Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

PDF Version Also Available for Download.

Description

Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. {sup 242}Es was produced via the {sup 233}U({sup 14}N,5n){sup 242}Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 {+-} 3 seconds. The ECDF of {sup 242}Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 {+-} 18 MeV. The probability of delayed fission (P{sub DF}) was measured to be 0.006 {+-} 0.002. In conjunction ... continued below

Physical Description

Medium: P; Size: 205 pages

Creation Information

Shaughnessy, Dawn A. January 5, 2000.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. {sup 242}Es was produced via the {sup 233}U({sup 14}N,5n){sup 242}Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 {+-} 3 seconds. The ECDF of {sup 242}Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 {+-} 18 MeV. The probability of delayed fission (P{sub DF}) was measured to be 0.006 {+-} 0.002. In conjunction with this experiment, the excitation functions of the {sup 233}U({sup 14}N,xn){sup 247{minus}x}Es and {sup 233}U({sup 15}N,xn){sup 248{minus}x}Es reactions were measured for {sup 243}Es, {sup 244}Es and {sup 245}Es at projectile energies between 80 MeV and 100 MeV.

Physical Description

Medium: P; Size: 205 pages

Notes

INIS; OSTI as DE00754277

Source

  • Other Information: TH: Thesis (Ph.D.); Submitted to the Univ. of California, Berkeley, CA (US)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL--44776
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 754277
  • Archival Resource Key: ark:/67531/metadc702261

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • January 5, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 4, 2016, 3:11 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shaughnessy, Dawn A. Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei, thesis or dissertation, January 5, 2000; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc702261/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.