Detection of charged particles and X-rays by scintillator layers coupled to amorphous silicon photodiode arrays

PDF Version Also Available for Download.

Description

Hydrogenated amorphous silicon (a-Si:H) p-i-n diodes with transparent metallic contacts are shown to be suitable for detecting charged particles, electrons, and X-rays. When coupled to a suitable scintillator using CsI(Tl) as the scintillator we show a capability to detect minimum ionizing particles with S/N {approximately}20. We demonstrate such an arrangement by operating a p-i-n diode in photovoltaic mode (reverse bias). Moreover, we show that a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3-8 higher light sensitivity for shaping times of 1 {mu}s. n-i-n devices have similar optical gain as the ... continued below

Physical Description

20 p.

Creation Information

Jing, T.; Drewery, J.; Hong, W.S.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V. et al. April 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Hydrogenated amorphous silicon (a-Si:H) p-i-n diodes with transparent metallic contacts are shown to be suitable for detecting charged particles, electrons, and X-rays. When coupled to a suitable scintillator using CsI(Tl) as the scintillator we show a capability to detect minimum ionizing particles with S/N {approximately}20. We demonstrate such an arrangement by operating a p-i-n diode in photovoltaic mode (reverse bias). Moreover, we show that a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3-8 higher light sensitivity for shaping times of 1 {mu}s. n-i-n devices have similar optical gain as the p-i-n photoconductor for short integrating times ( < 10{mu}s). However, n-i-n devices exhibit much higher gain for a long term integration (10ms) than the p-i-n ones. High sensitivity photosensors are very desirable for X-ray medical imaging because radiation exposure dose can be reduced significantly. The scintillator CsI layers we made have higher spatial resolution than the Kodak commercial scintillator screens due to their internal columnar structure which can collimate the scintillation light. Evaporated CsI layers are shown to be more resistant to radiation damage than the crystalline bulk CsI(Tl).

Physical Description

20 p.

Notes

INIS; OSTI as DE95012375

Source

  • Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 17-21 Apr 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95012375
  • Report No.: LBL--37096
  • Report No.: CONF-950412--13
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 74176
  • Archival Resource Key: ark:/67531/metadc702393

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1995

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 5, 2016, 11:36 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 23

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jing, T.; Drewery, J.; Hong, W.S.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V. et al. Detection of charged particles and X-rays by scintillator layers coupled to amorphous silicon photodiode arrays, article, April 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc702393/: accessed August 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.