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u~. The desi~ of general~p~$ d&r&c’ load-baIr&~g ~oo~ for pi&el app~&-%ris
is more challenging thqn the desi~ of.staqc partitioning tools. ~Both.aIgo@hmic. and software
en@n&”rg “issues arise. We have’address’d rminy of these issues in the des~~ ‘of the-Z&ui
dynamic load-balancing library. Zoltan has an object-oriented i.pter@ce,,~at makes it easy to use
and provides separation between the application and the load-balancing algorithr& lt contain; a
suite of dynamic load-balancing algorithms, including both geometric and graph-based
algorithr&~Its design makes it valuable both’& a partitioning tool for avariety of applications and
as a research test:$d for new algorith@q.4d~velopment.In this pa~r,.~e des@e Zoltan’s des@I
and derno%kte its use in an Unstructured-mtih finite element application. -

1. hi’1’RODUCi’ION , . . ..:

In pardel simulations, an important first step is the division of the problem to be solved

among the processors. The goal is to assign work to processors evenly (so that no processors are

idle while others are computing) while keeping inter-processor communication costs low. For

applications with simple data structures (such as regular-grid finite difference schemes in simple

geometries), this division may be done implicitly by the application; i.e., the application divides

the computatiord domain into equally sized blocks that are assigned to processors. Applications

with more complicated daq geometxy and communication requirements, such as finite element

methods on unstructured meshes, need more sophisticated partitioning tools. Several highquality

static partitioning tools have been developed for such problems, such as Sandia’s Chaco [9] and

METIS from the University of Minnesota [10].

Even more complicated are applications in’ which the per-processor work load or the

geometric locality of objects changes as the computation proceeds so that an initially balanced
. .

decomposition with low communication costs is then either unbalanced or has unacceptably h~~h
.-

amounts of communication. For example, adaptive finite element methods adjust the

. .

1, This workwasptially fundedby theU.S.DepartmentofEnergy’sMathematical,Informationand Computational
SciencesDivision,and was$arriedout at SandiaNationalLaboratoriesoperatedfor the U.S. Departmentof Energy
underconhactno.DE-AC04-94AL85000.
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computation~ mesh (h-refinement) or the degree of the approximation (p-refiement) to satis~

numerical acc&~~&&ernents; dyn~c-lo&&&n&g” is needed ‘to r&iistribute work as the

> . -,..:. t-““n- ‘, “,

number of degrees of freedom changes [5, ,14, ,15, 16,”19]. In particle methods and contact
.>: ,r -, ...-”

detection algorithms, dynamic redistributions that maintain geometric~lc@.ity of nearby particles
:. .....-1./. . . . - ‘ .-. .- .. . .. -

.- . ,. ..<+ ~.q. . .. . .. . . :s3r “.’-. : :i““:!:’.’.
or &face;’ t&&/gh&it simidatioxis can’.-”~tly “reduce com’u~~ah-~nxcosts ,~d improve.,.:= .-. . .. .3 .7~2”%!X? L- .u!L..: “A:.::. i:: ..mL.. .- -------- .. -J/ G-.,- .-: ,>i.~

....-., . .. -----.. ..
ptiO&ceOfiG-hiitiOris~~i-3, i7,”22]. ”- ::,,-,:,.. . a.- , ,. ..., .. ., -

‘ 1.~+~l;i.--.J2!J -
partitioning’[i] .%tic ‘p~tioning &&ithms are usually run as pre-pn%eiso~ to

.,. .,

r

.

over static

.
applications;

thus, they can be run serially with only moderate concern for computation time “and memory

usage. Dynamic load balancing algorithms, however, run side-by-side with applications; they must

be implemented in parallel and use little memory so that the load-balancing algorithms do not hurt

the applications’ scalability. Dynamic algorithms must also mn quickly, as the time to perform. .

load balancing should not exceed an -application’s time to execute in an unbalanced state.

Moreover, dynamic load balancing algorithms .,take an existing decomposition as input. To

establish a new decomposition, data must be moved among processors. This data migration time

can be large relative to the cost of actually computing the new decomposition. Thus, algorithms

that attempt to rninirnize data movement are preferred. We say such algorithms are incremental;.

i.e., small changes in processor workloads produce only small changes in the decomposition.

In the development of dynamic load-balancing tools, several sofiware engineering issues

also must be addressed. As pre-processors, static partitioning tools like Chaco [9] and METIS [10]

use a file-based interface; geometry or graph information is read from a file, and the resulting

partition is written to a file which is then read by an application. The file-based interface prevents

any dependencies between the partitioners and an application’s data structures. Because dynamic

load-balancing tools run side-by-side with applications, however, they must have function-call
-..

interfaces. To be gene&l-purpose tools; they mus~be able to obtain information from applications. ......<..J.Q.:.._

/
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,
,

whilild~ed-g dati-st=~~~g -gu!rg~ .i.e., they must. not depend upon

app~cation’s data structures nor .~strict the data structures.* application may

dynamic load-balancing tools should provide some support for data migration.

qly particular

use. Moreover$

. . To addresstheissues @esc@ed.above, we have developed a dynamic load-balancing tool

called ..Zoltan [2, 3]. Z@an, is .a suite of dynamic load-balancing rdgorithms for parallel

applications. It is designed to be ffexible, extensible, and easy-to-use. In the following sections, we

describe the software enginee~@gsolutions developed for Zoltan and demonstrate Zoltan’s use in------ . . ..-

an unstructured-mesh finite element application. . . -.. . . .

2. Lom BALANCINGTooti “. :.: .-.

In most applications using “dynamic load’ balancing, the

-: ..- —-
---

. . .-

. .
load-balancing algorithm is

. .

implemented directly in the application, with close coupling between the application’s and load-

balahcing algorithm’s data structures. This typical approach has two disadvan&ge&:FiiG it is

unlikely that the application developer has incorporated the best algorithm into his application, but
. .. ... . .

he”is ~nable”to comp~e the algorithm with others without taking time to implement many

algorithms in his application. Second, the close coupling of data st&ctures limits the algorithm’s

use to a single application. Developers wanting to use the algorithm in new applications have to re-

write the algorithm using the new applications’ data s@uctures.Research into and use of dynamic

load-balancing algorithms are severely impaired.

To overcome these drawbacks, we have designed an objeci-oriented, callback-function

interface to Zoltan that makes it data-structure neutral and allows it to”be used easily by many

different applications. The application developer must provide simple fhnctions that return
. .

information such as the number of objects (elements, particles, etc.) on a processor, the

coordinates and/or connectivity of the objects, and the’computational load of the objects. Zoltan

then calls these callback functions to get data needed to build the load-balancing data structures.
,.,-- b “ ..1---. .. . . ““.-,:;:- :. ...’‘.. ..... .!. ......“. : .. .’:. -.. < -;& ‘, ..... ....- - ~- .-.1JL”3°-=.,.. - - - -“..:::%j:.r .: :. .
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A typical interaction between ~ application and the dynamic load-balancing tools is

shown in Figure I.i For this example, the nodes of a tinite element mesh are the objects to be

balanced by ZAan. Through a call to “LB_Create, memory is allocated to hold pointers to

registered functions, an MPI comm&ic&or,”a6d load-bakmc~g dati ‘Apoinier to-this memory is

passed to all othdr load-balancing functionsf’The’application then’kelei&-alo&l-b&tigrne~~

to be used (Recursive Coordination Bisection [1], 4’RCB~’in””the example) through a call”to

LB_Set_Method. Several callback functioris needed by the RCB algoiitbrn are registered through

calls to LB_Set_Fn. These callback functions include applicationdefind functions to retuin the

number of objects on the processor (rerum_mun_nodes), a list of the objects (rerurn_node_kst),

and the coordinates for a given object (rerwn_ccwti). After some computation, the application
.! ,.

calls LB_BaIance to compute a new decomposition.
.- .,. ..

Wk.hin LB_Balance, Zoltan follows pointers to the registered callback functions to build
-.. ------- .....-. ..... . .-.. . ... . . . .- ..:-. . . . . . ..

the data structures needed for the RCB algorithm. An array of data is buil~ with one entry for each
. .

object owned by the processor. The number of objects is determined by following the

Get_Num_Obj pointer to the retum_num_nodes. Storage is allocated for the objects, and lists of

the objects’ identified (IDs) are obtained by following the Get_Obj_List function pointer to the

rerum_nodeJist. Then, for each objec~ the object’s coordinates are obtained through calls through

the Get_Geom function pointer to the registered function retum_cooni.s. Once the data structures

are built, the load-balancing library can perform the RCB decomposition and return arrays of

information describing the new decomposition to the application.

This callback function design has a number of advantages. Most applications use the
. . .:.

information needed by the callback functions themselves, so the callback functions are generally

very easy to implement. Certainly it is easier for an application developer to write the callback

functions than to build specific data structures (graphs, octrees, etc.) required by a particular load-
. . . .. . “:..: ~; ~. . .. . ...... .. ;2”.,.-.... . ., ..,: .. . . . . .

bahncing algorithm. Changes in a load-balancing algorithm’s data- structures do not propagate
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,., . . . .---
nmIf#ba*Imn

. ,“. .. ...

J’+ llwablwll

. . .

/* Register method and application functions */
..

lb = LB_Createo;
LB_Set_Method(lb, ‘RCB8);. ‘=- --- “-= ‘ ‘:: ‘“
LB_Set_Fn(lb, LB_GEOM_FN,return_coords, data);
LB_Set_Fn(lb,” LB_NUM_OBJ_FNP.\eturnJiunlnodes; ~data);< - . 1.

LB_Set_Fn(lb, LB_OBJ_LIST_FN, return_node_list, data);
,: .. ..- ..-. , ..,.>,.””-.:---.q ., -.. -: .,, .,-~. . ,+--:a~..- . .

.: -. . . .
/* Call the load balancer *7- ‘--- ‘“
LB_Balance( lb,&new,&num_imp ,&imp_glob_ids ,&imp_loc_ids ,&hp~rocs,

&num_exp,&exp_glob_ids ,&exp_loc_ids ,&exp~rocs);
. . . . . . --,,

\

.:,

:“.

,..

-—**—.
~
. ..’ ..,.-. ,..2 . . ‘i-. .

/* call registered functions to build RCB data structures ‘/
nuobjs = lb->Get_NBObjo;
allocate memory for object global and local IDs
lb->Get_Objs(global_ids, local_ids);
for (i = O; i < num_objs; i++) .{ - .

lb->Data[i] .Global_Tag = global_ids[i];
lb->Data[i] .Local_Tag = local_ids[i];
lb->Get_Geom (global_ids[i] ,local_ids[i] ,lb->Data[iJ. Coords);

},
/* perform balancing on lb->Data */
. . .

FigureI. Exampledenwnstratingtheinteraction betweenanappIicationandZMan. ,
..’

back to applications. Moreover, once the functions are implemented, applications have accessto

allalgorithmsinzdan; nochangesareneeded tousenewtechnology inzoltan.

‘llecallbac kfunctioninterface doesaddsome timeand memory overhead totheload-

balancing algorithms. Acopyofdataneeded forloadbakmcingis created; however,siice only

geometricand/orconnectivity infonnation(andnot solutioninformation) isneededbyzdan, ~is
. . .

copy is, in general, much smaller than the application’s data set. Applications often have free

memory available as tempormy work space; Zoltan can use this memory and free it upon

completion of load balancing without limiting the scalability ofan application. The callback

functionprotocolalso addssomeexecution timeforbuildmgthe datastructuresneeded byZoltan.
..-

..’.
.
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In experiments, however, this overhead is only a small ihction of the time needed to compute a
7...—..— ...-— . . . . . .

new partition. :.:
> . ----- . .

ZoltarI’s interface supports both geometric and graph-based plgorithr&. Geometric
,4 =,~-.e- - .- .. -,... -.

algorithms require callback functions that ret&g object”IDsand coordinates for the objects; object
. !5::.2 : .: .::-.l7_.TAs33z ,x-. -:::. -- :!-.: .:-: ’=- ::- --

weights for weighted partitioning are optional. Graph-based algorithms require callback functions
.+ . . . .. 2i,u *.:J

that return object IDs and object edge lists describing the conkctivity of objecis in the application
. -. .- .....-

(e.g., the comectivity of the nodes in a iinite element mesh); object and edge weights are optional.
e“--.T .

Zol&&--currently - inEludes the Recursive- C66-i!di.ii&-””-Bise~tion(RCB) [1] “-&d Octree
—---- --.—— -

.-.“. -. ..:. .---- ..

Partitioning [4, 7] geometric algorithms. Graph-bas-Ei3‘algorithms are proiided thr6ugh interfaces--. . ..-. .-

to the ParMETIS [11] and Jostle [21] packages. New algorithms can be added easily by using the.-
-----

callback functions to build the data structures needed by the new algorithms. Recursive inertial

bisection [20], space-filling curves [6, 22]: and additional tree-based p&titioning algorithms [12] -

are currently being added to Zokan.

3. DATAMIGRATIONTooLs

Data migration is an extremely applicationdependent part of establishing new

decompositions. It involves gathering objects from the data structures on one processor, sending

those objects to a new processor, inserting the objects into the new processor’s data structures, and

removing the objects from the original processor. In addition, auxiliary data may have to be sent to

the new processor to support the objects migrated there. For example, in a finite element

application, the “objects” used in load balancing maybe finite-element nodes. But when nodes are

migrated to new processors, the elements associated with those nodes must also be sent to the new

processors, increasing the dependence of data migration on the application. I

A general-purpose load-balancing library like Zohan can not perform all the operations

required for data migration in all applications. However, it can assist an application with the

communication required for data migration. Using the results from the load-balaricing algorithm,
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Zol~a.@o~~-where data must be sent to establish the new decomposition and can perform all

pee@@%$q~y@ati~n using com&@ation tools within the library. The application, then, must

spe~~. how,~o gather data assoc@ed ~lth migrating objects and how to insert that data into the---- . . .

new proce$sor’s data structures. ,-..:, “.”, : - ..: . ---- -- ....-
. .

Following the registered Callback-fimction design-of its dynamic load-balanc~g $oc#,
.——. ——-. — ___ .. ... . . __—. . .- —-—--... —-.— —

Zoltan provides applications with migration-help tools that perform the communication neces&ry.
.-. .- .

for data migration. An example of th~ &~&.ion betsveen an applic~tion and the migra~&~help
‘- ... . .,:r-:.-. :: ->”-: L-_ . . ... . ~_<: -

tools is showp in Figure 2. As in &ure7ij-&e application in this example is a finite element
-, . . . ..’. -’..~.s .:: : . . .

application. The application registers three additional caI.l@c~kfunctions: a function that ‘kAurns----- -- -—.. .
...

the size (ii bytes) of the data buffer needed to gather all of one object’s data (node_size), a

:: .%~,- .,..:
function-that packs one object’s data into a buffer (p~ck_one_node), and a function tha~‘repacks

one object’s data and inserts it into tie new processor’s data sficti” (unpack_one_node). The
----- .. -. -.. .

application then calls LB_Help_Migrate to perform data migration.. .

The LB_Help_Migrate function uses the registered functions with the results of the load-

balancing algorithm to move data between processors. ‘I%e migration-help tools follow the

Get_Obj_Data_Size function pointer to node_size to obtain the size of the data buffer needed for

an object’s data. They allocate appropriately sized import and export buffers. Through repeated
---- -. .

calls to the registered Pack_Object function (pack_one_node), the migration-help tools fill a

communication buffer with data for each object to be exported. The migration-help tools then send

the export data to other processors and receive import data. For each object imported, the

migration help tools call the registered Unpack_Object function (unpack_one_node) to unpack the

data from the import buffer and insert it into the processor’s data structure. Under this model, the
.... ..- Y ..... .< -. . . . .

application developer does not have to implement additional communication routines to perform

data migration; the migration-help tools handle all communication required for data movement.
,.:--
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Zoltan’s migration-help tools are separate modules from its dynamic load-balancing tools.

.Thus, an application does riot have to use the migration-help tools even though it uses the dynamic

load-balancing tools to compute a new decomposition. If the application has its own migration

routines, it can use them in conjunction with Zoltan’s load-balancing routiriesY: ‘“-” “’

-,- .-:.> !:fy;~:fj~-.+! ,. .j: .. . . . . . . . .. . .. . .
$plication “ “e~ ‘-’q’’=-”~‘:: “-’‘i-;:’”’

. . .

. . .
/’ Register Packin6’.arid ‘unpack~ng’ f~<cti’ons */ “-““-
LB_Set_Fn (lb, LB_OBJECT_SIZE_FN, node_size, data) ;
LB_Set_Fn (lb, LB_PACK_OBJ_FN, pack:onefiode,- “data ) ;

----.. .

LB_Set_Fn (lb, LB_UNPACK_OBJ_FN,‘‘unpacklone_node. data ) ;
LB_Help_Migrate (lb, &nun@np, &imp~lobiids, &imp_loc_ids; &impQrocs,

&nuexp, &exp_glob_ids, &exp_loc_ids, &exp~rocs ) ;
. ....e.. ..-’ . ... ....” ,, . ..

m 7nltsm;e Mlmr4nnJ4aln Tank\ b“. -,, “ ,., s~, -.,”,.-. ,-, p m ““,.

. . .

size = lb-> Get_Obj_Data_Size ( ) ;
/’ Pack all objects for export ‘/
for each object i being exported

lb-> Pack_Obj ect (exp_global_id [i 1, exp_local_id [i 1,
“expfirocs [i] ,“ size, export_buf [i] ) ;

/• Perform communication using imp ‘/ .,

communicate (lb-> Conm_Map, export_buf, &import_buf) ;
. .. ... .- .. . ,.

/’ unpack all imported objects ●/
for each object i received

lb->Unpack_Object (imp_global_id[il, size, imPort_buf[il);
. . .

Figure2. Eumpledemonstrating theinteraction beweenan application d%ltm's
migration-help tools.

4. sUMMARYOF ZOLTAN’SINTERFACE

In this section, we describe each of Zoltan’s interface and callback functions. We have

attempted to keep the number of functions small so that Zoltan will be easy to use in applications.

In Table 1, Zoltan’s interface functions are summarized. They maybe called by an application to

..
:

.. . .,.
perform operations within ZOltan. .-.

8
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-- Interface Function - .- ;<---- Description - ---.- .r, - ,:4+ .. ->.

LB_Initializ,e .- ; “ .“ Initializes MPI if the application has not already done so.

LB_Create Allocates memory for an LB_Struct data structure which
--- . .- -:.: store~pointe-is to registered iallback functions, & MM - :-.-

,.., . ,---_:.:, cqqrrymicator to be.used :mthe load-balancing algorithms and-..: ,- :

data structures used by load-balancing algorithms. The address.-. i._
of the ‘LB_Struct is re.fied to the application and passed to

.—. - -- -. —--.— - all otherwZoltaninterface functions. ~ “ . ~,’: ‘y~j~;’: ~=,.2 1. ,,, . ,, - , ... . . .... . . .
LB_Dt&oy . “Frees memory asso@ted with an LB_Strud-data~txuctnre.:.:...-, . . .,.i ... . . . .
LB_Set_Fn , _ ~: ‘. b.: Re@ers application-defined caUbackfunctions and stores

pointers to them in LB_Struct.
LB_Set_Method Indicates which load-balancing algorithm should be used.

LB_Set_Pararn . .:- Sets parameters to be used in Zohan; example parameters .-
.: s .: ; include tolerance ‘forimbalance, the dimension of objector
.

‘:- edg~weighti”to be uied, a–debugginglevel, a-d ~goritb&- -
. spedific pamrneters. ‘... “-

LB_Baiance -- Calls the load-balancing algorithm in Z&m; lists of objects to
be exported and imported to establish the new decomposition
are returned.

LB_Free_Data Frees the lists of export and import data returned by
LB_BaIauce. -.. .;,., . ... .

LB_Eval Computes imbalance and edge-cut cost in an existing
decomposition.’~ “

.-. .

LB_Compute_Ddnations Given lists of objects to import on each processor, returns lists
of objects to be exported on each processo~ usefid in multi-
pha% “datamigration.

LB_Help_Migrate Performs data migration using the LB_PACK_OBJ_FN and
LB_UNPACK_OBJ_FN callback functions.

T&le 1: Summary of Zolt~- inte.~acejimctions.
.-

..
In Table 2, we describe the callback fimctions through which applications provide data to

Zohan. An application does not have to provide all callback functions; it may provide only those

needed by the particular Ioad-balancing algorithms used. Objects to be load-balanced in the

application must have unique global identifiers (Ills). In addition, they may have local IDs such as

memory addresses or array indices within local processor memory. The data types for both global

and local JDs can be defined by the application. ZoltaiI stores both global and local Ills for each
.. ----- .

object. Zohan uses only the global II%, but it passes local IDs to the callback fimctions to simplify

data access for the application.

9
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Callback Function ,.- =.

LB-W_OBJ_FN ; .! .. . ....-. . . . .
,...-. ---- - .. .. . ... .. . ,. -t.. , . ,. ,. _.. -

LB_OBJ_LIST_FN -: -~.
.. . . ..-,:. .r, . . . . . .

,,.
.::!, .y..~ ~

LB_~-T_OBJ_FN / J. . .. ..
.— __

LB_NEXT_OBJ=FN . ,,:.!.$&-.:;
..-— — — .. —-- —-—-. -.. . . ...*?

. . Qes&ption - . . -.-–

Returns the rmrni.yrof objects own@-by a prqxssor, :.’.—-. .. —-- --- —-
(requlred) . - “::=~ ‘.,.... . . . .:.rbg - .:-;

Returns lists of global and local IDs for objects owned
by a processor. (an LB~OBJ_LIST_FN or an
LB;FIRST_OBJ+m_NEXT_OBJ_FN pair is
@@) .~Tk_~d ‘Jij ‘C!

Rgqrnsjhe global and Ic@ IDs of the firsthext objec~
oivned byaprocesio~ usld as an iterator over allobjeck—-- — -..—. —=C -- .-—
owned by a processor. (an LB_OBJ_LIST_FN or an

. ‘:7 LB~FIRST_OBJ_FN/LB_NE~__OBJ_FN pair is
---------- . ----- . .,. --7= lS@i@d)--- “.---– .. .. .-. ---TI .,- .

LB_NUM_BORDER_OBJ_FN ;
.. . ..... - -., ..- -*

LB_BORDER_OBJ_LIST_FN u

LB_FIRST_BORDER_OBJ_l?N /
LB_NEXT_BORDER_OIBJ_FN s

Returns the number of objects owned by aprocessorthat
share a border with a given processor. (optional)

‘Returns lists of global and local IDs for owned objects
~tiat share a border with a given processor. (optional)

Returns the IDs of the Iirst/next owned objt%tthat shares.
a border with a given processo~ used as an iterator over
border objects. (optional)

LB_NUM_EDGES_FN Given the IDs of an objec~ returns the number of edges
from that object in the application’s comectivity.—
(required for graph-b&d load-balancing methods)

LB_EDGE_LIST_~ Given the IDs of an objec~ returns the IDs of all objects
comected to the given object by an edge. (required for
graph-based load-balancing methods)

LB_NUM_GEOM_FN Given the Ills of an object, returns the number of
coordinates needed to describe the object’s location.
(required for geometric load-balancing methods)

LB_GEOM_FN - Given the Ilk of an objec~ returns its coordinates
(required for geometric load-balancing methods)

LB_PRE_MIGRATE_FN / Allows Zoltan to do application-specified processing
LB_POST_MIGILiTE_FN before and after data migration; called by

LB_Help_Migrate.’(optional) “
LB_OBJ_SIZE_FN Returns the size of an object to be migrated. (required

only if using migration-heIp tools)
LB_PACK_OBJ_FN Given the IDs of an object to be exported, packs the

object’s data into a communication buffer provided by
‘ Zoltan. (required only if using migration-help tools)

LB_UNPACK_OBJ_FN Given the global ID of an object to be imported, unpacks
the object’s data from a communication buffer and
inserts h into the application data structures on the new
processor. (requhed only ifusing migration-help tools)

Tdle 2: Sunqnmyof Zoltan inte~acejitnctions.
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5. EXAMPLE ~ -1..,. ., :. . .,;:, ,.. ~. .. .

.

.,

.7

. .~“To examine-the overhead cost of Zolti-iri’ ari%l application, we iricofior&l Zokan into

MPSalsZ. an unstructured-mesh fink element code.for simulating chemically reicting flows [18].

The matrix-fill operation for multi-physics simulations in MPSalsa can be”~~@%bal.aced, and

tie computatio&l cos&iof each regime camiot rik-e~y be predicted h-&l&&e~For-example,

in the catalytic partial-oxidation reactor shown in Fig& 3, three different regions’= modeled. In

the reactor wall (shown as the shaded region of Figure 3), only ‘heat &&fer is modeled;

computation time per node is approximately” 0.006 seconds. In the volu”me-of‘tie reactor (the

cross-hatched region), the “whole enchilada” - heat transfer, mass transfer, fluid flow, and gas-

phase reactions with 22 species - is modeled; computation time per node is approximately 0.05

seconds. On the surface where the catalyst is located (thedark line), the “whole enchilada” and

surface reactions are modeled. The surface reactions are very expensive to compute, as a small

non-linear solve is performed at each node to compute site deposition fictions. The resulting

computation time per surface node is approximately 9.0 seconds. Even though the reacting surface

contains less than 2% of the nodes in the entire mesh, the disparate compu~tion times lead to great

load imbalance.

Re
ctions

Figure 3. Catalytic partial-oxidiztion reactor configuration and computational weight used by
ZMan in an unstructured-mesh fiite-element multiphysics simulation.

The implementation of the callback functions for load bakmcin~ required fewer than 200

lines of C code in MPSalsa, demonstrating that Zohan’s interface is clean and easy to use.
-.. . ..-.. ..,

Manipulation of data structures for data migration required many more lines of code, as different
,-, .- ,. -:..:.: - .; ,,..-;- .... ... ‘.

types of entities (nodes, elements and faces) had ‘to be moved. However, ~no-additional
,( . .---- ,.-. - ..,. . . . .

11
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communication routines were written in MPSalsa to perform data migration; Z&m perform’ti all

communication for data migration:,A.:~p~- rni~tiog ph=-w-mused for each type of entity. Ine....,.- .. ,1,.-.! , - . .

each phase, appropriate packing ~d.:~packing callback functions were registered with Zoltan,. . . .

and LB_Help_Migrate was called. . .,.. - z. . : :.,: ....’. .

The performance of ZQl~ ~, ~~al~ is,summarizd in Table 3. Using 50 processors,of.. .. . . . . . . .. . . . . .

the Sandia/Intel Tflops (ASCI Red) computer, we ran MPSalsa using an initial decomposition. .

generated by the RCB algorithm @-thOutweights on the iinite element nodes. We then performed... .

MPSalsa’s matrix-fill operation, which required 82.22 seconds. During the matrix-fill operation,

nodal computation times were measured and stored. These nodal computation times were used as

weights in Z&m to compute a new RCB decomposition. Using this new decomposition, the time

for subsequent matrix-fili operations was reduced 53% for this problem.

The cost of load balancing and data migration in this experiment was less than 2% of the ‘

original matrix fill time. The time to compute the new decomposition was 0.28 seconds. Of this

time, the actual RCB computation required 0.17 seconds; Zoltan added 0.11 seconds of overhead

for executing the callback functions and building the arguments returned by Zohan. Data {

migration required 1.14 seconds. Of this time, Zohan used 0.17 seconds to actually move data

among the processors; the remaining time was required by MI&Isa to rebuild MPSalsa data
—.

structures such as a solution vector and Jacobhn matrix.
. . .

6. CONCLUSIONANDFUTURE WORK

We have described many of the problems involved in designing general-purpose dynamic

load-balancing tools and demonstrated solutions in the implementation of the Zoltan library.

Zohan’s object-oriented interface provides separation between the data structures of applications
.

and load-balancing algorithms, enabling the library to be used by a wide varieV of applications.
. . .

Zoltan contains a suite of load-b&ncing methods, including both geometric and graph-based
. .;J. . ... , “ ..”:: ;?:-: . . ..J..:-. “ - ...’..-...

methods: This tool-kit approach has ad&ntages for both application developers and researchers.

.12
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.>

I I
RCB Algorithm 0.17 seconds

Build Return Arguments “ “ 0.11 seconds
~

Migration of nodes, elements, and faces. 0.17 seconds

-Rebuikljng solution vector, matrix, etc.:t”:%,:~.,.,0.97 seconds:/. ;& -.::: ‘2,”, ‘ .

-.>.. .- .- .1

. . . . . . . .

. . . .

By providing a number of different types of algorithms, Zoltan allows application developers to

experiment easily to find the best methods for their applications. For researchers, Z&m enables

easy incorporation of new algorithms and provides good implementations of standard algorithms

to which fair comparisons maybe made.

In static partitioning, comparisons of algorithms are performed based on their execution

times and quality of partition (measured by the partition’s load distribution and communication

costs). Comparisons of dynamic load-balancing algorithms, however, must also account for the

data migration costs of a new partition. Using Zohan, we will investigate the relative importance of

partition quality, time to compute new partitions, and data migration cos& in a number of

applications. For some applications, Iowerquality partitions may be acceptable if data migration

costs can be minimized. Other applications may perform better with highquality partitions,

regardless of the cost of obtaining them. Zoltan’s design enables such comparisons. Since it

includes a suite of methods, many different methods can be tried in a single application. And

because it is easy to incorporate ZoItan in new applications, load-balancing algorithms’

performance can be analyzed in different types of simulations.. .

Heterogeneous computing architec&escrea~ new challenges i.xi:d@mic load”b&ncing.
..’” ..:,-

Partitioning algorithms must account for widely varying processor powers, memory capacities,
--,-. .. .

-. . . .. ... ..-.

13



and
.. -

—.-..
balance load, prevent memory overil~ws, and _reduce

—-- .- -~— -—- .-- —- -. -——.- -— --
,,>~;>--J 3 : i i ~ :.::4:-“ ,-:, ,

processors is ineffective in sy~h;ysterns. Instead, a simulation must obtain a set-of processors,
- ... .. ------ . .. . . —- . . ----- --- . --------- --

determine the characteristics ~of:-tie l.processors ‘&d ~rie&o& “partition b&-&f”’onh~hose
.:,, --, ..:~: ‘, ., --- -.:<.,. .:;j,z~,~. .

. . ..

——. — -.-. — -- .— - .-—

characteristics and then execute.Toiils and algorithms---~ n~ed to p~ovide tl& .W-pr@ity.
. -..—- -. .,.-I...-.=.-. y-”.--.- -. ..-<. - r- - -----.G. z..’- =. +..:. . . .>F.i . . ... .-;..,-. _.>-.... -. .”.<. .

– To-address thk ne&3,-wehave comple~ed the ~e&i of a heterogeneous”~rn~utiigfiodel
-—. .&

. .,- . .. . . . . .. .. . . . .... -------- .—r--:---—yp : .. -.— -
.:*-.:::GS1;$.- -.

for Z&m. This ‘workis a collaboration with I&@ and Kuri& @~~of keso~). The model.-
‘ *)-- ,;~ .

represents a heterogeneous computing system as a hierarchy of components. The top level of the

hierarchy represents the topology and network speeds of the entire system. The intermediate levels

represent components of the computer, including the topology and network speeds of the

components. The lowest level of the ‘hierarchy represents the individual processors with their

compudng power and memory size. Using this model, we will partition both the machine and the :

application data in an attempt to create partitions having equal execution times and communicating

mostly across fast network links. Kruypis and Kumar will incorporate the model into the

ParMETIS library[11] which provides graph-partitioning capabilities in Zoltan. We will Y

incorporate the model into other existing algorithms in Zoltan and will use the model in the design

of new algorithms specifically for heterogeneous architectures.
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