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ABSTRACT: The des1gn of general-purpose dynarmc load-balancmg tools for parallel apphcanons
is more challengmg than the design of statlc partitioning tools. Both algorithmic. and software
engineering issués arise. We have’ addressed many of these i isstes in the design of the’ Zoltan
dynamic load-balancing library. Zoltan has an object-oriented interface that makes it easy to use
and provides separation between the application and the Ioad-balancmg algorithms. It contains a
suite of dynach load-balancing a]gonthms including both geometnc and graph-based
algorithms! Its design makes it valuable both as a partitioning tool for a variety of applications and
as a research test-bed for new algorithmic development. In this paper, we describe Zoltan’ s design
and demonistrate its use in an unstructured-mesh finite element apphcatlon i

1. INTRODUCTION

In parallel simulations, an important first step is the division of the problem to be solved
among the processors. The goal is to assign work to processors evenly (so ﬁat NO Processors are
idle while others are computing) while keeping inter-processor communication costs low. For
applications with simple data structures (such as regular-grid finite difference schemes in simple
geometries), this division may be done implicitly by the application; i.e., the application divides
the computational domain into equally sized blocks that are assigned to proces;sors. Applications
with more complicated data, geometry and communication requirements, such as finite element
methods on unstructured meshes, need more sophisticated partitioning tools. Several high-quality
static partitioning tools have been developed for such problems, such as Sandia’s Chaco [9] and
METIS from the University of Minnesota [10].

Even more complicated are applications in' which the per—érocessorn work load or the
geometric locality of objects changes as the computationr proceeds so that an initially balanced
decomposition with low communication costs is then either un.balanc‘ed. or has unacceptably hlgh

amounts of communication. For exampfe, adaptive finite element methods adjust the

1. This work was partially funded by the U.S. Department of Energy’s Mathematical, Information and Computational
Sciences Division, and was carried out at Sandia National Laboratories operated for the U.S. Department of Energy
under contract no. DE-ACO4-94AL85000.
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computational mesh (h-refinement) or the degree of the approximation (p-refinement) to satisfy
numerical accuracy’ requu'ements dynarmc loé:i' rbalancmg is needed to redistribute work as the
number of degrees of freedom change§ [5,_,1(4, "15, 16, 19]. In particle methods and contact

detectlon algonthms dyna.mxc redxstnbutxons that mamtam geometnc locahty of nearby parucles
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or, surfaces througlif)ut s:mulatlons can greatly reduce commumcatlon costs and lmprove
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perforrnance of snnulauons [13 17, 22].
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Dynarmc load ba]ancmg poses sxgmﬁcant algonthmxc challenges over stahc
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partmomng [8] Stanc partmomng a]go:inhms are tisua]ly run as pre-p}c;ceésors to apphcatlons,
thus, they can be run serially with only moderate concemn for computation time ‘and memory
usage. Dynamic load balancing algorithms, however, run side-by-side with applications; they must
be implemented in parallel and use little memory so that the load-balancing algorithms do not hurt
the applicati.ons’ scglabi}ity. Dynamic algorithms must also run quickly, as the time to perform
load balancing should not exceed an_apblication’s time to execute in an unbalanced state.
Moreover, dynamic load balancing algorithms take an existing dwomposiﬁon as input. To
establish a new decomposition, data must be moved among processors. This data migration time
can be large relative to the cost of actually computing the new decomposition. Thus, algorithms
that attempt to x}linimize data movement are preferred. We say such algorithms are incremental,
i.e., small changes in processor work loads produce only small changes in the decomposition.

In the development of dynamic load-balancing tc;ols, several software engineering issues
also must be addressed..As pre-processors, static partitioning tools like Chaco [9] and METIS [10]
use a file-based interface; geometry or graph information is read from a file, and the resulting
partition is written to a file which is then read by an application. The file-based interface prevents
any dependencies between the partitioners and an application’s data structures. Because dynamic
load-balancing tools run side-by-side with applications, however, they must have function-call

interfaces. To be general—purpose tools, they must be able to obtain mformauon from applications
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v_yhj}g " ;egggjpigg data-structure newtral; ie., they ‘must_not depend upon any particular
application’s data structures nor restrict the data structures an application may use. Moreofrer,
dynamic load-balancing tools should provide some support for data migration.

- To address the issues described above, we have developed a dynamic load-balancing tool
called ,'Z'oltan [2, 3]. Zoltan is .a suite of dynamic load-balancing algorithms for parallel
applications. It is designed to be flexible, extensible, and easy-to-lise. In the following sections, we
desg_ribe the software engineering solutions developed for Zoltan and demonstrate Zoltan’s use in

an unstructured-mesh finite elerr_xeni'applipation. oL ERRLN

2. LOAD BALANCING TOOLS " :* T

In most applications {lsin.g ‘dynamic load‘balancing, the load—balanci'ng'zlalgorithm is
implemented directly in the application, with close coupling between the applicetioﬁ’.s. and load-
balancing algorithm’s data structures. ﬁﬁs typ‘ical- approach has two disadvmteéeg.:FmL it is
unlikely that the application developer has incorporated the best algorithm into his application, but
he is unable to compefe the algorithm with others without taking time to hnl;le;neet many
algorithms in his application. Second, the close coupling of data structures limits the algorithm’s
use to a single application. Developers wanting to use the algorithm in new applications have to re-
write the algorithm using the new epplications’ data structures. Research into and use of dynamic
load-balaqcin.g algoriqlms are severely impaired.

To overcome these drawbacks, we have designed an objeci-oriented, callback-function
interface to Zoltan that makes it data-structure neutral and allows it to be used easily by many
different applications. The application developer must provide simple functions that return
information such as the nember of objects ‘(el'elﬂnents, particles, etc.) on .a processor, the

coordinates and/or connectivity of the objects, and the corhputational load of the objects Zoltan

then calls these callback functions to get data needed to buﬂd the load-balancmg data structures
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* A typical interaction between an application and the dynamic load-balancing tools is
shown in Figure 1. For this example, the nodes of a finite element mesh are the objects to be
balanced by Zoltan. Through a call to 'LB_Create, memory is allocated to hold pointers to
registered functions, an MPI communicator, and load-balancing data. ‘A pointer to this memory is
passed to all other load-balancing functions. The applicatioii then'selects a load-balancing method
to be used (Recursive Coordination Bisection [1], “RCB” in the example) through a call to
LB_Set_Method. Several callback functions needed by the RCB algofithm are registered through
calls to LB_Set_Fn. These callback functions include application-defined functions to return the
number of objects on the processor (return_num_nodes), a list of the objects (return_node_list),
and the coordinates for a given object (return_coords). After some computation, the application
callsLB llalance to compute a new decomposmon |

With_m _LB Balance, Zoltan follows pomters to the reglstered callback functions to bulld
the data structures needed for the RCB algonthm An array of data is buﬂt, with one entry for each
object owned by the processor. The number of objects is determined by following the
Get_Num_Obj pointer to the return_num_nodes. Storage is allocated for the objects, and lists of
the objects’ identifiers (IDs) are obtained by following the Get_Obj_List function pointer to the
return_node_list. Then, for each object, the object’s coordinates are obtained through calls through
the Ger_Geom function pointer to the registered function return_coords. Once the data structures
are built, the load-balancing library can perform the RCB decomposition and return arrays of
information describing the new decomposition to the application.

This callback function design has a number of advantages Most applications use the
mformanon needed by the callback functions themselves, so the callback functions are generally
very easy to implement. Certainly it is easier for an application developer to write the callback

functions than to build specific data structures (graphs octrees etc ) requued by a partlcular Ioad-

N

balancing algonthm Changes in a load-balancmg algonthm s data structures do not propagate




Application

1b =
LB
LB_,
LB
LB_.

/*
LB

/* Register method and application functions */

LB_Create();
_Set_Method(lb,- *RCB”);. = -+ - C o
Set_Fn(lb, LB_GEOM_FN, return coords, data); ) .
_Set_Fn(lb,” LB_NUM_OBJ_FN, ' Teturn num_ nodes, -data); - T

_Balance (1b, &new, &num_imp, &imp_glob_ids, &imp_loc_ids, &imp_procs,

Set_Fn(lb, LB_OBJ_LIST FN, return_node_;ist, data);

P ——— “ ,-,,. ,.'...--:“\ e mn =i e . I
prata PR - . . :

Call the ioad balancer */

&num_exp, &exp_glob_ids, &exp_loc_ids, &exp_procs);

- - - —

\ Zoltan

/* call registered functlons to bulld RCB data structures */
num_objs = lb->Get_Num_Obj();

allocate memory for object global and local IDs
1b->Get_Objs(global_ids, local_ids);

for (i = 0; i < num objs; i++) {

1b->Data(i]) .Global_Tag = global_ids[i];
1b->bata(i]).Local_Tag = local_ids(i];
1b->Get_Geom(globa1_ids[i],local_ids[i],1b->Data[i].Coords);'

}:
/* perform balancing on lb->Data */

Figure 1. Example demonstrating the interaction between an application and Zoltan.

back to applications. Moreover, once the functions are implemented, applications have access to

all algorithms in Zoltan; no changes are needed to use new technology in Zoltan.

The callback function interface does add some time and memory overhead to the load-

balancing algorithms. A copy of data needed for load balancing is created; however, since only

geometric and/or connectivity information (and not solution information) is needed by Zoltan, this

copy is, in general, ‘much smaller than the application’s data set. Ai)plications often have free

memory available as temporary work space; Zoltan can use this memory and free it upon

completion of load balancing without limiting the scalability of an application. The callback

function protocol also adds some execution time for building the data structures needed by Zoltan.
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In experiments, however, this overhead is only a small fraction of the time needed to compute a

new pamnon

P

} Zoltan’s interface supports both geometnc and gmph-based algonthms Geometnc

R

algorithms require callback functlons that retum object IDs and coordmates for the objects obJect
gzl v 0 zrox_mupdwe (AT TEILL R, O

wexghts for weighted parhﬁonmg are optional. Graph-based algonthrns requ1re callback functlons

. Ddee . [N
that return object IDs and object edge lists descnbmg the connectmty of objects in the application

(e.g., the connectmty of the nodes in a finite element mesh); object and edge weights are optional.

,-

Zoltan ‘currently m—ludes “the Recursive” Coordmate ‘Bisection (RCB) [1] “and Octree
Partitioning [4, 7] geometnc algonthms Graph-ba.s;é‘algonthms are provxded th:ough interfaces
to the ParMETIS [11] and Jostle [21] packages. New algorithms can be added easily by using the
callback functions to build the data structures ﬁged;:d b)-' the new algorithmi Rec.ursive inertial
bisection [20], space-filling curves [6, 22],‘ and additional tree-based p@ﬁonhg algorithms [12]

are currently being added to Zoltan.

3. DATA MIGRATION TOOLS

Data migration is an extremely application-dependent part of establishing new
decompositions. It involves gathering objects from the data structures on one processor, sending
those objects to a new processor, inserting the objects into the new processor’s data structures, and
removing the objects from the original processor. In addition, auxiliary data may have to be sent to
the ne\;v processor to support tl-le objecéts migrated there. For example, in a finite element
application, the “objects” used in load balancing may be finite-element nodes. But when nodes are
migrated to new processors, the elements associated with those nodes must also be sent to the new
processors, increasing the dependence of data migration on the application.

A general-purpose load-balancing library like Zoltan can not perform all the operations
required for data migration in all applications. However, it can assist an application with the

communication required for data migration. Using the results from the load-balancing algorithm,




Zoltarr:}c_nigys_ where data must be sent to establish the new decomposition and can perform all
needed _cé_rgmg_qicatign using comrxlurricaﬁon tools within the library. The application, then, must
specify _flbw,.rg' gather data assoc_iai_eg ;l_ith m1gratmg objects and how to insert that data into the
new processor’s data structures. . ., -

_ Following the registered callback-function design' of its dynamic load-ba]ancing tools

e it - _..._.._..., —

Zoltan provides applications with mJgrauon-help tools that perform the communication necessary

2

for data migration. An example of the mteracnon between an applrcatron and the mlgrauon-help

tools is shown in Flgure 2. As in Figure 1 the apphcauon in thls example is a finite element

..... LA T :

e

the size (in bytes) of the data buffer needed to gather all of one object’s data (node_size), a
functlon that packs one object’s data into a buffer (pack_one, node) and a function that unpacks
one object’s data and inserts it into the new processor s data structure (unpack_one_node). The
application then calls LB_Help_Migrate to perform data migration.

The LB_Help_Migrate function uses the registered functions with the results of the load-
balancing algorithm to.move data between processors. The migration-help tools follow the
Get_Obj_Data_Size function pointer to node_size to obtain the size of the data buffer needed for
an object’s data. They aliocate appropriately sized import arrd export buffers. Through repeated
calls to the registered Pack_Object function (pack_one_node), the migration-help tools fill a
communication buffer with data for each object to be exported. The migration-help tools then send
the export data to other processors and receive import data. For each object imported, the
migration help tools call the registered Unpack Object function (unpack_one_node) to unpack the
data from the import buffer and msert it urto the processor’s data structure. Under this model the

application developer does not have to nnplement additional communication routines to perform

data migration; the migration-help tools handle all connnunication required for data movement.
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Zoltan’s migration-help tools are separate modules from its dynamic load-balancing tools.
Thus, an application does not have to use the migration-help tools even though it uses the dynamic

load-balancing tools to compute a new decomposition. If the application has its own migration

routines, it can use them in conjunction with Zoltan’s load-balancing routines’** *

.?‘Ap'p“cation . for SREAACA ST SOU] ;i NOLMHG- X, 47 - S a1
/* Register packing and unpacking functions */
LB_Set_Fn(lb, LB_OBJECT_SIZE_FN, node_size, data);
LB_Set_Fn{lb, LB_PACK_OBJ_FN, pack_one node, data); TE
LB_Set_Fn(lb, LB_UNPACK_OBJ_FN, unpack_one_node. data);
LB_Help Migrate(lb, &num_-imp, &imp_glob iids,&imp_loc_ids, &imp_procs,
‘ &num_exp, &exp_glob_ids, &exp_loc_ids, &exp_procs);

-eo w R - e ~ e e “r

Zoltan's Migration-Help Tools

size = lb->Get_Obj_Data_Size();
/* pack all objects for export */
for each object i being exported
1b->Pack Object:(exp_global id[i],exp_local_. 1d[1],
‘exp_procs[i], size, export_buf(i]);

/* perform communication using inap */ -
communicate (1b->Comm _Map, export_buf, &import_buf);

/* unpack all imported objects */
for each object i received
1lb->Unpack_Object (imp_global_id([i), size, import_bufl[il);

Figure 2. Example demonstrating the interaction between an application and Zoltan's
migration-help tools.

4. SUMMARY OF ZOLTAN’S INTERFACE

In this section, we describe each of Zoltan’s interface and callback functions. We have
attempted to keep the number of functlons small so that Zoltan will be easy to use in applications.
In Table 1, Zoltan’s interface functions are summarized. They may be called by an application to

perform operations within Zoltan. R

e



-~ Interface Function - -~

------

Description -~ -~ ...,

LB Inifialize -~ -

Imt1al1zes MPI if the application has not already done so.

LB_Create

—-|all other Zoltan mterface functions. = -

Allocates memory for an LB_Struct data structure which

 |stores pointers to registered callback functions, an MPI =~ :
: |communicator to be used in the load-balancing algorithms and

data structures used by load-balancmg algorithms. The address
of the LB_Struct is retumed to the apphcatlon and passed to

’I.l' : lu

LB_Destroy . o 7

Frees memory associated with an LB_Struct data structure. -

LB_Set_Fn

.. |Registers application-defined callback functions and stores

pointers to them in LB_Struct.

LB_Set_Method

Indicates which load-balancing algorithm should be used.

LB_Set_Param

- \",}

" +|Sets parameters to be used in Zoltan; example parameters
J|include tolerance for imbalance, the dimension of object or

edge weights to be used, a debugging level, and algorithm-

-|specific parameters.

LB_Baiance

- -|Calls the load-balancing algorithm in Zoltan lists of objects to

be exported and meorted to establish the new decomposition
are returned.

LB_Free_Data

Frees the lists of export and import data returned by
LB_Balance. ... .;......

LB_Eval

Computes imbalance and edge-cut cost in an existing
decomposition.

LB_Compute_Destinations

Given lists of objects to import on each processor, returns lists
of objects to be exported on each processor; useful in multi-
phase data migration.

LB_Help_Migrate

Performs data migration using the LB_PACK_OBJ_FN and
LB_UNPACK_OBJ_FN callback functions.

Table 1: Summary of Zoltan interface functions.

In Table 2, we describe the callback functions through which applications provide data to

Zoltan. An application does not have to provide all callback functions; it may provide only those

needed by the particular load-balancmg algorithms used. Objects to be load-balanced in the

application must have unique global identifiers (IDs). In addition, they may have local IDs such as

memory addresses or array indices within local processor memory. The data types for both global

and local IDs can be defined by the application. Zoltan stores both global and local IDs for each

object. Zoltan uses only the global IDs, but it passes local IDs to the callback functxons to simplify

data access for the application.




Callback Function .-

Descnptwn e

s

LBNUMOBJFN ot

JA"

i:+"_2.|(required) .

Returns the number of objects owned l;y anprocessor
et B

st f\( L7

LB OBJ LIST FN IR

., et

'
oamizdlh

reibe

ot e LIS

AE e udT e o

‘}r'-LEx.. -0

Retums lists of global and local IDs for objects owned
by a processor. (an LBZOBJ_LIST_FN or an

LB FIRST_OBJ_] FN/LB _NEXT_OBJ_FN pair is
mqm_red) gt 1Lz edy?

Joien e

I8 FIRST OBJ FNJ -~
LB NEXT OBJFN __ .-=%e

i L
-

_— - e - B

~-

|required)

Returns the global and local IDs of the first/next object
owned by & processor; uised as an iterator over all objects

owned by a processor. (an LB_OBJ_LIST_FN or an

=7|LB_FIRST. OBJ FNILB _NEXT_OBJ FNpalrls

v =T t

JLB_ NUM BORDER OBJ FN :

Ceameen iy e - a1

Returns the number of objects owned by a processor that
share a border with a given processor. (optional)

LB_BORDER_OBJ_LIST_FN -~

Retums lists of global and local IDs for owned objects
that share a border with a given processor. (optional)

LB_FIRST_BORDER_OBJ_FN/
LB_NEXT_BORDER_OBJ_FN -

Retumns the IDs of the first/next owned object that shares..
a border with a given processor; used as an iterator over
border objects. (optional)

LB_NUM_EDGES_FN

Given the IDs of an object, returns the number of edges
from that object in the application’s connectivity.
(required for graph-based load-balancing methods)

- {LB_EDGE_LIST_EN

Given the IDs of an object, returns the IDs of all objects
connected to the given object by an edge. (required for
graph-based load-balancing methods)

LB_NUM_GEOM_FN

Given the IDs of an object, returns the number of
coordinates needed to describe the object’s location.
(required for geometric load-balancing methods)

LB_GEOM_FN

| Given the IDs of an object, returns its coordinates
‘|(required for geometric load-balancing methods)

LB_PRE_MIGRATE_FN/
LB_POST_MIGRATE_FN

Allows Zoltan to do application-specified processing
before and after data migration; called by
LB_Help_Migrate. (optional)

LB_OBJ_SIZE_FN

Returns the size of an object to be migrated. (required
only if using migration-help tools)

LB_PACK_OBJ_FN

Given the IDs of an object to be exported, packs the
object’s data into a communication buffer provided by

" |Zoltan. (required only if using migration-help tools)

LB_UNPACK_OBJ_FN

Given the global ID of an object to be imported, unpacks
the object’s data from a communication buffer and
inserts it into the application data structures on the new
processor. (required only if using migration-help tools)

Table 2: Summary of Zoltan interface functions.
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5. EXAMPLE .. PR -

" """ To examine the overhead cost of Zoltan in 4 real application, we incorporated Zoltan into
MPSalsa, an unstruétmed—mesh finite element code for simulating chemically reacting flows [18].
The matrix-fill operation for multi-physics simulations in MPSalsa can be hxg"hly';mbalanced, and
the computational Gosts of each regime cansigt necessarily be predicted iffzidi}éﬂc.:e."Fof'exampIe,
in the catalytic partial-oxidation reactor shown in Figure 3, three different regior]s'iii'é modeled. In

the reactor wall (shown as the shaded region of Figure 3), only heat transfer is modeled;

computation time per node is approximately 0.006 seconds. In the volume of the reactor (the

“~i
~

cross-hatched region), the “whole enchilada” - heat transfer, mass transfer, fluid flow, and gas-
phase reactions with 22 species — is modeled; computation time per node is approximately 0.05
seconds. On the surface where the catalyst is located (the dark line), the “whole enchilada” and
surface reactions are modeled. The surface reactions are very expensive to compute, as a small
non-linear solve is performed at each node to compute site deposition fractions. The resulting
computation time per surface node is approxim&ly 9.0 seconds. Even though the reacting surface
contains less than 2% of the nodes in the en.tire mesh, the disparate cornputéﬁon times lead to great

load imbalance.

Reactor wall: Heat transfer only; 1,552 nodes; Weight/node = 0.006

...........................

Reactor volume: " Reacting surface:
“Whole enchilada” with 22 species “Whole enchilada” + surface reactions
1,976 nodes; Weight/node = 0.05 61 nodes; Weight/node = 9.0

Figure 3. Catalytic partial-oxidation reactor configuration and computational weight used by
Zoltan in an unstructured-mesh finite-element multiphysics simulation.

The implementation of the callback functions for load balancing required fewer than 200
lines of C code in MPSalsa, demonstrating that Zoltan’s interface is clean and easy to use.

Manipulation of data structures for data migration required many more lines of code, as different

s ¥a
- ew et

types of entities (nodes, elements and faces) had to be moved.

W oe

However,  no_additional

’
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communication routines were written in MPSalsa to perform data migration; Zoltan perform’ed all
communication qur data rrligr_ation;f: separate migration phase was used for each type of entity. In
each phase, appropriate packing and unpacking callback functions were registered with Zoltan,
and LB_Help_Migrate wascalled. _ .. ., . .

. The performance of Zoltan in MPSalsa is summarized in Table 3. Using 50 processors of
the Sandia/Intel Tflops (ASCI Red) computer, we ran MPSalsa using an initial decomposition
generated by the RCB algorithm without weights on the finite element nodes. We then performed
MPSalsa’s matrix-fill operation, which réquired 82.22 seconds. During the matrix-fill operation,
nodal computation times were measured and stored. These nodal computation times were used as
weights in Zoltan to compute a new RCB decomposition. Using this new decomposition, the time
for subsequent matrix-fill operations was reduced 53% for this problem.

The cost of load balancing and data migration in this experiment was less than 2% of the
original matrix fill time. The time to compute the new decomposition was 0.28 seconds. Of this
time, the actual RCB computation required 0.17 seconds; Zoltan added 0.11 seconds or overhead
for executing the callback functions and building the arguments returned by Zoltan. Data
migration required 1.14 seconds. Of this time, Zoltan used 0.17 seconds to actually move data
among the processors; the remaining rime was required by MPSalsa to rebuild MPSalsa data

structures such as a solution vector and Jacobian matrix.

6. CONCLUSION AND FUTURE WORK

We have described many of the problems involved in designing general-purpose dynamic
load-balancing tools and demonstrated solutions in the implementation of the Zoltan library.
Zoltan’s object-oriented interface provides separation between the data structures of applications
and load-balancing algorithms, enabling the iibrary to be used By a wide variety of applications.

Zoltan contains a suite of load-balancmg methods, mcludmg both geometnc and graph-based

“, -

— - B O

methods. Tlus tool-krt approach has advantéges for both apphcahon developers and researchers

12




~0.00007 seconds
RCB Algorithm 0.17 seconds
Bu11d Return Arguments : ) 0.11 seconds

= Mlgratxonof nodes, elements and faces. ‘ 0.17 seconds
Rebulldmg soluuon vector, matrix, etc. «-x- { _, 0.97 seconds . | i ~uzz o

"

Table 3: Peﬂ'on;fimce of Zoltan in an unstructured-mesh ﬁmte-element multtphyszcs smulatton.

- .
-

P 'l

By providing a number of different types of algorithms, Zoltan allows application developers to
experiment easily to find the best methods for their applications. For researchers, Zoltan enables
easy incorporation of new algorithms and provides good implementations of standard algorithms
to which fair comparisons may be made.

In static partitioning, comparisons of algorithms are performed based on their execution
times and quality of partition (measured by the partition’s load distribution and communication
costs). Comparisons of dynamic load-balancing algorithms, however, must also account for the
data migration costs of a new partition. Using Zoltan, we will investigate the relative importance of
partition quality, time to compute new partitions, and data migration costs in a number of
applications. For some applications, lower-quality partitions may be acceptable if data migration
costs can be minimized. Other applications may perform better with high-quality partitions,
regardless of the cost of obtaining them. Zoltan’s design enables such comparisons. Since it
includes a suite of methods, many different methods can be tried in a single application. And
because it is easy to incorporate Zoltan in new applications, load-balancing algorithms’
performance can be analyzed in different types of simulations.

Heterogeneous computing architectures create new challenges in'vdjr'lamic load belaneinO.

Partitioning algonthms must account for w1de1y va:ymg processor powers, memory capacities,
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and network connecnons to ) correctly balance load, prevent memory overﬂows, and reduce
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processors is ineffective in such systems Instead, a simulation must obtain a set of processors,

determine the charactenstlcs of the processors and network, partmon based on “those

charactenstws and then execute. Tools and algonthms “will be needed to prov1de thls capab1hty
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- To address thls need we have completed the de31gn of a heterogeneous computmg ‘model
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for Zoltan. Thls work is a collaboratxon Wlth Karypls and Kumar (Umv of Mlnnesota) The model
represents a heterogeneous cornputmg system as a hierarchy of components. The top level of the
hierarchy represents the topology and network speeds of the entire system. The intermediate levels
represent components of the computer, including the topology and network speeds of the
components. The lowest level of the 'hierarchy represents the individual processors with their
computing power and memory size. Using this model, we will partition both the machine and the
application data in an attempt to create partitions having equal execution times and communicating
mostly across fast network links. Karypis and Kumar will incorporate the model into the
ParMETIS library [11] which provides graph-partitioning capabilities in Zoltan. We will
incorporate the model into other existing algorithms in Zoltan and will use the model in the design

of new algorithms specifically for heterogeneous architectures.
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