The short-range order (SRO) present in disordered solid solutions is classified according to three characteristic system-dependent energies: (1) formation enthalpies of ordered compounds, (2) enthalpies of mixing of disordered alloys, and (3) the energy of coherent phase separation, (the composition-weighted energy of the constituents each constrained to maintain a common lattice constant along an A/B interface). These energies are all compared against a common reference, the energy of incoherent phase separation (the composition-weighted energy of the constituents each at their own equilibrium volumes). Unlike long-range order (LRO), short-range order is determined by energetic competition between phases at a fixed composition, …
continued below
Publisher Info:
Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
Place of Publication:
Albuquerque, New Mexico
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
The short-range order (SRO) present in disordered solid solutions is classified according to three characteristic system-dependent energies: (1) formation enthalpies of ordered compounds, (2) enthalpies of mixing of disordered alloys, and (3) the energy of coherent phase separation, (the composition-weighted energy of the constituents each constrained to maintain a common lattice constant along an A/B interface). These energies are all compared against a common reference, the energy of incoherent phase separation (the composition-weighted energy of the constituents each at their own equilibrium volumes). Unlike long-range order (LRO), short-range order is determined by energetic competition between phases at a fixed composition, and hence only coherent phase-separated states are of relevance for SRO. The authors find five distinct SRO types, and show examples of each of these five types, including Cu-Au, Al-Mg, GaP-InP, Ni-Au, and Cu-Ag. The SRO is calculated from first-principles using the mixed-space cluster expansion approach combined with Monte Carlo simulations. Additionally, they examine the effect of inclusion of coherency strain in the calculation of SRO, and specifically examine the appropriate functional form for accurate SRO calculations.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Wolverton, W.; Ozolins, V. & Zunger, Alex.Short-range order types in binary alloys: A reflection of coherent phase stability,
article,
November 23, 1999;
Albuquerque, New Mexico.
(https://digital.library.unt.edu/ark:/67531/metadc702132/:
accessed October 13, 2024),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.