions 
shown in Figure 7.1 
Equation (26) becomes 

(154) 

Therefore, = 

Specified (155) 
pressure [FJ + k o  Po)p 

conditions 
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8 Solids Volume Fraction Correction Equation 
The success of the numerical technique critically de ends upon its ability to handle dense 

pressure, in the discretized solids continuity equation. This is accomplishe by deriving a solids 
volume fraction correction equation as described in this section. 

8.1 Convection Term 

t packing of solids. MFIX calculations in that limit are stabi P lzed by includin the effect of solids 

For this method to work we need a state equation that relates solids pressure to solids 
volume fraction 

and we define 

Then, a small change in the solids pressure can be calculated as a hnction of the change in solids 
volume fiaction: 

I I P, = 

As discussed before, integrating the convection term over a control volume we get, for 
example, 

We need to develop formulas for calculating fluxes such as (p, E, 

volume fiaction field as(u )e . This is the solids velocity field obtained at the end of Step 4 in 
Algorithm 4.1. The actuarsolids velocity can be represented as 

Denote the solids yelocity obtained fiom the tentative solids pressure field and solids 

where the correction is related to the correction in the solids pressure field as 

which is derived similar to that described in Section 7. Now substituting from Equation (8.3) we 
get 
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Also, the volume fiactions can be expressed as a sum of the current value plus a correction 

(Em), = ( 4 e  + (e;), 

Combining Equations (8.7) and (8.8) we get 

(Em), k m ) ,  z (e;)e (G)~ + (e;), (.;)e + (e;), bA)e 
s (e:), (u;), + (e;)e (';)e + (e:)e e, [(.-m)p 

- 
(e;)J 

where we have ignored the product of the corrections. 

convection factors (Equation 2.3 1); e.g., 
Recall that the cell face values can be written as a function of the cell center values using 

Now the flux@, E, urn)= can be expressed as ( p, is a constant in the current version of MFIX) 

which can be rearranged as 

8.2 Transient Term 
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At 

8.3 Generation Term 
The generation term is manipulated as described in Section 3. 

8.4 Correction Equation 
Collecting all the terms, an equation for volume fiaction correction can be written as: 
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After cakulating the solids volume fi-action correction from Equation (8.19, the solids 
velocities (Equation 8.5 and 8.7) and solids volume fractions (Equation 8.8) are corrected. No 
under relaxation is applied to such corrections, since we want to maintain the solids mass balance 
to machine precision during the iterations. One exception to this is a selective under-relaxation 
applied in densely packed regions. 

8.5 Selective Under Relaxation for Packed Regions 
The solids pressure is an exponentially increasing function of the solids volume fraction as 

the packing limit is approached (Figure 8.1). Under dense packed conditions, a small increase in 
the solids volume fraction will cause a large increase in the solids pressure. To moderate such 
rapid changes in the solids pressure that leads to numerical instability, solids volume fiaction 
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I '  * corrections are under relaxed in packed regions when the solids volume fraction is increasing 
(Figure 8.1): 

Algorithm 8.1 

New 

Underrelaxed 

Underrelaxed 1, 
Figure 8.1. Iterative Adjustment of Solids Volume Fraction and 
Solids Pressure 
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9 Energy and Species Equations 

The discretization of energy and species balance equations is similar to that of the scalar 
transport equation described in Section 3. The energy equations are coupled because of 
interphase heat transfer and are partially decoupled with the algorithm described in Section 6. 

9.1 Heat Loss at the Wall 
The wall boundary condition for energy equations is given by 

a’, - + h, (T, - T.) = C, 
an 

The heat loss can be calculated fiom 

K aT, 
heat loss = -- 

an 

= Km (hm (Tm - T W )  - c m )  

When h becomes large the above method becomes inaccurate. Then, the heat loss is calculated 
fiom the temperature gradient at the wall: 

west-wall at (i, j, k): 

east-wall at (i, j, k): 

9.3 Radiation 
A radiation source shown below is present in the MFIX energy equations: 

s = yR, (TA - T:) 

To ensure stability and help convergence, the term is discretized as follows: 
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where superscript ‘4’ indicates values at last iteration 

Then 

(185) 

The first term on the right-hand side is added to the source term and the second term is added to 
the center coefficient. 
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10 Final Steps 

10.1. Under relaxation 
All the discretized equations have the form 

To ensure the stability of the calculations, it is necessary to underrelax the changes in the field 
variables during iterations. 

where 0 s I 1. When a+ = 0 the old value remains unchanged. 

Applying the under re1 ation fattor first 's better an to solve the equations first and 
then apply Under relaxation a 3 &  = +p + ?+ bp - because of the better conditioning of 
the linear equation set and the sequent sawng in the s ution time. 

10.2. Linear Equation Solvers 
The final step in obtaining a solution is to solve the linear equations of the form 10.2 that 

result from the discretization of transport equations. The linear equation solver options available 
in MFIX are listed in Table 10.1. We use only iterative solvers as we always have a good initial 
guess for the solution. As initial guess the solution from the previous iteration is used for all 
equations, except the pressure and void fraction correction equations, which use zero as the 
starting guess. 

During any iteration the linear equations need not be solved to a high degree of accuracy, 
because the solution gets modified in the next iteration and in the final iteration the initial guess is 
as good as the converged solution. A high degree of convergence in the linear equation solver 
will needlessly increase the computational time. On the other hand, poor convergence in the 
linear equation solver can increase the number of iterations and lead to nonconvergence of the 
iterations. An optimum degree of convergence has been determined from experience and is 
controlled by a specified number of iterations inside the linear equation solver. The user may 
change this value from the MFIX data file. 

Table 10.1. Linear equation solver options 
Method Description Source 

SOR Point successive over relaxation - 
IGCG Idealized Generalized Conjugate Kapitza and Eppel(l987) 

Gradient 
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~~ 

Method I Description Source 
IGMRES Incomplete LU Factorization + SLAP (Seager and Greenbaum 1988) 

GMRES 
I I 

DGMRES I Diagonal scaling + GMRES I SLAP (Seager and Greenbaum 1988) 

BCGS Incomplete LU Factorization + SLAP (Seager and Greenbaum 1988) 
Biconjugate Gradient Square 

A combination of SOR and IGCG was found to give the lowest run time and is set as the 
default in MFIX. IGCG is used for pressure and void fraction correction equations and energy 
and species balance equations. The momentum balance equations are solved with SOR. The 
user may change these settings from the MFIX data file 

10.3. Calculation of Residuals 
The convergence of iterations is judged from the residuals of various equations. The 

residuals are calculated before under relaxation is applied to the linear equation set. The standard 
form of the linear equation set is 

Denoting the current value as @* , the residual at point P is given by 

Then a normalized residual for the whole computational domain is calculated from 

c laP4Pl 
P 

2 2 For velocity components the denominator is replaced by ap 1(..' + vp + wp . 
For fluid ressure and solids volume fraction correction equations, we know apriori that 

judged from the norm of b , which turns out to be the residual of the continuity equations. This 
value, however, cannot be normalized as in Equation 10.5, since the denominator vanishes when 
convergence is achieved. Therefore, the norm of b is normalized with the norm of b for the first 
iteration. 

at conver ence a P 1 the corrections must go to zero, which corresponds to the requirement that 
vector b % ecomes identically zero. Thus the convergence of those equations may be accurately 
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Figure 10.1. Time step adjustment history for a typical run 

10.4. Time Step Adjustment 
The semi-implicit algorithm imposes a time-step limitation that is particularly severe for 

dense gas-solids flow simulations. Too large a time step will make the calculations unstable. Too 
small a time-step, on the other hand, will make the calculations needlessly slow. A small time 
step is often needed to follow certain rapid changes in the flow field. After such events subside, 
the time steps may be increased. MFIX uses an automatic time step adjustment to reduce the run 
time. This is done by making small upward or downward adjustments in time steps and 
monitorin the total number iterations for several time steps. The adjustments are continued, if 

adjustments in the opposite direction are attempted. Often the simulation will fail to converge, in 
which case the time step is decreased till convergence is obtained. Figure 10.1 shows the time 
step adjustment history for a circulating fluidized bed simulation. The large decreases in the time- 
step were caused by convergence failures. 

there is a f avorable reduction in the number of iterations per second of simulation. Otherwise, 
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I I '  Appendix A: Summary of Equations 

A.l Equations 
The equations solved in version 2.0 of MFIX are summarized in this section. 

Gas continuity: 

N* a 
-(egPg) + V*(egPggg) = Rgn 
at n-1 

Solids continuity: 

Gas momentum balance: 

- M 
-((E a p v ' )  + v-(€gpg",v'g) = -€gvPg + v- tg + CFgm(Jsm-V',) + I g  
at g g g  m = l  

Gas energy balance: 
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Solids energy balance: 

Gas species balance: 

Solids species balance: 

a 
( E s m P s S s m n )  + V. (~smPsm*smnv’sm) 

Gas-solids drag: 

Vrm = OS(A -O.06Rem +,/(0.06Rem)2+0.12Rern(2B-A)+A2) 

4.14 A = eg 
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Solids-solids drag: 

Gas-phase stress: 

Porous media model: 

Granular stress: 
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Plastic Regime: 

Viscous Regime: 
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3(  5 E*) dpm 
- 1 J.=l dpJ. 

2 4  
- -+ go,, 

Gas-solids heat transfer: 

Num = ( 7  - 1Oeg +5t$ (1 +0.7Re;*Pr1') 

+ (1.33 -2.4eg+ l . 2 ~ ~ ) R e ~ ' P r ' '  

Gas and solids conduction: 

qg = -kg V Tg 

(233) 

(234) 

Granular energy equation: 
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a 

A 

b 

Cl 

e, 

f 

' ' A.2 Nomenclature 
Coefficients on the left hand side of a linear equation set 

Area of control volume faces; m2 

Right-hand side vector of a linear equation set 

Permeability of porous media; m2 

Inertial resistance factor of porous media; m" 

Single particle drag function 

Specific heat of the fluid phase; J/kg.K 

Coefficient of fiction for solids phases 1 and m 

Specific heat of the m~ solids phase; J/kg * K 

Diameter of the particles constituting the m* solids phase; m 

Rate of strain tensor, fluid phase; s-' 

Rate of strain tensor, solids phase-m; s" 

Coefficient of restitution for the collisions of m"' and I"' solids phases 

Ratio of cell sizes used in interpolation formulas 

Fluid flow resistance due to porous media; N/m3 

Coefficient for the interphase force between the fluid phase and the m* solids 
phase; kg/m3 * s 

Coefficient for the interphase force between the l* solids phase and the m* 
solids phase; kg/m3 * s 

- 
- 

Acceleration due to gravity; m/s2 

Radial distribution function at contact 

Heat of reaction in the fluid phase; J/m3 - s 

Heat of reaction in the m& solids phase; J/m3 - s 

Second invariant of the deviator of the strain rate tensor for gas phase; se2 

- 
- 

Second invariant of the deviator of the strain rate tensor for solids phase-1; s-2 

Fluid-phase conductivity; J/m * K s 

Conductivity of material that constitutes solids phase-m; J/m - K - s 

Solids phase-m conductivity; J/m. K. s 

Index of the I* solids phase; also used as a miscellaneous index 
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A turbulence length-scale parameter; m 

Index of the m* solids phase. "m=O" indicates fluid phase 

Total number of solids phases 

Average molecular weight of gas - 
- Index of the n"' chemical species 

Total number of fluid-phase chemical species 

Total number of solids phase-m chemical species 

Nusselt number 

Pressure in the fluid phase; Pa 

Pressure in Solids phase-m, plastic regime; Pa 

Pressure in Solids phase-m, viscous regime; Pa 

Prandtl number 

Fluid-phase conductive heat flux; J/m2 s 

Solids-phase-m conductive heat flux; J/m2 - s 

Universal gas constant; Pa - m3/km01 K 

m& solids phase particle Reynolds number 

- 
- 

Ratio of solids to fluid conductivity 

Rate of transfer of mass tkom m* phase to I* phase. 1 or m = 0 indicates fluid 
phase; kg/m3 - s 

Rate of production of the n"' chemical species in the fluid phase; kg/m3 - s 

Rate of production of the n"' chemical species in the m"' solids phase; kg/m3 s 

Fluid-phase stress tensor; Pa 

Solids phase-m stress tensor; Pa 

Time; s 

Thermodynamic temperature of the fluid phase; K 

Thermodynamic temperature of the solids phase-m; K 

G a s  phase radiation temperature; K 

Solids phase-m radiation temperature; K 

Fluid-phase velocity vector; ds 
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I 7 '  

'sm 

AV Control volume size; m3 

vm 

XBn 

m* solids-phase velocity vector; m / s  

The ratio of the terminal velocity of a group of particles to that of an isolated 
particle 

Mass fiaction of the n* chemical species in the fluid phase 
- Mass fiaction of the n* chemical species in the m* solids phase L 

GREEK LETTERS 

P e  

Fluid-solids heat transfer coefficient corrected for interphase mass transfer; 
J/m3 - K s 

Fluid-solids heat transfer coefficient not corrected for interphase mass transfer; 
J/m3 K * s 

Fluid-phase radiative heat transfer coefficient; J/m3 K4 - s 

Solids-phase-m radiative heat transfer coefficient; J/m3 IC4 * s 

Granular energy dissipation due to inelastic collisions; J/m3 = s 

A general difisivity coefficient 

Volume fraction of the fluid phase (void fraction) 

Packed-bed (maximum) solids volume fraction 

Volume fraction of the m"' solids phase 

Function of restitution coefficient 

Granular temperature of phase-m; m2/s2 

Solids conductivity hnction 

Second coefficient of solids viscosity, viscous regime; kg/m - s 
Eddy viscosity of the fluid phase; kg/m s 

Molecular viscosity of the fluid phase; kg/m - s 

Maximum value of the turbulent viscosity of the fluid phase; kglm s 

Turbulent viscosity of the fluid phase; kg/m. s 

Solids viscosity, plastic regime; kg/m - s 

Solids viscosity, viscous regime; kg/m s 

Cd = 1 if% < 0; else c,,,, = 0. 

Convection factor defined in Algorithm 2.2 

Microscopic (material) density of the fluid phase; kg/m3 
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- 
- 

Macroscopic (effective) density of the fluid phase; kg/m3 

Microscopic (material) density of the m* solids phase; kg/m3 

Macroscopic (bulk) density of the m* solids phase; kg/m3 

Fluid phase deviatoric stress tensor; Pa 
- Solids phase-m deviatoric stress tensor, plastic regime; Pa 

- 
- 
- 

Solids phase-m deviatoric stress tensor, viscous regime; Pa 

Angle of internal friction, also used as general scalar 

Contact area fraction in solids conductivity model 
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I '  Appendix B: Definition of Areas and Volume 

Note that in Cartesian coordinatesXi, q+,,2 etc. are all equal to 1. 

Ae = ( A Y J  AZ,) 

Aw = ( A u , )  (xi-1,2 AZk)  

As = An = (AX,) (Xi AZ,) 

A, = Ab = (AXi)  (AYj)  

AV = (AXi) ( A Y j )  (Xi AZk)  
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Coordinates 

Cartesian x y E 

Cylindrical r y 8 
CellIndex i j k 

+vcdircction E N T 

-ve direction W S B 
Velocity u v w  
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1 2 3 4 5 
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Appendix C: Notes on higher order discretization 

C.l Definitions 
We will first define certain quantities that will be used in the derivations. Figure C. 1 gives 

the notation used in the definitions and derivations. 

U C f D 

> 
L 

h c  
1-1 1 

b J c  &CD 
Figure C.l. Notation based on flow direction 

C.2 Central Differencing 
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C.4 QUICK (Leonard 1979) 

On a uniform grid the above formula reduces to 
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1 8' 

For a uniform grid the above formula reduces to 

3 8  
8 8  

= - + -  

C.5 SMART (Gaskell and Lau 1988) 

6 C  

36c 

6f = ' 
1 

Then 

mc+ 4 ( s a m e  as QUICK) 

which can be compactly written as 

1 
2 

hyf = - max [o, min (4 8, 0.75 + 0.25 8, 2)] 

(253) 

(254) 

C.6 Properties of Discretization Schemes 
The following table taken from Gaskell and Lau (1988) summarizes properties of the 

several discretization schemes. The second column gives the truncation error term obtained from 

Table C.I. Properties of discretization schemes 
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Discretiza- Leading Convective 
tion truncation stability 
Scheme error term 

U U First order $ -- (sfable) 
UDwind 2 Ax ,. 

4 $' o (neutral) 
U A X '  central 

differ- 
encing 

Second- ' 8 4; -& (stable) order 
upwind 

U 

- 
(stable) 

Boundedness Critical 

Interpolative Computed number 
Yes Yes m 

Yes No 2 

Peclet 

No No 00 

8 No No - - 
2 

a Taylor series expansion. The error term is meanin&l only for Fourier components of small 
wave numbers (k . = 2n: / L ) ,  where L is the length of the domain. No scheme can yield an 
accurate represenmion of components of high wave numbers, (k- = x / Ax ). 

convective influx into a CV with respect to the value at the CV center@c (Leonard 1979). For 
stability this must be less than zero, which implies that schemes must have an upwind bias. 

The third column of the table gives the convective stability, which is the rate of change of 

The fourth column shows the interpolative boundedness of the schemes. A scheme is 
bounded if the calculated face value @f lies in the range @ , @D , when the variation in 4 is 
monotonic. If the interpolative boundedness criterion is h u  ot satis d ed, the scheme allows the 
calculation of convective fluxes that exceed physically possible values. 

When the variation in @ is monotonic, we want the computed solution not to have any 
s urious extrema. This pro erty, called the computed boundedness of the scheme, is shown in the 
&h column. Inte olative 1 oundedness is a necessary, but not sufficient, condition for ensuring 
computed bounde T p  ness. 

Difision has a stabilizing influence that can counterbalance the lack of convective stability. 
This stabilizin influence, however, diminishes as the cell Peclet number increases, and beyond a 
critical value tixth column) the influence of difision is insufficient to prevent spurious 
oscillations in the solution. 
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" J b Appendix D: Methods for Multiphase Equations 
This appendix describes numerical methods for handling more than two phases. These 

have not been tested in MFIX and may be used in a fkture version of MFIX. 

D. 1 Partial elimination 
The discretized momentum equation for phase I is 

solve'for +l to get 

where we have purposely taken + out of the summation sign. Substituting the above formula in 
Equation D. 1 (with the subscripts 7 changed to m) we get 

The last term can be simplified as 
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Note that c$ still'a pears in the last term on the right-hand side, which will be treated as 

rl 
a source term. T A3 e @fore, t R s method may not be as effective as an exact artial elimination for 
stabilizing the computations. The method will be faster than the exact met od, however. 

D.2. Pressure Correction Equation 
An approximate pressure correction formula for multiple phases can be derived as follows: 

I 
a m p  ump = -A, eip (pg)lY) + AV Fpm (uti - uip) e 

Solving for the 'Vth component we get 

0' 

There fore 

Substituting this in Equation 18 we get 
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ag + AV F,, + AVF, 
f + m  + 

a@ + AV F,@r + AVF, 
t'cm 

Solving for the velocity component we get 
- 

+ AV FPpi 
Q'tm 

a@ 

i m p  + " FQm a + AV FOP' + AVFQm 

- 

QP P 
Q'# m 

I 
umP 

Dropping the term AV ut$) we get 
Q't m 

where 
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Therefore, 
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