A multi-dimensional procedure for BNCT filter optimization

PDF Version Also Available for Download.

Description

An initial version of an optimization code utilizing two-dimensional radiation transport methods has been completed. This code is capable of predicting material compositions of a beam tube-filter geometry which can be used in a boron neutron capture therapy treatment facility to improve the ratio of the average radiation dose in a brain tumor to that in the healthy tissue surrounding the tumor. The optimization algorithm employed by the code is very straightforward. After an estimate of the gradient of the dose ratio with respect to the nuclide densities in the beam tube-filter geometry is obtained, changes in the nuclide densities ... continued below

Physical Description

11 p.

Creation Information

Lille, R.A. February 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

  • Oak Ridge National Laboratory
    Publisher Info: Oak Ridge National Lab., Computational Physics and Engineering Div., TN (United States)
    Place of Publication: Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An initial version of an optimization code utilizing two-dimensional radiation transport methods has been completed. This code is capable of predicting material compositions of a beam tube-filter geometry which can be used in a boron neutron capture therapy treatment facility to improve the ratio of the average radiation dose in a brain tumor to that in the healthy tissue surrounding the tumor. The optimization algorithm employed by the code is very straightforward. After an estimate of the gradient of the dose ratio with respect to the nuclide densities in the beam tube-filter geometry is obtained, changes in the nuclide densities are made based on: (1) the magnitude and sign of the components of the dose ratio gradient, (2) the magnitude of the nuclide densities, (3) the upper and lower bound of each nuclide density, and (4) the linear constraint that the sum of the nuclide density fractions in each material zone be less than or equal to 1.0. A local optimal solution is assumed to be found when one of the following conditions is satisfied in every material zone: (1) the maximum positive component of the gradient corresponds to a nuclide at its maximum density and the sum of the density fractions equals 1.0 or, and (2) the positive and negative components of the gradient correspond to nuclides densities at their upper and lower bounds, respectively, and the remaining components of the gradient are sufficiently small. The optimization procedure has been applied to a beam tube-filter geometry coupled to a simple tumor-patient head model and an improvement of 50% in the dose ratio was obtained.

Physical Description

11 p.

Notes

INIS; OSTI as DE98004892

Source

  • Radiation protection and shielding topical meeting: technologies for the new century, Nashville, TN (United States), 19-23 Apr 1998; Other Information: DN: [711 434226].

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98004892
  • Report No.: ORNL/CP--96685
  • Report No.: CONF-980403--
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 672026
  • Archival Resource Key: ark:/67531/metadc701887

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 3, 2016, 6:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lille, R.A. A multi-dimensional procedure for BNCT filter optimization, article, February 1, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc701887/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.