Results of von Neumann analyses for reproducing kernel semi-discretizations

PDF Version Also Available for Download.

Description

The Reproducing Kernel Particle Method (RKPM) has many attractive properties that make it ideal for treating a broad class of physical problems. RKPM may be implemented in a mesh-full or a mesh-free manner and provides the ability to tune the method, via the selection of a dilation parameter and window function, in order to achieve the requisite numerical performance. RKPM also provides a framework for performing hierarchical computations making it an ideal candidate for simulating multi-scale problems. Although RKPM has many appealing attributes, the method is quite new and its numerical performance is still being quantified with respect to more ... continued below

Physical Description

22 p.

Creation Information

Voth, T.E. & Christon, M.A. June 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Reproducing Kernel Particle Method (RKPM) has many attractive properties that make it ideal for treating a broad class of physical problems. RKPM may be implemented in a mesh-full or a mesh-free manner and provides the ability to tune the method, via the selection of a dilation parameter and window function, in order to achieve the requisite numerical performance. RKPM also provides a framework for performing hierarchical computations making it an ideal candidate for simulating multi-scale problems. Although RKPM has many appealing attributes, the method is quite new and its numerical performance is still being quantified with respect to more traditional discretization methods. In order to assess the numerical performance of RKPM, detailed studies of RKPM on a series of model partial differential equations has been undertaken. The results of von Neumann analyses for RKPM semi-discretizations of one and two-dimensional, first and second-order wave equations are presented in the form of phase and group errors. Excellent dispersion characteristics are found for the consistent mass matrix with the proper choice of dilation parameter. In contrast, the influence of row-sum lumping the mass matrix is shown to introduce severe lagging phase errors. A higher-order mass matrix improves the dispersion characteristics relative to the lumped mass matrix but delivers severe lagging phase errors relative to the fully integrated, consistent mass matrix.

Physical Description

22 p.

Notes

OSTI as DE98005517

Source

  • 4. world congress on computational mechanics, Buenos Aires (Argentina), 29 Jun - 2 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98005517
  • Report No.: SAND--98-1195C
  • Report No.: CONF-980639--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 658421
  • Archival Resource Key: ark:/67531/metadc702321

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 5, 2016, 8:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Voth, T.E. & Christon, M.A. Results of von Neumann analyses for reproducing kernel semi-discretizations, article, June 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc702321/: accessed August 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.