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Abstract

Recent investigations have implicated cage-liie precursors in the unusually high gelation

conversion (W 82Yo) of acid-catalyzed tetraethoxysilane. However, the statistical models used so

far cannot capture kinetic or composition-dependent features of alkoxysilane polycondensation.

Here we take a first step towards unified modeling of the kinetics and structure of silica gelation.

Dynamic Monte Carlo simulations [J. Somv&rsky and K. DuSek, Polym. BuJ1.1994 33:369]

are developed which permit competition between extensive cyclization and growth. The model

includes well-established kinetic trends (hydrolysis pre-equilibrium and first shell substitution

effects). As a first approximation, unimolecular-like terms for cyclization reactivity follow the

experimental pattern of bimolecular rate coefficients. The present simulations allow unlimited

formation of 3-site rings, giving rise to many structures which are not those of real silicates

(where 4-site rings dominate). However, the level of cyclization (both cycles per molecule

and per site) is consistent with that of real silicates, and is enough to delay gelation to 82%

conversion or higher. These simulations also display a broader range of gelation behavior

than prior kinetic models. At high to moderate monomer concentrations, competition between

cyclization and growth causes the expected delay of gelation. Upon further dilution, we discover

a third regime, absent from prior kinetic gelation models but important for siloxanes: formation

of a distribution of polycyclic precursors which still rettin enough functionalisty to gel.
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Introduction

Cyclization plays an unusually important role in siloxanes. Not only can stable single rings

be isolated from di(organo)dichlorosilane hydrolytic polycondensation products,l but poly-

cyclic silsesquioxanes (RSi03/2) can be recrystallized from the products of trifunctional silane

polycondensation,z and polycyclic species can be isolated from soluble silicate solutions by

passivation (trimethylsilylation) .3 More recently, met astable cyclic and polycyclic int erme-

diates have been observed by 29Si nuclear magnetic resonance during synthesis of siloxanes

from multifunctional alkoxysilanes. 4+ Cycles are kinetically promoted by the bond and tor-

sion angles of siloxane bonds, which favor bent conformations with chain ends relatively close

together.7~8 Quantum mechanical calculations also suggest that these cycles and polycycles

may be thermodynamically favored over linear and branched species .g’lo

Polycyclic siloxanes are of growing interest as precursors to novel organic-inorganic hy-

brids,ll but they also are frequently a nuisance delaying or preventing gelation of branched

siloxanes,12 silicic acid,13 and certain a, u–Bis(triethoxysilanes) .14 Even in ethoxysilane sys-

tems able to gel, four-site rings have been shown by x-ray diffraction to be a prominent

structural unit.15~16 Adjustable parameters (including monomer concentration, pH, and wa-

ter content 17) influence the degree and type of cyclization, but so far a quantitative connec-

tion between these parameters and the formation and structure of the gel has not been made.

This connection will be valuable in understanding and directing the synthesis of silicates.

There has been progress in modeling the formation of siloxanes with cycles, but no single

model has so far been consistent with all observed features of silica gelation. A two-stage sta-

tistical model was developed by Ng et al.lg (random branching of precursors formed quickly

and selectively during the initial stages of polycondensation) that predicts siloxane bond

conversions approaching the unusually high value measured for tetraethoxysilane (82Yo) .18

This conversion contrasts strongly the classical Flory19-Stockmayer20 ~21prediction of 33% for

a tetrafunctional monomer. Single-ring precursors predict an ~~~~(gel conversion) value of
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up to 60%, but if the precursor is a compact cage-like species such as a prismatic .hexamer,

agez can be as high as 8070.18

While this statistical model illustrates that polycyclic species are essential for a model

to match the high gel point of tetraethoxysilane, it is not complete. It does not account

for the polydispersity of species observed prior to gelation,22~23 and does not contain any

adjustable parameters allowing us to model the sensitivity of gel time and structure to

synthesis conditions. Both of these problems are related to the absence of kinetics in the

model (or at least not accounting for the competition between cyclization and growth).

The second direction taken towards accurately modeling structure development from

alkoxysilanes is kinetic. Cyclization rate coefficients for the formation of small, single-ring

siloxanes (containing three or four silicon sites) have been measured in systems starting from

ethoxysilane monomers. 17T23These parameters are found by fitting to 29Si NMR data, but

precise data about cycle membership are available only up to limited conversions – well below

the gel point.

We first attempted to bridge these two approaches by slightly extending the latter ki-

netic approach. The revised model preserves reactions forming small (3- and 4- membered)

siloxane rings early in reaction and allows those rings to enter into large oligomers (and, even-

tually, a gel) without further cyclization. 24 This model remains consistent with the kinetics

measured early in reaction, but unfortunately, using either kinetic-recursive or Monte Carlo

modeling, the predicted gel points (5370) still fall short of the experimental value (82 Yo).24

The additional inability to fit data over a large conversion range tells us that this model does

not allow enough cyclization to occur.25

Here, we extend our kinetic approach even further to more accurately predict structure

development and gelation behavior. In the next section, we will describe a model in which

unlimited cyclization to form three-membered rings is allowed. These rings are less prevalent

than four-membered rings in real silicates, but we use them in this first investigation to

learn how extensive cyclization affects gelation. As we will discuss below, four-membered
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rings are conceptually similar to three-membered rings but significantly more difficult to

implement. Our model includes specific unimolecular-like reaction terms for the reaction

between any two silicon sites with a two-bond path between them. The governing equations

and molecular weight distribution are simultaneously solved by the dynamic Monte Carlo

simulation technique introduced to polymer science by DuEek and coworkers .26~27 These

simulations are uniquely capable of showing the structural implications of kinetic models

without additional assumptions. 2&30 While our model incorporates features of alkoxysilane

polymerization discovered over the last decade, this is the first kinetic model able to predict

a gel conversion as high as the experimentally observed value for tetraethoxysilane.

Dynamic Monte Carlo Approach

The random branching theory developed by Florylg and Stockmayer20’21 provides an ex-

tremely powerful framework for understanding gelation. In the theory, reactivities of all

functional groups are assumed to be equal throughout polymerization and cyclization is ne-

glected. For ethoxysilanes, however, NMR investigations show that condensation reactivity

drops as siloxane bonds are added to monomers17~31~32(in other words, there is a first-shell

substitution effect) and that small rings form in abundance.4’17’1 8’25

Perturbations exist which allow statistical models to be constructed taking into account

first-shell substitution effects33~34and cyclization. 35 In the perturbation for cyclization, sites

which are members of a ring are treated as independent. This means that only the con-

sumption of functional groups by cyclization is captured, and not correlations between sites

in rings. These correlations can be captured by instead defining new (cyclic) species which

form and become part of larger polymers. 18’24This approach to cyclization is not well suited

for the polycyclic species present in silicates, 18however, for reasons illustrated by Figure 1.

To construct a statistical model for silica gelation with polycyclic species, we require the

concentrations of those polycycles. Figure 1 shows all possible routes for the formation of

the smallest known36 polycyclic silicate, the bicyclic pentamer. Differential equations must
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be written for the concentrations of all 13 species in the Figure if we are to accurately model

the kinetics of forming the bicyclic pentamer. It is not possible to accurately decompose

the bicyclic pentamer into smaller fragments. The same thing is true of larger polycyclic

oligomers, for which the number of pathways and isomers increases rapidly. Ng et aL18 ex-

amined the simplified case where all monomers, regardless of the path taken, form a single

polycyclic precursor which gels randomly. As discussed above, this successfully predicts high

gel points but does not model the competition between different polycyclic and non-cyclic

oligomers.

Fortunately, a technique has been developed which will allow us to model the formation

of polycyclic species, by defining only a small number of reactions: dynamic Monte Carlo

(DMC) simulations. This approach to simulating chemical dynamics was introduced by

Gillespie37 and brought to network polymerization by Du3ek and coworkers .26’27This method

is well suited to systems such as nonideal polycondensation where correlations beyond those

explicitly modeled in the kinetic expressions exist .28)29

This type of simulation can be interpreted as a way of solving the master equation for

chemical dynamics, as a method of solving the differential equations for a set of coupled

chemical react ions, or as a coarse-grained molecular simulation. The advantages of the

technique have been discussed in more detail elsewhere. ZG-S07SThe equations literally being

solved are analogous to Euler integration of a set of ordinary differential equations. However,

instead of discretizing time into even intervals, we discretize reaction events (in this case,

siloxane bond additions) and advance the simulation by even intervals of these events. By

adding one siloxane bond per Monte Carlo step, we will advance the siloxane bond conversion,

~ = [SiOSz]/[SiOEt]O, by a small constant increment (here, Act = 2.5. 10–6 for each Monte

Carlo step).

If that were the only distinguishing feature of these simulations, they would not hold much

int crest over more advanced approaches to solving ordinary differential equation syst ems.

What is unique about the Monte Carlo simulations is that, because each reaction happens
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between a specific pair of reacting sites, it is possible to keep track of extra information about

the molecular weight distribution to which those sites belong, including membership in cyclic

and polycyclic species. Therefore, we can bridge size scales from the local connectivity y model

embodied in the differential equations to the complete molecular size and shape distribution.

Only the finite size of the population limits the maximum simulated length scale. As we will

discuss, this also allows us to define local rates of forming cycles, and therefore to model

the formation of polycyclic species in competition with molecular growth. By construction,

DMC simulations (within finite size limitations) generate all oligomers required (and only

those needed) by the differential equations being solved. This allows them to easily model

pathways for formation of polycyclic species as in Figure 1.

Dynamic Monte Carlo simulations also hold more subtle advantages over other techniques

that might be applied here. Because they are meso-scale models (not atomically detailed),

they allow us to simulate much longer times and much larger ensembles than molecular

dynamics simulations. 7 Because each step of the Monte Carlo simulation is known to be a

reaction event, no computational effort is wasted in diffusion toward unsuccessful reaction

attempts. Also, while some aspects (such as neglecting diffusion effects, site accessibilityy

limitations, and 3-dimensional packing constraints) 39 of the present simulations match sta-

tistical models and their perturbations, 33’40the DMC method accounts for the effects of the

order (history) of bond addition to a polymer. This captures structural correlations beyond

those explicitly written in the rate expressions. 2=0 The work of Miller and coworkers has

shown that those structural correlations are vital to a quantitatively accurate model .28’29

Stepto and coworkers41 report using a related approach to model cyclization during net-

work formation. However, they do not use the concentrations of bond blocks (see below) to

define cyclization rates. Instead, they calculate the probability of intramolecular reaction at

each condensation reaction by evaluating the distances from a randomly chosen site to all

other sites in the molecule to which it belongs. This is equivalent to our approach only if

there are no first-shell substitution effects.

6
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The Model

Hydrolysis Pseudoequilibrium

, z- 1

In the first steps of the network of reactions that occur during siloxane fabrication from

alkoxysilanes, alkoxyl groups are hydrolyzed to generate hydroxyl groups. Experiments42~=

have shown that (under conditions yielding homogeneous gels at least) hydrolysis can reach

pseudoequilibrium44 as described by the reaction in eq 1:

=Si–01?+H20 ~= Si– OH+ROH (1)

where R is an organic group, and Kh N 18 + 10 and is approximately independent of site

identit y.42 The overall fractional hydrolysis extent of hydrolysis (x) is defined:

[= SiOH]
x = [= SiOH] + [= SiOR]

(2)

The dependence of all condensation rates on the fractional hydrolysis extent is the same (see

below), so hydrolysis affects only the absolute rate of reaction (not the results with respect

to conversion). If water is the limiting reagent, the final extent of the reaction may also

be determined by hydrolysis extent. We will not discuss hydrolysis further here except to

mention that the dependence of x on the instantaneous levels of water and alcohol is easily

determined,44 and that the effects of competition between hydrolysis and condensation rates

have been explored elsewhere.30

Bimolecular Condensation

Once sites have been hydrolyzed, they can react together to generate a new siloxane bond

and water:

=Si– OH+ HO– Si=*=Si– O–Si= +H20

If the two silanols are attached to different oligomers, those oligomers

(3)

react together by

bimolecular condensation. We define the rate of bimolecular reaction between two sites
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based only on the connectivities of the sites (in other words, we restrict our attention to

first-shell substitution effects for bimolecular reactions). Kinetic models using this type of

substitution effect have been quite successful in matching 29Si NMR data.23~32If Qi represents

a tet rafunct ional silicon site with i siloxane bonds, we can write bimolecular condensation

as:

Qi + QiI-% Qi+l + Qp+l + H20 (4)

Where both i and i’ can vary between O and 3. This gives rise to a matrix of bimolecular

reactions, which is represented in Figure 2.

We define condensation rate coefficients kiiz on a per-silanol basis. The rate should be

proportional to the product of the number of silanols present on each of the reacting sites,

R:;)’LO[

{

= (f - i)(f - i’)x2~ii~[Qi][Qi~] i #i’

~(f – i)(~ – i’)X2kii,[Qi][Qi,] i = i’
(5)

Condensation can also occur between a silanol and an ethoxy group with production of

alcohol, but this route is negligible for ethoxysilanes. 45746If alcohol-producing condensation

were import ant, only the dependence of condensation rates on x would change .23

The set of rate coefficients used in the simulation resembles the experimental substitution

effect which for many ethoxysilanes under acidic conditions can be described by a large drop

(we will use 90%) in reactivity when the connectivity of both sites increases but a small

drop (we will use 10%) when the connectivity of only one site increases.23 Expressing kii~in

matrix form:

k=koo”

7

1.0 0.9 0.81 0.729

0.1 0.09 0.081

0.01 0.009

0.001
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We will always use this matrix for bimolecular reactions here (unless ideal polycondensa-

tion is simulated instead - in which case all condensation rate coefficients are equal and no

cyclization will be allowed). The bimolecular condensation substitution effect may change

with the pH of the reaction

address these effects here.

Cyclizaiion

solution,31 with accompanying structural changes .47 We do not

One special capability of the Monte Carlo simulations is that without losing polymerization

history information, we can define cyclization not only of isolated molecules but also of

substructures within large molecules. We will use the concept of bond bIocks for this. A

bond block is a path, consisting of a number of bonds, between two sites in an oligomer

(note that we will use the term “bond” to refer to a siloxane bond between silicon sites,

which actually is a pair of chemical bonds (Si-O and O-Si)). At the left in Figure 3, we

show a two-bond block from silicon site Q; through a siloxane bond to another silicon site (a

silicon site of any connectivity > 2) through a second siloxane bond to silicon site Qi/. This

two-bond block will be represented as 213ii/ (the superscript referring to the number of bonds

in the block and the subscripts to the connectivities of the terminal sites). Polymerization

can be described entirely through the formation of larger and larger bond blocks but we will

only use the concept here for cyclization. Since we are interested in the closure of all kinds

of bond blocks, not just of bond blocks in linear oligomers (as modeled previously24), we

allow unimolecular-like reactions as in Figure 3.

The rates for this set of reactions are given by:

%;y = (f – i)(f – i’)x2k3c(i,iq [2Biil] (6)

The only things limiting this approach are the ease of determining the concentrations of

two-bond blocks (this is not trivial) and finding an appropriate bond when that reaction is

chosen. Analogous expressions could be written for the rates of closure of bond blocks of any
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size (“R%), but we would not be able to simulate as large a system because the memory

and computational requirements increase rapidly with bond block size. Instead, we focus

here on the smallest known4~48ring-forming (2-bond) blocks to start to learn about extensive

cyclization. We will comment later on which features of silicate structure these simulations

can act ually capture.

The substitution effect for this set of cyclization reactions has never been measured

experiment ally. For the moment, we assume that the substitution effect for reaction between

bond block-ends with different degrees of connectivity is the same as for bimolecular reactions

between those sites:

II
1.0 0.9 0.81

ksc = k341,1, “ 0.1 0.09

0.01

In addition to resembling the experimental bimolecular condensation substitution effect, this

matrix is also intuitively appealing because the closure of bond blocks in densely branched

regions occurs more slowly than in less-condensed regions. By using this substitution effect,

we also limit the number of adjustable parameters for the model. This is attractive at this

early stage of exploring the capabilities of the simulation. One could always perform simu-

lations with arbitrarily varying coefficients to assess the sensitivity of structure to the form

of the rate coefficients. The purpose of this study is only to assess the model’s predictions

when our best guess of the experimental parameters is used.

To help us in examining the behavior of the system, we further define a dimensionless

cyclization tendency ~:

k(l,l)
K= kll[Si]

(7)

This parameter is particularly useful because it contains the silicon concentration - an ad-

justable parameter. We previously found (and it is apparent from comparing the bimolecular

and cyclization rate terms) that decreasing silicon concentration is equivalent to increasing

10
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all cyclizat ion rate coefficients. 24 This parameter has a lower bound defined by the maximum

silicon concentration (given by the inverse molar volume of the siloxane mixture] but can

be increased indefinitely by dilution. The bimolecular coefficient for reaction between singly

connected sites is chosen for this coefficient because if only linear trimers were present, ~

would represent exactly the ratio of initial rates of the unimolecular cyclization reaction to

that of bimolecular chain extension. This coefficient can be measured either by synthesizing

the linear trimer48 or by following the reaction starting from a monomer .23

The challenge now is to find the bond block concentrations {[2&]}. These can be

determined, in principle, by calculating the distance matrix D49 of each molecule. Each

element of D for a graph is the topological distance (path with the smallest number of bonds)

between a pair of sites (i.e., all distinguishable bond blocks). Unfortunately, calculating D

for the reactant and product molecules after each step in the simulation would be very ‘

expensive49 - especially as the gel point is approached and molecules of greater than 103

is added. This is the only place that bond blocks are

(up to) three nearest neighbors of each of the sites

sites are present. Therefore, we take a more efficient approach by only counting the new

two-bond blocks created when a bond

generated.

To do this, we simply count the

involved in each new bond (illustrated in Figure 4). New 2-bond blocks are formed between

each of these neighbors and the other site forming the new bond. Up to six two-bond blocks

can be created by one new bond. After each reaction, the program also updates the lists

of bond blocks to account for the changing connectivity of existing blocks. If we were to

consider larger bond blocks, not only would we need to find more distant neighbors from

the members of each new bond (a procedure which scales as (~ – 1)”-1 where n is the block

size), but we also would need to find all other new bond blocks crossing each newly created

bond. For instance, up to nine new three-bond blocks are present in just the small fragment

in Figure 4.
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Simulation Procedure

>

With the above method of determining bond block concentrations, all reactions occurring

in the system are well defined. The simulation proceeds (as other DMC simulations of

polycondensation 24’27’30 by adding one new bond at each step. The probability that a par-)

titular type of polycondensation reaction will be chosen at a given step is proportional to its

rate. After choosing a reaction, the sites participating in the reaction are randomly selected

from the subset of sites matching the required characteristics (connectivity or bond block

membership). So that cyclization reactions are well defined within this scheme, bimolecular

react ions are only allowed bet ween sites on differing molecules. Throughout the simulation,

we maintain similar information to that described previously,24 including the set of neigh-

bors of each site, lists of sites with varying numbers of siloxane bonds, the molecular weight

distribution, the averages of the molecular weight, and the size of the largest oligomer.

Because reacting sites are chosen randomly, each realization is unique. However, if we

choose a large enough system or iterate enough times, the average value of the concentrate ions

in the differential equations (sites of differing connectivity and ring species in this case) can

be very accurately determined. The characteristics of the population, such as the weight-

average degree of polymerization,38 are most accurately determined with the largest possible

system size, within the limits of the allotted CPU time.50 In our case, 200,000 sites were

used in simulations lasting between one and five hours on a Cray CR-90 machine.

Some new information is also maintained for the simulations performed here. We monitor

the cycle rank (CR) distribution and the average cycle rank of the ensemble. The cycle rank

is defined40 as the number of independent cycles that must be closed in order to form a given

oligomer. In other words, it is the number of extra bonds present beyond that needed to

connect all sites once. Mathematically,

4

CR(Z) = ; ~ iQ~(z) – DP(z) + 1 (8)
i=l

‘where DP(z) is the number of mers in the oligomer x and Qi (z) is the number of sites of
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connectivity i in oligomer x. This definition is useful because it avoids arbitrary overcounting

of paths. One must bear in mind that, like polymerization degree, CR is only unique to within

isomerization. The “number average” cycle rank reported is defined:

(9)

where & is the fraction of sites of connectivity i.

The only other major change from the previously described Monte Carlo algorithm24 is in

the way that cyclization is treated when those reactions are chosen. We keep an explicit list

of all twe-bond blocks capable of forming a ring, distinguished by the connectivity ies of their

ends. When a cyclization reaction occurs, we randomly select a bond block from this list and

the block is removed from the list. This convenience comes with a high cost of maintaining

the list of bond blocks. Because of this, the program scales poorly with ensemble size. We

are exploring alternative approaches.

Results and Discussion

Since the use of bond blocks is a new feature of this simulation, we first verified that we are

properly accounting for the concentration of 2-bond blocks. A good case is ideal polycon-

densation, for which analytical expressions for the concentrations of all bond blocks can be

derived. In the Supplemental Material we derive this expression and show that the Monte

Carlo simulations of ideal polycondensation match this prediction up to and through gela-

tion.

Once confident that the simulation counts two-bond blocks correctly, we tested the pro-

gram’s performance for ideal polycondensation and for FSSE only (~ = O) against previous

work24~30~50and found excellent agreement. Since those results agree wit h prior work, we do

not present them here.
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The Sol-Gel Transition

The primary purpose of this investigation is to see how close this model – with coefficients

matching early-conversion kinetic experiments – brings us to the experimentally measured

gel conversion. Figure 5 shows how the weight average degree of polymerization (DPW =

~~=1 DP(%)2/ ~~=1 DP(z) where DP(z) is the degree of polymerization of oligomer x)

varies with conversion for different H values and for ideal polycondensation. The point at

which D_PWdiverges gives one estimate of gel point. Other estimates can be found from

the point at which the apparent gel fraction (the degree of polymerization of the largest

molecule in the simulation over the total number of mers) appears to rise above zero, or the

point at which the reduced weight average degree of polymerization (the sol D_PW) reaches

its maximum value38 (DF!~ is calculated just as DF!W is, but with the largest molecule (the

“gel” ) excluded). The latter two definitions give identical results in this case and we show

the estimated gel conversions in Figure 6.

The most remarkable feature of the values found is that this model is able to predict gel

conversions that match or exceed the experimental gel conversion of 82% for tetraethoxysi-

lane.18 This is the first alkoxysilane polymerization model able to extrapolate late-conversion

structural feat ures such as this gel conversion from early-conversion kinetic studies.

The one other model in Figure 6 which is able to match the experimental gel conversion

is that due to Suematsu51 (eq (9) in the original paper). That model assumes independence

of the conversion leading to geIation and that leading to cyclization and therefore only ap-

proximately simulates the competition between cyclization and growth. We can fit the first

three points from the DMC simulations using the equation of Suematsu for Aj polyconden-

sation (recast in terms of E), but the theory predicts that gelation should not be possible

at a slightly higher M. Suematsu’s equation can predict neither the inflection point nor the

plateau in a~,z at high M values indicated by our simulations. We will return to this point

later.
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The sol-gel transition does not always appear to be equally broad in Figure 5. We

clarify this point in Figure 7, where the DF’~ is plotted as a function of the distance of the

conversion from the gel point. Notice first that as K increases, the width of the peak first

increases and then decreases. Also notice that the shape of the plot changes. At low ~ the

plot is fairly symmetric, but has smaller peaks following the main peak. At intermediate

~ the sol molecular weight builds up quite a lot before gelation but drops precipitously

thereafter. At even higher IS,the peak becomes more symmetric again as it sharpens.

The type of behavior displayed in Figure 7 can be divided into three regions depending

on the cyclization tendency:

Low cyclization The tendency for cyclization is low enough that few rings form before

gelation. For our model, this region is observed for ~ <1.6.

Competitive cyclization The cyclization rate increases with molecular weight, and in

this regime, cyclization competes with cascading growth as the sol-gel transition be-

gins. This results in a significantly broadened transition region. DF!~ rises gradually

before the transition but once the gel finally appears, the sol molecular weight drops

precipitously.

Precursor formation Cyclization is so fast that many cyclic species form before the sol-

gel transition begins, leading to a distribution of precursor structures which undergo

a narrow sol-gel transition. This regime has mostly been ignored in other modeling

approaches. With our first

Relation to Other Models

shell substitution effect, this regime occurs for ~ >10.

We already have compared the results of the present DMC simulations to a statistical gela-

tion model including cyclization (Figure 6). That model assumes that “ . . . the change of

functionality [during polycondensation] is not of primary importance in respect to the shift

15



. . . “ 51 of the gel point. Further assuming a simplified dependence of cyclization rate on ring

size gives the equational we have fit to the low-ts data in the Figure. While the model is able

to

be

predict a high gel conversion, it incorrectly predicts that the ability to form a gel should

very sensitive to dilution.

Figure 6 shows that the model of Suematsu51 (and indeed most statistical models in-

corporating gelation approximately) account only for the first two regimes of cyclization –

limited cyclization and the competition between cyclization and growth. What they miss

(and what happens to be vital for siloxanes) is the precursor formation regime. This regime

may exist in other multifunctional polycondensation processes where, with high dilution,

much cyclization occurs but functional groups remain which are still able to form a gel. It is

also possible that in some cases, the amount of dilution required to enter this regime makes

it impossible to form a sample-spanning gel, so precipitates form instead.

A method related to the current simulations but numerically more elegant is presented

by ~omviirsky, Du3ek and Smr5kov&52 Their Smoluchowski coagulation model uses a kernel

accounting for the variation of, for inst ante, cyclization probabilityy and steric effects during

the course of polycondensation. The solution of the integrodifferential equations appearing in

Smoluchowski coagulation and other population balance models has been extensively studied

(e.g., by Ramkrishna and coworkers53).

The unimolecular kernels proposed in the past are likely to be useful in systems with

limited amounts of cyclization, but we examine with the DMC model whether they can

properly account for extensive cyclization. In the modeling of Somviirsky et al. ,52 the rate

of unimolecular reaction for a polymer P. of size n is given by K(n, /) [P.] where 1 is the

number of functional groups available on this oIigomer. They suggest that this kerneI should

be proportional to 1(1– 1) (which is proportional to the number of pairwise combinations of

functional groups on that oligomer). From our simulations, we can calculate (1), the average

16



number of functional groups available per molecule:

Number of functional groups
(1) =

_ j[si](l - a’)
Number of molecules – [Si]/DP.

= fDP.(1 - a) (lo)

In our simulation, the unimolecular reaction rate depends on the numbers of 2-bond

blocks present. Therefore, as an overall unimolecular reaction kernel, we use K(n) = (21?).

= the number of two-bond blocks in a polymer of size n. This form of kernel is implied in

the Monte Carlo simulations of Dutton et aL41 In the Supplemental Material we derive an

expression for the average number of twe-bond blocks, (2B) as a function of conversion for
.

ideal polycondensation. According to this equation, this value starts at zero and increases

until it diverges at a = 0.5 (just like DPn). In Figure 8 we plot the results of the ideal

equation as a function of (1)((1) — 1) as well as the values from our simulations.

For small H values, the curves look similar, but they are not linear. There is a slight

downward deviation from the ideal curve due to the first-shell substitution effect. The

curves bend upward as ~ increases because the functional groups per molecule are consumed

at a faster rate than when ~ is small. As ~ increases further, the functional form changes –

a maximum in (21?) as a function of a occurs, so in Figure 8, a loop is observed for K = 50.

While the curves in Figure 8 lie close to each other for at least some of the time, they are

not all identical. Modifying the x-axis in Figure 8 as ,suggested by Somv&sky et al.52 does

not improve bring the curves any closer together. Therefore, it appears that the approach

of Somv&sky et al. can be used to model this type of situation only approximately. More

work will be needed to develop a unimolecular kernel which matches form of the curves in

Figure 8 and accounts for loss of cycle-forming functional groups when cyclization occurs at

a rapid rate.

Relation to the Structure of Silicates

We have shown that this model is capable of predicting gel conversions exceeding the ex-

periment al gel point of tet raethoxysilane. This is the first time that enough cyclization has
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been allowed to permit such a kinetic model to match this observable. This agreement is

only a qualitative indication that we are moving in the right direction, however. The value

of ~ at which the simulation line crosses the experimental gel conversion is 7. For 2 molar

tetraethoxysilane, we know that for 3-site rings only, ~ = 1.05.48 On the other hand, ~ is be-

tween 5 and 10 for 4-site rings,17~23so ~ = 7 may be a reasonable value for this over-simplified

model.

Experimentally, gel points have only been measured for ~ varying by a factor of 1.86.18 In

the vicinity of the average experimental gel point in Figure 6, this gives a range of gel points

(0.78-0.84) slightly larger than that observed experimentally (0.81-0.84). The experiments

may be closer to the upper plateau of this curve, which would indicate that the simulated gel

conversion at the upper plateau is too high. Including 4-site polycyclic species should lower

the predicted gel conversion, though. 18 One should also be concerned about how closely the

simulated structures (with only three-site rings) resemble those of real silicates. Here, we

discuss average structural indicators and compare them to the types of structures that have

been observed in silicates.

Figure 9 shows the number average cycle rank as a function of the weight-average degree

of polymerization. The cycle rank is minuscule when ~ is small. However, at high ~ values,

CR. becomes quite large quickly. For instance, at DPW = 10 for the highest ~ value in the

figure, CR. = 5. This number may not seem particularly high, but because the weight-

average degree of polymerization is biased towards high molecular weights, there actually

may be smaller oligomers cent aining as many as five independent cycles.

Figure 10 shows an example of two of the structures present in the DMC ensemble which

are of cycle rank five. One is the smallest possibIe oligomer – the pentacyclic pentamer

— and the other is one example of a pent acyclic decamer. In both cases, the energetic

penalties for creating molecules with so many three-site rings is large. Nothing like these

structures has ever been observed in silicates or organically modified silicates. The closest

oligomer to these that has been identified is a tetrahedral, tricyclic tetramer which has been
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54 However, in ethoxy/hydroxy-claimed to be formed from see-but yl trifunctional monomers.

silicate solutions, the structures predicted by the simulation are probably too strained to

be likely to exist. The assignment of a peak in 29Si NMR of aqueous silicate solutions

to the tetrahedral siloxane tetramer55 was subsequently ruled out by quantum mechanical

calculations of energetic penalt iesl” and electronic effects .56

If the rings in these species were four-site rings, the degree of cyclization in these struc-

tures would be reasonable. For inst ante, the cycle rank of the oct amer made up of four-site

rings with one silicon site at each corner of a cube is five. This structure has not only

been observed but can form in high yields under certain conditions.36 Other silicates with

high levels of polycyclization have also been observed, so we conclude that the DMC model

should be improved not by reducing the total amount of cyclization but instead allowing

larger rings.

Another useful measure of the average level of cyclization in the population of oligomers

is the ring involvement (1), the average number of independent rings in which a silicon

site is involved. It is defined as ratio of the expected number of ring memberships for a

randomly selected site to the expected degree of polymerization of the oligomer to which

a randomly selected site belongs. The expected number of ring memberships is just three

times the expected cycle rank. For a single oligomer, the ring involvement is 3( CR/DP).

When calculating the average value, the weight averages are used, because they reflect the

expected (average) values when a site is chosen random (rather than number averages, which

are expectations for a randomly selected oligomer). Mathematically,

~ = Total ring memberships CRW 3X:=1 c~(~)~~(z)
Total sites ‘3DPW = ~=, DP(z)2

(11)

which is calculated periodically from the complete distribution of cycle ranks {CR(Z)} of

the population in the simulation.

Figure 11 compares ring involvements from our DMC simulations with those calculated

using our previous kinetic-recursive model with ring formation only from linear trimers.24
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Forthis model, the concentrations of sites involved inonering are known, so lis just the

ratio of the sum of the concentrations of all of these sites to the total site concentration. As

H increases in the previous model, the ring involvement increases steadily up to a certain

value, but plateaus as linear trimers disappear from the solution. The maximum observed

ring involvement in this model is about 0.7 rings per silicon.

With the current model, on the other hand, Figure 11 shows that ring involvement

increases steadily through gelat ion in the competitive cyclizat ion region. For the precursor-

forming region (~ = 50), it appears that ring involvement does level off at about 2.7 rings per

silicon site. This value approaches the level of three rings per site which we might expect in

a silsesquioxane-like precursor. This level of cyclization, at least, is consistent with the ring

involvement observed in silicates (oligomers with a ring involvement of up to three have been

observed36). This result confirms the necessity of involvement of silicon sites in polycycles in

order to have a quantitative model of polysiloxane structure evolution from alkoxysilanes. 18

The next step in improving this model will be to allow four-site rings to form. Three-bond

blocks will have to be determined to do this, which is conceptually similar to what has been

done here but will require significantly more CPU time and memory. The kinetics of four-

site ring formation significantly exceed those of three-site ring formation,23 so this may be

sufficient to bring the model into quantitative agreement with silicate gelation experiments.

If not, it will be necessary to either introduce reversibility of rings to limit their number, or

to limit a priori the involvement of each site in rings of different sizes. Both of these will

be computationally intensive. The latter approach will require the definition of a number

of rules not only about how bond blocks are counted, but also about how to remove bond “

blocks when a site is involved in a forbidden number of cycles.
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Conclusions

We have described a Monte Carlo simulation which incorporates known (or measurable)

kinetics to predict siloxane structure development. The model is intended to approximate

alkoxysilane polycondensation under acidic conditions. The three essential features modeled

are hydrolysis pseudoequilibrium, a negative first-shell substitution effect for condensation

reactions, and extensive cyclization with unimolecular-like rate terms. For computational

expediency, the current model allows unlimited formation of 3-site rings only, which are not

the most prevalent rings in silicates.

With a bimolecular reactivity trend

cients assumed to follow a similar trend,

taken from experiment and with cyclization coefi-

the model is able to predict a gel conversion meeting

or exceeding the unusually high gel conversion observed for tetraethoxysilane (82Yo). This

is the first alkoxysilane polycondensation model sensitive to chemical effects which is able

to predict such a high gel conversion. A dimensionless measure of the ratio of bimolecular

condensation rate to ring closure rate (~) was defined. The simulations match the experi-

ment al gel conversion at IC= 7. This is higher than the experimentally determined value of

ICfor 3-membered ring formation in tetraethoxysilane, but may be consistent with the total

level of cyclization in silica gelation.

Three regions were identified in our simulations, depending on the relative rate of cycliza-

tion compared to bimolecular condensation. At low cyclization rates, the sol-gel conversion

resembles that of a model with first-shell substitution effects only. In principle, this regime

can be reached by increasing the monomer concentration, but in practice, the necessary

concentration may be higher than that of the neat monomer.

As the cyclization rate increases, we move

mer growth are competitive for a large part of

broadened (the molecular weight increases more

into a region where cyclization and poly-

the process. Here, the sol-gel transition is

gradually) compared to the previous region

because cyclization competes most effectively as the molecular weight of oligomers starts
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to diverge. This regime is implicit in other, statistical, models of gelation with cyclization.

However, those models usually predict that gelation quickly becomes impossible because of

consumption of all available functional groups through cyclization.

Instead, our simulations predict a limit to the number of functional groups that can be

consumed by cyclizat ion. Therefore as the cyclization rate increases yet further, a new regime

emerges where cyclization and gelation are well separated. In this case, cyclization yields

cage-like precursor oligomersls which form prior to the onset of gelation. The molecular

weight increases as rapidly as it did in the first regime (with no cyclization). This regime

is absent from most statistical models of gelation with cyclization. The dependence of the

number of 2-bond blocks is nonmonotonic with respect to the number of available pairs of

functional groups on an oligomer. This may make it challenging to capture this regime with

other theoretical or population balance approaches.

These simulations confirm our hypotheses that polycyclic or cage-like species 1) can be

formed under kinetic trends consistent with experimentally observed rate coefficients and 2)

are essential to explain the unusually high gelation conversion of tetraet hoxysilane systems.

Further improvement in the model are required before quantitative predictions can be made,

however, by allowing larger rings to form.
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Figure 1: Minimum reaction scheme needed to model the formation of the smallest known
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Figure 3: Cyclization reaction. The circle represents a site of any degree of condensation

greater than or equal to two and lines represent siloxane bonds. Only the illustrated (3-site)

rings are allowed to form.
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Figure 4: Accounting procedure for two-bond segments. Circles are silicon sites and lines

are siloxane bonds. The shaded circles are members of a new bond (thick line). At each

condensation step, the new potential segments are counted from the site at one end of the

new bond to each of the nearest neighbors of the site at the other end of the new bond.
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Figure 5: Simulated weight average degree of polymerization (DPW ) as a function of conver-

sion for varying ~ (cyclization tendency) from simulations of the polycondensation of 200,000

sites. For the ideal (dashed) curve, all rate coefficients are set equal to each other and H is
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Figure 8: A possible unimolecular cyclization kernel, the average number of 2-bond blocks,

as a function of the average number of pairs of functional groups per molecule from our DMC

simulations.

36



‘“’r I

10°

0-’

10° 10’ 102 103 104

10-2

D PW

Figure 9: Simulated number-average cycle rank as a function of the weight-average degree

of polymerization. All curves are Monte Carlo results.

37

I



.

a) b)

Figure 10: Examples of oligomers of cycle rank 5. Shown are two representative structures

from the present simulations: (a) a decamer, and (b) a pentamer.
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Figure 11: Average involvement of a silicon site in three-site rings as a function of conversion.

Solid lines are results of our Monte Carlo simulations with unlimited cyclization. Dashed

lines are from a kinetic-recursive model of polycondensation with isolated three-site ring

formation from linear trimers only24.
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