2. ECN Category (mark one)
 - Supplemental
 - Direct Revision [X]
 - Change ECN
 - Temporary
 - Standby
 - Supersede
 - Cancel/ Void

3. Originator's Name, Organization, MSIN, and Telephone No.
 Clarence Homi, Evaluation and Planning, R2-12, 373-1097

3a. USG Required? [X] No

4. Date
 05/09/96

5. Project Title/No./Work Order No.
 Tank 241-U-106

 241-U-106

7. Approval Designator
 N/A

8. Document Numbers Changed by this ECN (includes sheet no. and rev.)
 WHC-SD-WM-TP-245, Rev. 0-B

9. Related ECN No(s).
 ECNs: 614164, 617842

10. Related PO No.
 N/A

11a. Modification Work
 [X] No (NA Blks. 11b, 11c, 11d)

11b. Work Package No.
 N/A

11c. Modification Work Complete
 N/A

11d. Restored to Original Condition (Temp. or Standby ECN only)
 N/A

12. Description of Change
 Complete revision.

13a. Justification (mark one)
 - Criteria Change [X]
 - Design Improvement
 - Environmental
 - Facility Deactivation
 - As-Found
 - Facilitate Const
 - Const. Error/Omission
 - Design Error/Omission

13b. Justification Details
 Changed to comply with new template and DOE-RL recommended modifications.

14. Distribution (include name, MSIN, and no. of copies)
 See attached distribution.
ENGINEERING CHANGE NOTICE

ECN-631573

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Yes</td>
<td>ENGINEERING</td>
<td>CONSTRUCTION</td>
</tr>
<tr>
<td>[X] No</td>
<td>Additional</td>
<td>Additional</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>Savings</td>
<td>Savings</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

18. Change Impact Review: Indicate the related documents (other than the engineering documents identified on Side 1) that will be affected by the change described in Block 12. Enter the affected document number in Block 19.

<table>
<thead>
<tr>
<th>SDD/DD</th>
<th>Seismic/Stress Analysis</th>
<th>Tank Calibration Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Design Criteria</td>
<td>Stress/Design Report</td>
<td>Health Physics Procedure</td>
</tr>
<tr>
<td>Operating Specification</td>
<td>Interface Control Drawing</td>
<td>Spares Multiple Unit Listing</td>
</tr>
<tr>
<td>Criticality Specification</td>
<td>Calibration Procedure</td>
<td>Test Procedures/Specification</td>
</tr>
<tr>
<td>Conceptual Design Report</td>
<td>Installation Procedure</td>
<td>Component Index</td>
</tr>
<tr>
<td>Equipment Spec.</td>
<td>Maintenance Procedure</td>
<td>ASME Coded Item</td>
</tr>
<tr>
<td>Const. Spec.</td>
<td>Engineering Procedure</td>
<td>Human Factor Consideration</td>
</tr>
<tr>
<td>Procurement Spec.</td>
<td>Operating Instruction</td>
<td>Computer Software</td>
</tr>
<tr>
<td>Vendor Information</td>
<td>Operating Procedure</td>
<td>Electric Circuit Schedule</td>
</tr>
<tr>
<td>OM Manual</td>
<td>Operational Safety Requirement</td>
<td>ICRS Procedure</td>
</tr>
<tr>
<td>FSAR/SAR</td>
<td>IEFD Drawing</td>
<td>Process Control Manual/Plan</td>
</tr>
<tr>
<td>Safety Equipment List</td>
<td>Cell Arrangement Drawing</td>
<td>Process Flow Chart</td>
</tr>
<tr>
<td>Radiation Work Permit</td>
<td>Essential Material Specification</td>
<td>Purchase Requisition</td>
</tr>
<tr>
<td>Environmental Report</td>
<td>Inspection Plan</td>
<td></td>
</tr>
<tr>
<td>Environmental Permit</td>
<td>Inventory Adjustment Request</td>
<td></td>
</tr>
</tbody>
</table>

19. Other Affected Documents: (NOTE: Documents listed below will not be revised by this ECN.) Signatures below indicate that the signing organization has been notified of other affected documents listed below.

<table>
<thead>
<tr>
<th>Document Number/Revision</th>
<th>Document Number/Revision</th>
<th>Document Number Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Approvals

<table>
<thead>
<tr>
<th>OPERATIONS AND ENGINEERING</th>
<th>Signature</th>
<th>Date</th>
<th>ARCHITECT-ENGINEER</th>
<th>Signature</th>
<th>Date</th>
<th>DEPARTMENT OF ENERGY</th>
<th>Signature or a Control Number that tracks the Approval Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA</td>
<td></td>
<td></td>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environ.</td>
<td></td>
<td></td>
<td>Environ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other T.M. Brown</td>
<td>[Signature]</td>
<td>5/19/94</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT OF ENERGY

<table>
<thead>
<tr>
<th>Signature or a Control Number that tracks the Approval Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

A-7900-013-3 (11/94) GEF096
Tank 241-U-106 Tank Characterization Plan

C. S. Homi
Westinghouse Hanford Company, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-87RL10930

EDT/ECN: ECN-631573 UC: 2070
Org Code: 79200 Charge Code: N4G6A
B&R Code: EW 3120074 Total Pages: 7

Key Words: Characterization, General Safety Issues, Specific Safety Issues, Information Requirements, Schedule

Abstract: This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-U-106.
<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change - Replace, Add, and Delete Pages</th>
<th>Authorized for Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>WHC-SD-WM-TP-245, REV. 0, EDT 605702, August 17, 1994</td>
<td></td>
</tr>
<tr>
<td>OA</td>
<td>Changed pages 3, 4, 6, 10, ECN 614164</td>
<td></td>
</tr>
<tr>
<td>RS 0B</td>
<td>Added page(s) 1a and Appendix A, ECN-617842</td>
<td>C.S. Homi, 2/1/75</td>
</tr>
<tr>
<td>RS 1</td>
<td>Incorporate per ECN-631573</td>
<td>C.S. Homi, 5/9/76</td>
</tr>
</tbody>
</table>
Tank 241-U-106
Tank Characterization Plan

T. M. Brown
Westinghouse Hanford Company

Date Published
May 1996

Prepared for the U.S. Department of Energy
Office of Environmental Restoration and
Waste Management

Westinghouse
Hanford Company

Management and Operations Contractor for the
U.S. Department of Energy under Contract DE-AC06-87RL10930

Approved for Public Release
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1

2.0 PROGRAM ELEMENTS REQUIRING INFORMATION FOR TANK 241-U-106 1

2.1 GENERAL SAFETY ISSUES 2

2.2 SPECIFIC SAFETY ISSUES 2

2.2.1 Ferrocyanide .. 2
2.2.2 Organic .. 2
2.2.3 High Heat .. 2
2.2.4 Flammable Gas .. 2
2.2.5 Vapor .. 2
2.2.6 Criticality ... 3

2.3 CONTINUING OPERATIONS 3

2.3.1 Compatibility/Stabilization 3
2.3.2 Evaporator ... 3

2.4 DOUBLE-SHELL TANK WASTE ANALYSIS PLAN 3

2.5 DISPOSAL .. 3

2.5.1 Retrieval .. 3
2.5.2 Pretreatment/Vitrification 3

2.6 HISTORICAL MODEL EVALUATION 3

3.0 HOW INFORMATION WILL BE OBTAINED 4

4.0 PRIORITY OF INFORMATION REQUIREMENTS 4

5.0 WHEN INFORMATION WILL BE AVAILABLE 5

6.0 REFERENCES .. 5

LIST OF TABLES

4-1 Integrated DQO Requirements and Priorities 4
1.0 INTRODUCTION

This Tank Characterization Plan (TCP) identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of single-shell tank 241-U-106 (U-106). It should be understood that the various needs and issues surrounding tank U-106 are evolving as new information about the tank is uncovered. As a result of this progression, this TCP addresses only the issues that, to this date, have been identified. It is expected that deviations from this plan may occur as additional issues or needs arise which impact the management of tank U-106. As necessary, this TCP will be revised to reflect those changes or deviations. This plan reflects the best information available as of May 1996.

Tank U-106 was constructed between 1943 and 1944 and was put into service in the second quarter of 1948. Initially tank U-106 received metal waste until the fourth quarter of 1956. In the first quarter of 1957, the heel was sluiced and the tank was declared empty. The tank remained empty until the third quarter of 1960 when it received Reduction Oxidation (REDOX) waste. The tank continued to receive REDOX waste until the fourth quarter of 1975 when it received Plutonium Uranium Extraction (PUREX) and B Plant low-level waste. The tank began to receive 242-S bottoms and recycle wastes during the following quarter. The tank contained evaporator bottoms and feed, residual evaporator liquor, and Hanford defense residual liquor from the first quarter of 1976 until the first quarter of 1978. In the second quarter of 1978, the tank was classified as containing complexed waste. Presently, the waste is classified as non-complexed (Brevick et al. 1995).

Tank U-106 currently contains a total volume of 855 kL (226 kgal) of waste, which is equivalent to 197 cm (78 in) of waste as measured from the baseline of the tank (Hanlon 1996).

This tank is on the Organic Watch List.

Near-term sampling and analysis activities are focused on either verifying or changing the Watch List tank status, and identifying any new safety issues. Should any safety issues be identified, additional analysis will occur consistent with the identified issue.

In addition to the resolution of the safety issues, it is intended that all tank waste will be subject to pretreatment and retrieval to prepare for final storage or disposal. Presently, these long-range plans have yet to be fully identified and are, therefore, not included in this document.

2.0 PROGRAM ELEMENTS REQUIRING INFORMATION FOR TANK 241-U-106

This section identifies the various program elements, and identifies which of these programs require characterization data from tank U-106.
2.1 GENERAL SAFETY ISSUES

The Tank Safety Screening Data Quality Objective (Dukelow et al. 1995) describes the sampling and analytical requirements that are used to screen waste tanks for unidentified safety issues. Analytical requirements for the safety screening of a tank are energetics, total alpha activity, moisture content, density, and flammable gas concentration.

2.2 SPECIFIC SAFETY ISSUES

2.2.1 Ferrocyanide

This tank is not on the Ferrocyanide Watch List; therefore, no information needs are currently identified for this program element.

2.2.2 Organic

This tank is on the Organic Watch List. Sampling and analysis requirements must be performed per the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Turner et al. 1995). The analyses employed will determine the total organic carbon (TOC), energetics, presence of a free organic liquid phase, and moisture content.

2.2.3 High Heat

This tank is not on the High Heat Watch List; therefore, no information needs are currently identified for this program element.

2.2.4 Flammable Gas

This tank is not on the Flammable Gas Watch List; therefore, no information needs are currently identified for this program element.

2.2.5 Vapor

All 177 underground tanks must be vapor-sampled for organic solvent screening as per Recommendation 93-5 Implementation Plan (DOE-RL 1996). Some tanks may require additional vapor sampling due to other program needs. These tanks may be classified into four categories: (1) those tanks which are to be rotary mode core sampled (as a consequence of the rotary sampling system exhauster permit requirements); (2) tanks on the Organic or Ferrocyanide Watch Lists; (3) tanks in C farm; and (4) tank 241-BX-104, due to vapor exposure. Information needs must satisfy Data Quality Objectives for Tank Hazardous Vapor Safety Screening (Osborne and Buckley 1995), and for rotary mode only, Rotary Core Vapor Sampling Data Quality Objective (Price 1994) and Data Quality Objective for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey and Markillie 1995) as amended by Status of the Current Understanding of the Toxic Air Pollutants (TAPS) and Hanford Tank Farm Vapor Space Characterization; Recommended Path Forward and Justification for Continued RMCS Exhauster Operations (Laws 1996).
Tank U-106 was vapor sampled in March 1995 in support of Osborne et al. (1995).

2.2.6 Criticality

No information separate from that for the general safety issue of tank U-106 are currently identified for this program element. However, if the general safety screening of tank U-106 identifies a potential criticality concern, analyses for fissile materials and neutron absorbers and poisons will be performed as identified in the safety screening data quality objective.

2.3 CONTINUING OPERATIONS

2.3.1 Compatibility/Stabilization

This section does not apply to tank U-106.

2.3.2 Evaporator

This section does not apply to tank U-106.

2.4 DOUBLE-SHELL TANK WASTE ANALYSIS PLAN

This section does not apply because tank U-106 is a single-shell tank.

2.5 DISPOSAL

2.5.1 Retrieval

Current retrieval needs (Bloom and Nguyen 1995) do not call for test samples to be taken from tank U-106.

2.5.2 Pretreatment/Vitrification

Tank U-106 has not been identified as a bounding tank for pretreatment/disposal process development strategy (Kupfer et al. 1995). All tanks were prioritized using the pretreatment strategy in the Tank Waste Characterization Basis (Brown et al. 1995) document and a portion of archive sample material could be used for pretreatment testing if available. The strategy does not require any specific analyses to be done on the samples.

2.6 HISTORICAL MODEL EVALUATION

This tank is identified as an acceptable alternative for bounding tanks SX-104, SX-108, and S-110 in Historical Model Evaluation Data Requirements (Simpson and McCain 1995). The applicability of these analyses will be determined based on the tanks SX-104, SX-108, and S-110's sampling and analysis and will be documented in the tank specific sample and analysis plan.
3.0 HOW INFORMATION WILL BE OBTAINED

The number of samples required to characterize a tank is a function of waste heterogeneity and the desired confidence to make a correct decision. As directed by the safety screening DQO, if inadequate information exists to determine an appropriate number of samples, two vertical profiles will be obtained. These vertical profiles may be obtained using core, auger (for shallow tanks), or grab samples. If analysis of these profiles reveals that additional profiles are necessary to meet data needs, more sample profiles will be requested.

4.0 PRIORITY OF INFORMATION REQUIREMENTS

Vapor sampling was completed in March 1995. Grab sampling was completed in September 1994. Push mode sampling began in May 1996 (Stanton 1996). Refer to Table 4-1 for current DQO requirements and planned sampling and analytical requirements.

Table 4-1: Integrated DQO Requirements and Priorities

<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>Applicable Issues</th>
<th>Sampling Requirements</th>
<th>Analytical Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor</td>
<td>Organic Solvent Layer 93-5 Vapor Issue - Hazardous Vapor DQO</td>
<td>Steel canisters, Triple Sorbent Traps, Sorbent Trap Systems</td>
<td>Flammable Gas Energetics, Total alpha activity, Moisture, Density, Total organic carbon, Separable organics</td>
</tr>
<tr>
<td>Push Core Sampling</td>
<td>-Safety Screening DQO -Organic DQO</td>
<td>Core samples from 2 risers separated radially to the maximum extent possible. Combustible gas measurement</td>
<td>Flammability, Energetics, Moisture, Energetics, Total alpha activity, Moisture, Density, Total organic carbon, Separable organics</td>
</tr>
<tr>
<td>Grab Sampling</td>
<td>-Compatibility DQO</td>
<td>Grab sample</td>
<td>Energetics, Moisture, Anions, Cations, Radionuclides, Specific gravity, pH, Separable organics, Total organic carbon, Total inorganic carbon, percent solids</td>
</tr>
</tbody>
</table>

* Consult each applicable DQO in force at the time for sampling and analytical requirements.
5.0 WHEN INFORMATION WILL BE AVAILABLE

According to Stanton (1996), data are expected to be available from the push mode sampling event for tank U-106 in September 1996. This time may be altered if the sampling schedule changes. Data are available from the September 1994 grab sampling and the March 1995 vapor sampling.

6.0 REFERENCES

Laws, G. L., 1996, Status of the Current Understanding of the Toxic Air Pollutants (TAPS) and Hanford Tank Farm Vapor Space Characterization; Recommended Path Forward and Justification for Continued RMCS Exhauster Operations, (telephone conference memorandum 01830-96-022, to Distribution, March 8), Westinghouse Hanford Company, Richland, Washington.

5

DISTRIBUTION SHEET

<table>
<thead>
<tr>
<th>To</th>
<th>From</th>
<th>Page</th>
<th>Date</th>
<th>EDT No.</th>
<th>ECN No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Evaluation and Planning</td>
<td></td>
<td></td>
<td>05/09/96</td>
<td>N/A</td>
<td>ECN-631573</td>
</tr>
</tbody>
</table>

Project Title/Work Order

Project Title/Work Order

Name	**MSIN**	**Text Only**
W. Liou | S7-54 | X
N. W. Willis | S7-54 | X

Westinghouse Hanford Company

- T. M. Brown | R2-12 | X
- G. D. Forehand | S7-21 | X
- C. S. Horn | R2-12 | X
- Central Files | A3-88 | X
- T.C.R.C. | R2-12 | X

OFFSITE

U. S. Department of Energy - Headquarters

Office of Environmental Restoration and Waste Management EM-563

12800 Middlebrook Road

Germantown, MD 20874

- J. A. Poppiti | X