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The purpose of this project is to explore the GPU for general purpose computing.  The 

GPU is a massively parallel computing device that has a high-throughput, exhibits high 

arithmetic intensity, has a large market presence, and with the increasing computation power 

being added to it each year through innovations, the GPU is a perfect candidate to complement 

the CPU in performing computations.  The GPU follows the single instruction multiple data 

(SIMD) model for applying operations on its data.  This model allows the GPU to be very useful 

for assisting the CPU in performing computations on data that is highly parallel in nature.  The 

compute unified device architecture (CUDA) is a parallel computing and programming platform 

for NVIDIA GPUs.  The main focus of this project is to show the power, speed, and performance 

of a CUDA-enabled GPU for digital video watermark insertion in the H.264 video compression 

domain.  Digital video watermarking in general is a highly computationally intensive process 

that is strongly dependent on the video compression format in place.  The H.264/MPEG-4 AVC 

video compression format has high compression efficiency at the expense of having high 

computational complexity and leaving little room for an imperceptible watermark to be inserted. 

Employing a human visual model to limit distortion and degradation of visual quality introduced 

by the watermark is a good choice for designing a video watermarking algorithm though this 

does introduce more computational complexity to the algorithm.  Research is being conducted 

into how the CPU-GPU execution of the digital watermark application can boost the speed of the 

applications several times compared to running the application on a standalone CPU using 

NVIDIA visual profiler to optimize the application. 
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CHAPTER 1 

INTRODUCTION 

1.1.  Overview 

 Today's computers are heterogeneous CPU-GPU computing systems.  The CPU, at the 

moment, is a multi-core system designed to work on general computing of data that is serial in 

nature and maintain the execution speed of sequential programs.  The GPU is a massive parallel 

computing platform supporting many-core (or many-threads) processor comprising of many 

arithmetic units to work on data that is parallel in nature.  The GPU’s primary role is to support 

2D and 3D graphics, audio-, image-, and video-processing, video games, visual computing, and 

graphical user interfaces for today's complexly designed operating systems.   Recent additions to 

the GPU such as programming instructions, multiple gigabytes of graphic double data rate 

(GDDR) DRAM supporting a wider bandwidth for higher throughput, more highly threaded 

streaming multiprocessors (SMs) and streaming processors (SPs), unified graphics and 

computing processors, programmable processors, and most importantly, a generic data-parallel 

computation model for non-graphics applications, have enabled non-graphics programmers to 

take advantage of the massive parallel computing power of the GPU for developing applications.  

However, there is one major limitation to the GPU and that is, the data has to be parallel in 

nature for the GPU to be effective at processing it in a highly efficient manner. 

 A digital watermark is the insertion of an image in a robust and visible or invisible 

manner inside an image or video for the purposes of protecting intellectual property (IP) and 

enforcing copyright protection.  Various implementations have been proposed for images and 

video.  Inserting a watermark into a video comes with its own challenges and computational 

complexities.  What complicates this matter even more is the video compression format of the 
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video the digital watermark is being inserted into, such as the H.264/MPEG-4 AVC (or H.264 

for short).  Compression is needed for videos that involve storage and/or transmission such as 

movies and streaming video.   

 By their very nature, digital watermarking and video compression formats such as H.264 

are computationally intensive tasks.  Real-time encoding of video streams using a digital 

watermarking scheme is extremely computationally intensive.  Being able to support high video 

quality and high throughput while minimizing distortion in a reasonable amount of time is a 

daunting task.  Fortunately, the encoding and decoding stage of the H.264 video compression 

and the inserting of the digital watermarking do contain operations that can be parallelized such 

as computing DCT coefficients from macroblocks, variable block size motion estimation 

implementation, inter prediction, and intra prediction to name a few. 

 

1.2.  Heterogeneous CPU-GPU Computing Systems 

 Modern GPUs are massive parallel processors that are designed to support many threads 

and are throughput oriented.  They are designed to complement the CPU, not replace it.  This is 

because the GPUs do not perform well on some tasks that the CPU is designed to perform well 

on, such as tasks that are serial in nature.  For application tasks that are low latency and only 

have a few threads, the CPU is the best choice.  For application tasks that have a long latency, 

high throughput, and are parallel in nature, the GPU is the best choice.  The GPU is also a good 

choice for handling numerically intensive tasks because of the many arithmetic units the GPU 

supports.  Thus, a CPU-GPU computing system is needed to tackle the many tasks that are 

presented in the system and execution of an application.   
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 The heterogeneous CPU-GPU system consists of the host, the CPU, and 1 or more GPU 

devices.  To support the heterogeneous CPU-GPU execution of an application, NVIDIA 

developed CUDA as a generic data-parallel programming computation model for non-graphics 

applications.  This facilitated the ease at which non-graphics programmers can take advantage of 

the GPU parallel computing capabilities. 

   

1.2.1.  Parallel Programming 

 Many modern applications process huge amounts of data.  Much of the data is modeled 

on physical phenomena.  Much of the data in these systems can be evaluated independently thus 

forming the basis for data parallelism.  This data parallelism needs to be exploited by devices 

such as the GPU and more importantly, by languages such as CUDA that support massive 

parallelism and heterogeneous computing.  CUDA C is a runtime system that is an extension of 

the C language and is a parallel computing platform for NVIDIA GPUs.  This language supports 

many threads to exploit the data parallelism inherent in physical phenomena.  OpenACC, is a 

standard for parallel computing using compiler directives to facilitate parallel programming of 

heterogeneous computing systems such as CPU-GPU systems.   

 

1.3.  Digital Watermark on H.264 Compressed Video 

 Digital watermarking is an image inserted into images or videos to protect IP and enforce 

copyright protection for businesses and industry [1].  Video watermarks tend to be used in video 

applications such as broadcast monitoring, source tracking, and copyright protection. 

 Digital watermarking is a form of information hiding related to steganography with the 

distinction being that digital watermarks are robust to malicious or accidental attacks.  The three 

3 



aspects of information hiding are security, capacity, and robustness.  Security deals with the 

detection of information, capacity deals with the amount of bits hidden, and robustness deals 

with resistance to accidental and malicious modifications.  With robustness being desirable for 

copyright protection schemes, video watermarking algorithms normally prefer robustness. 

Removal of the watermark will introduce severe degradation.   

 H.264 is an industry standard video compression format (or specification) for reducing 

video capacity size for storage and/or transmission.  It is useful for many applications dealing 

with recording, compression, and distribution such as Blu-ray disc, broadcast, mobile digital, and 

digital satellite TV, high definition recording formats, internet streaming video, video 

surveillance, and many more applications dealing with multimedia.  H.264 is a specification only 

for encoding videos for video compression and decoding videos for decompression for storage 

and/or transmission.  The video codec is the actual software or hardware implementation of a 

specific video compression format such as the H.264 format and once the video is encoded, it 

can be bundled with the compressed audio such as the advanced audio coding (AAC) in a 

multimedia container format such as MP4.  The container format can then be used for playback 

in a software video player. 

 H.264 encoding involves many states: inter/intra prediction, calculating the residuals, 

transformation, quantization, and entropy coding.  H.264 decoding contains the reverse 

operations: entropy decoding, rescaling, inverse transform, and reconstruction from the decoded 

residual macroblock (MB) and prediction MB.  Video watermarking for the H.264 format can 

take place during the H.264 encoding stages and generally happens before or after quantization, 

which is of course, dependent on the algorithm.  Other schemes decode and re-encode the video 
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for watermark embedding while other schemes embed the watermark in the compressed domain 

using techniques such as embedding the watermark in the residual of the I-frames. 

 

1.3.1.  Parallel Processing of Digital Watermarking and H.264 Operations 

 Digital watermarking and H.264 operations on video can be very computationally 

intensive depending on the application, the amount of spatial detail and motion in the video, and 

the length of the video.  Real-time watermarking adds more complexity to this process and thus, 

it is difficult to achieve high quality video with a real-time watermark in a reasonable amount of 

time.  H.264 encoding also aims to minimize the coded bitrates and maximize the decoded 

quality of the video and at the same time, the watermark tries to minimize the distortion 

introduced.  This introduces computational complexity to the video encoding and decoding 

processes. 

 The CUDA C language enhances the programmability and flexibility of a GPGPU 

application, and being able to offload the H.264 coding and watermark process on the GPU 

would greatly increase the speed of the application.  To accomplish this, the data itself would 

have to be parallelizable.  Also, the data access to the global memory and memory transfers 

between the CPU and GPU would have to be reduced, thus increasing the usage of the shared 

memory in the SMs for the parallel algorithm to be of good use. 

 The algorithms for the H.264 compression and digital watermark are block-based and the 

key feature of these blocks is that they can be processed independently.  This is a significant 

observation when considering computational complexities of the motion estimation, the 

evaluation of the rate-distortion modes, and integer transformations of the H.264 encoding 

process, to name a few.  Also, considering the fact that the watermark has to be embedded during 
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one or more of these processes depending on the algorithm adds much computational complexity 

to the process.  Being able to offload one or more processes to the GPU would be a significant 

step towards increasing the application speed and reducing the time to run the application. 

 

 1.4.  Organization of This Thesis 

 The major objective of this thesis is to show the high performance that can be obtained on 

a CUDA-enabled GPU for general computation problems related to non-graphics applications.  

Two numerically intensive non-graphics applications, H.264 video compression and digital video 

watermarking, will be parallelized to demonstrate the power of GPU computing.   

 Chapter 2 covers previous works that are relevant to this thesis.  It reviews the history of 

GPGPU and its present state.  It then covers digital watermark parallelization and its hardware 

and software implementations on the GPU.  The parallelization of the video coding process is 

also covered.  Finally, the novel contributions of this thesis are presented. 

 In chapters 3 and 4, an overview of GPGPU and parallel computing and programming on 

a CUDA-enabled GPU are presented.  Chapter 3 introduces the modern architectures of the CPU, 

GPU, and the heterogeneous CPU-GPU system.  Concepts related to GPGPU are then covered 

next.  Chapter 4 covers the different languages and libraries that can be written and run on a 

CUDA-enabled GPU.  The hardware architecture and programming model of the CUDA-enabled 

GPU is presented.  Finally, a summary of non-graphics applications that can be programmed to 

run on a CUDA-enabled GPU is presented. 

 Chapter 5 covers the details related to digital video watermarks.  It presents an overview 

and covers details on video watermarks regarding embedding and detection, classification of 
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watermarking approaches, security, attacks, and H.264/MPEG-4 AVC watermarks.  Finally, 

sequential and parallel digital video watermark implementation details are discussed. 

 Chapter 6 introduces the concepts of the H.264/MPEG-4 AVC video compression 

standard.  The encoding and decoding process is discussed in detail.  It then covers the sequential 

software and hardware implementations and the parallel hardware and software implementations. 

 Chapters 7-9 discuss the proposed algorithm, experimental setup, and conclusion and 

future research.  Chapter 7 discusses the proposed video compression and watermark in GPU 

computing environment.  It covers the details on the H.264 video compression, H.264 digital 

video watermark, the watermark embedding, and the implementation on the GPU.  Chapter 8 

covers the experimental setup, the benchmarks, the coding, and the results.  Chapter 9 offers 

some concluding remarks and discusses directions for future research.  

7 



CHAPTER 2 

RELATED PRIOR RESEARCH 

2.1.  General-Purpose Computing on Graphics Processing Units 

 Today's GPUs are characterized as massively parallel processors designed to perform a 

massive number of floating-point calculations and numerically intensive tasks.  They are 

designed to complement the CPU for numerically intensive tasks and thus form the 

Heterogeneous CPU-GPU architecture.  The GPU is considered the most powerful parallel 

computing system in the PC market, thus giving the GPU a very large installed base in the 

marketplace.  Researchers and developers have took notice of the power of the GPU and thus, 

became interested in harnessing the power of the GPU for general purpose computation, 

otherwise known as general purpose computing on the GPU (GPGPU). 

 Today's GPUs allow the application developer and researcher to program the fully 

programmable unified processor using a generic parallel programming model with a hierarchy of 

parallel threads, barrier synchronization, and atomic operations though this was not the case at 

the beginning.  In 2002, after the release of DirectX 9 by Microsoft, researchers took notice of 

the raw performance growth of the GPU but to access the performance on the GPU for general-

purpose computation, the computation problem had to be mapped to the graphics hardware, or in 

other words, the computation problem had to be cast to graphics operations.  This was a tedious 

task.  Owens et al. [2] provide a good introduction and survey of GPGPU.  It is a literature 

review of GPGPU and reviews many of the algorithms and techniques that were employed to 

map general computation to GPUs.  Ian et al. [3] wrote an extension to the standard ANSI C to 

incorporate the stream processing paradigm with the focus on data parallelism and arithmetic 

intensity, operations on data to remove data requests to the host memory and maximize localized 
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computation.  Brooks is also the precursor to CUDA [4].  BrooksGPU [5] is a runtime 

implementation of the Brooks programming language for the GPU.  Mark et al. [6] wrote Cg, a 

C-like language, to program the programmable floating-point vertex and fragment stream 

processors.  As part of Microsoft research in 2006, the Accelerator [7] was written to provide a 

general parallel programming model where the programmer can write in a conventional 

programming language without having to learn the graphics API. 

 With the advent of the Direct10 x specification, Nvidia [8] took the GPU programming 

model a step further and came out with a specification for non-graphics applications to support a 

data-parallel computation model for GPGPU, known as CUDA [9].  The CUDA programming 

language [9] is part of the CUDA toolkit [10] and is used as an extension to C, an imperative 

programming language, to enable programmers to construct data parallel applications without 

having to learn the constructs of the graphics API and to an extent, the graphics hardware.  This 

has accelerated the use of GPGPU to solve general computations to many fields related to 

cryptography, watermarking, video coding, bioinformatics, computational chemistry, 

computational fluid dynamics, electronic design automation, and imaging and computer vision to 

name a few.  Kronos Group, Inc. implemented the OpenCL language specification [11], which 

has similar constructs compared with CUDA.  In addition, OpenCL is more general in the sense 

that it is cross platform, parallel programming language made to across different modern 

processors and is endorsed by Intel [12], AMD [13], and Nvidia [14]. 

 Many books and articles have been written with regards GPU parallel computing.  The 

CUDA specification [9] covers all the language constructs for CUDA.  The OpenCL 

specification [11] covers all the language constructs for OpenCL.  Kirk et al. [15] discuss 

programming massively parallel processors using programming tools such as CUDA, OpenACC, 
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C++ AMP, and OpenCL to demonstrate the data-parallel computation model and heterogeneous 

computing.  Farber [16] show the use of the CUDA toolkit for application design and 

development for massive parallel processors on the GPU.  Kim et al. [17] present a high-level 

overview of GPGPU and parallel programming models and provide detailed performance 

analysis and guide optimizations for GPGPU programming.  The GPGPU [18] website is 

devoted to GPGPU as a whole and contains many articles written about the current and future 

trends of GPGPU. 

 

2.2.  Digital Watermark Parallelization 

 There is a plethora of articles dedicated to digital watermarking and video encoding on 

serial processors such as the CPU though much less has been written regarding GPU and 

heterogeneous CPU-GPU implementations.  The literature that does exist, is mostly dedicated to 

video coding with very few works in image watermarking and video watermarking being almost 

non-existent. 

 Some of the initial watermark implementations for the GPU were implemented using 

hardware-assisted methods or the graphics API before the advent of CUDA.  The two reasons for 

using hardware assisted methods is based on the fact that digital watermarking involves 

computationally intensive operations and that results need to be generated instantaneously, 

especially for digital TV broadcasting and video conferencing.   

 

2.2.1.  Hardware Implementation 

 Mohanty et al. [19] presented an invisible-robust image watermarking hardware solution 

on the GPU by using a dedicated processor chip as co-processor on the GPU to achieve an 
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efficient high performance, real-time, and low-cost watermarking-system.  Mohanty et al. [20] 

designed a very-large-scale integration (VLSI) architecture for accelerating watermarking 

methods that perform invisible robust and fragile watermarking using a field-programmable gate 

array (FPGA) and custom integrated circuit (IC) implementations.  Kougianos et al. [21] conduct 

a survey of hardware based watermarking systems on GPUs, FPGAs, and digital signal 

processors (DSP).  The caveat for the above hardware assisted watermark implementations is 

that they require hardware design, thus putting a limit on programming and requiring changes in 

the hardware architecture. 

 Maes et al. [22] implemented a hardware real-time watermarking detector 

implementation for DVD applications on an FPGA board and a TriMedia processor (IC) board.  

The FPGA board shows better results in terms of implementation costs and relevancy.   

 The authors in [23] have implemented a spread spectrum-based watermark algorithm that 

can be used for real-time software or low-cost hardware implementations on low powered 

devices such as cellular phones and PDAs, thus making the algorithm very versatile.  The 

software and hardware implementation can be combined to reduce the overall necessary gate 

count, on-chip memory, and system bandwidth of the underlying hardware. 

 

2.2.2.  Software Implementation 

2.2.2.1.  Digital Image Watermark 

 Lin et al. [24] have proposed a semi-fragile watermarking algorithm for image 

authentication using CUDA to accelerate the discrete cosine transformation (DCT) and 

watermark extracting and embedding operations.  Compared to the CPU, a single GPU achieves 

a speed-up of 32x for a 1024×1024 image size while a dual GPU achieves a speed-up of 40x.  In 
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both cases, the goal was to achieve an operational speed-up while maintaining authentication 

results. 

 Cano et al. [25] have implemented a blind image watermarking algorithm proposed by 

Shieh et al. [26] using a CUDA approach to parallelize the DCT and the watermark image 

insertion and extraction.  The benchmarks obtained from the experiments show an improved 

speed-up from the localized computations in the GPU but modest results when considering the 

communication overhead between host and GPU.  This was probably due to not accessing 

CUDA’s different memories efficiently to reduce global memory traffic between host and CPU.  

Cano et al. [27] implement a particle swarm optimization algorithm to optimize the blind image 

watermarking algorithm presented in [26] using CUDA to speed-up the optimization and the 

watermark algorithm.  

 In [28] the authors have proposed a CUDA implementation of their image watermarking 

algorithm that uses Huffman coding for the compression of copyright data and the modified 

auxiliary carry watermarking method (MACW) for embedding.  CUDA is used to improve the 

operation speed-up of the highly compute-intensive embedding and extraction operations while 

maintaining coding efficiency and picture quality. 

 

2.2.2.2.  Digital Video Watermark 

 Brunton and Zhao [29] implement an invisible-fragile real-time video watermarking 

algorithm on a GPU with the watermarking algorithm having to be cast to graphics operations.  

The real-time implementation on the GPU involves using the vertex shader for the insertion and 

extraction operations. The fragment shader generates the tiled watermark image from the input 
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video stream and performs exclusive OR operations for insertion of the results in a video stream 

and for an output signature image. 

 

2.3.  Video Coding on GPU 

 The H.264 coding process is a compute intensive process with the motion estimation 

(ME) unit in the encoding process being the most compute intensive operation, taking as much as 

80% of the total encoding time.  Several papers in the literature have been devoted to 

parallelizing the H.264 video coding process in the GPU with the majority focusing on the ME.   

 Youngsub et al. [30] proposed a parallel motion estimation algorithm that takes into 

account the inter-dependencies in the calculation of motion vector predictions in motion 

estimation.  It uses a similar approach to the x264 encoder diamond search algorithm and 

hexagon search algorithm in that only a few macroblocks (MBs) are looked at compared to all 

MBs in a full search algorithm to determine the best candidate for motion estimation.  The 

difference is that the GPU algorithm uses a different approach for calculating the MVPs among 

the MBs to remove the interdependencies and shows a 20% speedup compared with the x264 

encoder diamond search algorithm.  Chen and Hang [31] parallelize the variable block size ME 

with fractional pixel refinement using 5 steps to maximize localized computation and reduce 

communication overhead between the host and GPU.  Rodriguez et al. [32] parallelize the H.264 

inter prediction by using CUDA to accelerate the tree structured motion compensation algorithm 

to generate a memory matrix that can be read in parallel to construct an approximation of the 

optimal macroblock mode coded partition that is needed for inter prediction.  The algorithm does 

introduce a negligible rate distortion (RD) drop but the improved speedup is one step closer 

towards an efficient real time video encoder. 
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 Lee and Oh [33] proposed a highly parallel variable block size full search ME algorithm 

with concurrent parallel reduction (CPR) using CUDA with the aim of maximizing the number 

of active threads and minimizing the number of synchronization points by using CPR over the 

conventional PR method.  Hierarchical SAD computing is used for data reuse to reduce the 

computation time and the proposed algorithm efficiently uses on-chip memory of the GPU to 

minimize long-latency of the accessed data and instructions in memory. 

 Rodriguez-Sanchez et al. [34] present a CUDA-based ME implementation to reduce the 

H.264 inter prediction complexity using data structures that can be generated and read in parallel.  

The algorithm was also adapted for multiple-frame reference-based ME and high video 

resolution and the testing results show a 99% speedup with negligible coding efficiency penalty. 

 Wu et al. [35] proposed a multi-level parallel and memory efficient algorithm that maps 

the H.264 encoder that is based on the x264 reference code to the GPU using CUDA.  Almost all 

the entire framework of the encoder is executed on the GPU to reduce memory transfers, exploit 

parallelism, and improve optimizations. 

 Liu and Chen [36] proposed an intra-prediction parallel algorithm for the decoding phase 

that takes advantage of multiple GPUs to decode 100 to 1000 videos per GPU using four 

different optimization techniques.  The GPU’s effectiveness fades as the video load increases and 

performs nearly the same as the original algorithm for 1000 videos.  This could possibly be due 

to the proposed algorithm not being redesigned to support parallel structures efficiently and there 

may have been a large communication overhead among the threads. 

 NVIDIA [37] has proposed a H.264 hardware-accelerated video encoding that supersedes 

the previous NVIDIA CUDA video encoder and an NVIDIA CUDA video decoder (NVCUVID) 

API library for decoding video streams MPEG-2, VC-1, and H.264 on Video Processors or 
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CUDA-enabled GPUs.  The former uses dedicated hardware on certain classes of GPUs and can 

be accessed by NVIDIA encoder (NVENC) API to encode H.264 videos.  The latter is part of the 

GPU computing SDK provided by NVIDIA. 

 The authors in [38] show the applicability of parallel programming models to video 

processing for multi-core CPU and many-core GPU technologies.  Case studies from three video 

processing domains are demonstrated to show different optimization strategies for the parallel 

programming models.  The authors in [39] explore efficient implementations of video coding 

standards on the GPU focusing mostly on the H.264 standard.  Datla and Gidijala [40] port the 

motion JPEG 2000 reference video encoder to a CUDA-enabled GPU to parallelize the video 

encoder using the CUDA model and show significant speedups of 20.7 compared to the CPU 

implementation. 

 Obukhov and Kharlamov [41] propose a discrete cosine transform (DCT) that operates on 

8x8 blocks in the GPU and the GPU can process the 8x8 blocks independently.  This DCT 

algorithm can be used in image and video coding. 

 Xiao and Baas [42] propose a 1080p H.264/AVC baseline residual encoder that exploits 

fine-grained and task-level parallelization in the integer transform, quantization, and context-

based adaptive variable length coding functions and can run on a programmable many-core 

processor.  This algorithm is designed to be independent application specific hardware such as a 

H.264 encoder being designed to run on a CUDA-enabled GPU. 

 

2.4.  Novel Contributions of This Thesis 

 Most of the literature regarding the parallelization of the H.264 video compression 

focuses on parallelizing the ME unit in the encoding process because it is the most compute 
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intensive operation taking as much as 80% of the total encoding time.  Many variations of 

parallelizing the ME unit are proposed.  There is also literature regarding the parallelization of 

the integer transform process, an approximation to the DCT transformation process, for H.264 

and generic DCT transformations that would apply to many block-based compression formats 

including H.264 [41]. 

 The literature regarding parallelization of video watermarking on the GPU is virtually 

non-existent.  There is some literature regarding parallelization of image watermarking on the 

GPU [24-28]. 

 The contributions to this thesis will be parallelizing the digital video watermark in the 

H.264 compressed domain, where the literature is non-existent for this type of watermark on a 

CUDA-enabled GPU.  In the H.264 compressed domain, the integer transform, an approximate 

form of the discrete cosine transform (DCT) during the encoding process, will be parallelized on 

the CUDA-enabled GPU.  The visible watermark will be embedded in the integer transform 

coefficients during the H.264 integer transformation process and will also be parallelized.  The 

execution time of this program will include the H.264 encoding and decoding process for the 

MP4 container format though no parallelization was introduced during the decoding process. 

 So to summarize, the contributions will include: 

• Embedding a digital video watermark in the H.264 compressed domain using a CUDA-

enabled GPU 

• Parallelizing the integer transform process in the H.264 encoding phase 

• Parallelizing the visible watermark embedding in the integer transform coefficients 
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CHAPTER 3 

GENERAL PURPOSE COMPUTING PROBLEM ON GPU 

3.1.  Overview 

 Currently, the CPU multi-core architecture is a multi-core system designed to work on 

general computing of data that is serial in nature and maintain the execution speed of sequential 

programs.  Most CPU systems have between two and eight cores, each core supporting two 

hardware threads to maximize the sequential program's execution speed.  The CPU architecture 

supports out-of-order execution, multiple instruction stream, multiple data stream (MIMD).  

Though two or more cores allow data-parallelism in the sense that different parts of the program 

can run on different cores, the cores themselves are primarily serial based.  Parallel languages 

such as OpenMP, MPI, and MCUDA take advantage of the parallelism supported by the CPU 

cores.  The design style of the CPU is latency-oriented design to support the requirements of 

legacy operating systems, applications, and I/O devices, thus putting the CPU at a disadvantage 

in terms of parallelism.  A software programmer trying to use a parallel programming model 

strictly on a CPU will be at a performance disadvantage compared to a CPU-GPU execution of 

an application. 

 Modern GPUs are many-core processors that are designed to support many threads and 

support a throughput-oriented style.  They are massive parallel processors designed to perform a 

massive number of floating-point calculations.  They are designed to complement the CPU for 

numerically intensive tasks, not replace it.  The GPU uses a large number of parallel threads to 

execute kernels while hiding long-latency arithmetic operations or memory accesses compared to 

a CPU, which only executes a few threads at a time.  Therefore, if a program does have data 

portions that can be parallelized and requires a large number of threads, using the GPU is a good 

17 



option to achieve higher performance compared to just running the application on a CPU by 

itself.  There are several parallel languages such as CUDA, OpenACC, OpenCL, and C++ AMP. 

 

3.2.  Modern CPU Architecture 

 The multi-core CPU is a Von Neumann model that is designed to support multiple cores 

with two threads each.  The CPU supports a memory hierarchy containing thousands of registers 

and multiple levels of on-chip caches, usually 3 levels of caches, with non-volatile memory 

being at the bottom of the hierarchy.  The CPU is connected to input/output (I/O) devices such as 

a mouse, keyboard, monitor display, and printer that allow the user to interact with the CPU.  

The CPU is a latency-oriented design that supports large cache memories for short-latency cache 

accesses, low-latency arithmetic units, and sophisticated operand delivery logic.  This design 

comes at the expense of the supporting features taking up more chip area and using more power 

as opposed to proving more arithmetic units and memory access channels. 

 The first level on-chip cache is the smallest in size and the fastest with the last level on-

chip cache being the largest in size but the slowest.  Cache uses SRAM chips that are much 

faster than DRAM chips.  The last-level on-chip cache is designed to store frequently accessed 

data to reduce the long-latency of the accessed data when it is stored in the DRAM.  L1 caches 

usually are directly attached to a processor core and thus, changes to their content are not 

reflected in the other processor cores.  Thus, a cache coherence mechanism is put in place to 

ensure that any changes to the contents in one L1 cache, updates the L1 caches of the other 

processor cores. 

 The main memory is DRAM, is much larger in size compared to SRAM and is much 

slower.  The memory hierarchy of the CPU is designed to reduce the long-latency data and 
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instruction accesses in memory for large complex applications.  The DRAM is also used to 

transfer data to and from a GPU device and the bottleneck for parallel computing when a large 

number of data transfers take place. 

 Non-volatile memory is memory that retains its information when the CPU is powered 

down.  Typical non-volatile memories include hard-disk drives (HDD), solid-state drives (SSD), 

optical disks, and flash memory to name a few.  Data is transferred to and from the processor 

cores and non-volatile memories via the memory hierarchy.  Non-volatile memories are the 

largest in size in the memory hierarchy but are also the slowest, thus they are the bottleneck and 

form the memory wall.  Thus, it is important to use faster non-volatile memories such as SSDs to 

see an increase in speed in the overall system. 

 I/O devices are needed to allow the user to interact with the CPU.  The devices are used 

to transfer data to and from the CPU using techniques such as polling and I/O interrupts.  Figure 

1 shows a typical example of a multi-core processor based off the Von Neumann model. 

 

Figure 3.1: Multi-core chip with inter-core bus 
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3.3.  Modern GPU Architecture 

 The GPU is a massively parallel processor designed to support many processor cores 

with a large number of threads to achieve a high level of performance for floating-point 

calculations.  The GPU is a throughput-oriented design to maximize the total execution 

throughput of a large number of threads with an increase in arithmetic units and memory access 

hardware for higher memory bandwidth.  The GPU follows the SIMD model for execution for 

parallel execution among the threads. 

 The GPU was redesigned during the DirectX 10-generation graphics era to support 

graphics and non-graphics applications.  Vertex shading, fragment processing, and geometry 

processing are integrated into a unified fully programmable processor. 

 The GPU is organized as an array of streaming multiprocessors (SMs) with two SMs 

forming a building block and each SM containing eight streaming processors (SP) or more.  Each 

SP has its own set of registers, ALU, and FPU.  The SPs in the SM share control logic and 

instruction cache such as shared memory and L1/L2 caches.  The SM execution resources 

include registers, shared memory, thread block slots, and thread slots.  Each SM can support a 

certain number of blocks and a large number of threads.  Figure 2 shows an SM example and 

figure 3 an SP example. 
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Figure 3.2: CUDA GPU streaming multiprocessor (SM) 

 
Figure 3.3:  CUDA GPU streaming processor (SP) 

 The CUDA memory architecture includes global memory, registers, shared memory, 

caches, constant memory, and texture memory.  The global memory, known as graphic double 

data rate (GDDR) DRAM, is designed to support a high bandwidth that hides long-latency 

instruction and data accesses.  The global memory can be read and written by threads and it 

communicates with the host memory for data transfers.  Registers are on-chip memory that is 
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designed to support short access latency and higher access bandwidth.  Each SP has its own local 

registers for local storage.  Shared memory is also on-chip memory that is shared by all SPs in 

the SM and supports lower latency and higher bandwidth than the global memory.  Shared 

memory is slower than registers due to memory load operations.  The GPU cache is on-chip 

memory designed to reduce the number of accesses to the DDRAM and automatically coalesces 

data access patterns though the GPU cache does not currently support a cache coherence 

mechanism.  Constant memory is located in the DDRAM though since the memory cannot be 

modified during kernel execution, the constant memory is cached in the L1 cache and is 

broadcast to a large number of threads.  Though constant memory cannot be modified by a 

kernel function, it can be modified by the host memory.  Texture memory is a special type of 

device memory that is cached for data locality.  Memory coalescing techniques are utilized to 

move data from the global memory into registers and shared memories more effectively. 

 

3.4.  Heterogeneous CPU-GPU Architecture 

 The GPU is designed to be a co-processor to the CPU, not replace it.  This is because the 

GPUs do not perform well on serial executions that the CPU is designed to perform well on.  The 

CPU is the best choice for application tasks that are low latency and only require a few threads.  

The GPU is the best choice for long latency, high throughput, and parallel executable application 

tasks.  The GPU contains many arithmetic units for handling numerically intensive tasks and 

high floating point calculations.  Thus, a CPU-GPU computing system is needed to tackle the 

many tasks that are presented in the system and application execution. 

 The CPU contains a host interface that is setup to allow communication between the CPU 

and GPU.  CUDA-enabled GPUs communicate with the CPU via a PCI express connection to 
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the host.  The new AMD "Kaveri" accelerated processing unit (APU) takes it a step further and 

merges the CPU and GPU on the same chip using the heterogeneous systems architecture (HSA) 

standard.  The HSA standard allows different processors including a CPU, GPU, DSPs, and 

others in a system to work together.  It uses a heterogeneous unified memory access (hUMA) to 

allow the GPU and CPU to access the same memory. 

 

3.5.  General-purpose Computing on Graphics Processor Units 

3.5.1.  Overview 

 Today's GPUs are characterized as massively parallel processors designed to perform a 

massive number of floating-point calculations and numerically intensive tasks.  They are 

designed to complement the CPU for numerically intensive tasks and thus form the 

heterogeneous CPU-GPU architecture.  The GPU is considered the most powerful parallel 

computing system in the PC market, thus giving the GPU a very large installed base in the 

marketplace.  Researchers and developers have took notice of the power of the GPU and thus, 

became interested in harnessing the power of the GPU for general purpose computation, 

otherwise known as general purpose computing on the GPU (GPGPU). 

 

3.5.2.  Concepts and Methods 

 GPGPU computing follows the SIMD, single instruction multiple threads (SIMT), and 

single program multiple data (SPMD) models for parallel computing.  In the SIMD model, the 

processing sends out the same instruction, via the control signal, to many processing units.  Each 

unit is executing the same instruction at the same time to process a different set of data.  In the 

SPMD model, the processing units are executing the same program on different sets of data and 
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are not required to execute the same instruction at the same time.  The SIMT model specifies the 

execution and branching behavior of a single thread and allows the programmer to write thread-

level parallel code and data-parallel code. 

 Thread-level parallelism (otherwise known as task-level parallelism) decomposes an 

application into independent tasks.  Each thread processes a task using its own sets of 

instructions and data.  Data-level parallelism is where identical instructions are performed on 

different data. 

 Decomposition is the division of a computation into smaller and manageable tasks where 

some or all tasks can be executed in parallel. A task is a programmer defined unit of 

computation.  The granularity of decomposition is the size and number of tasks of a decomposed 

computational problem.  GPGPU supports two types of granularities: coarse-grained data-

parallelism and fine-grained data-parallelism.  Coarse-grained data-parallelism is a small number 

of large tasks such as thread blocks that are composed of threads.  Fine-grained data-parallelism 

is a large number of small tasks such as CUDA threads.  

 Whether using parallel programming languages such as OpenMP, MPI, OpenCL, CUDA, 

or MCUDA to write applications on the GPU for GPGPU or the CPU, the languages contain a 

few important fundamental operations that are inherent in data-parallel processing.  The methods 

include scan, map, reduce, stream filtering, scatter, gather, sort, search, and barrier 

synchronization.  Scan, otherwise known as all-prefix-sums, is an exclusive scan where a sum Sk 

is the sum for all k elements between 0 and p-1.  The map operation applies a kernel to a set of 

data, known as a stream.  Stream filtering is a non-uniform reduction in the sense that it uses a 

set of criteria to remove certain data from a stream.  Reduce is the operation where all values are 

reduced to a single value such as calculating the maximum value.  Gather is where a large 
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number of data items are read from given locations.  Scatter is where a large number of data 

items are written to given locations.  The sort operation uses a criterion to sort or rearrange data.  

The CUDA C++ template library, Thrust, is used to perform data parallel primitives such as sort, 

scan, and reduction.  The search operation searches for one or more items based off some 

criterion.  Barrier synchronization is  a coordination mechanism that allows threads in the same 

block to coordinate their activities to ensure all threads finish executing one phase of a kernel 

function before moving on to the next phase.  This ensures no data is corrupted or overwritten by 

threads that finish their activities first before others finish.  The above operations are done in 

parallel to decrease the execution time of an application.   

 

3.5.3.  Bottleneck 

 There are many potential performance bottlenecks and resource limitations and this is 

dependent on the particular use of resources in the application.  The most looked at bottleneck is 

the communication that takes place between the CPU and GPU via the memory.  There are other 

limitations such as registry, thread, and thread-block limitations.  For example, declaring two 

additional automatic variables in a kernel function increases the registry count by two in every 

thread.  If the registry count exceeds the maximum number of registries an SM may support, the 

CUDA runtime system reduces the number of blocks assigned to each SM and thus, reduces the 

thread count.  This ultimately reduces parallelism and performance in an application.  The 

performance cliff is where an increase in one resource has an unintended decrease in another 

resource, thus reducing the parallelism and performance in an application as described in the 

above example.  Several tests will need to be performed to determine the application's 
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bottleneck.  Using debugging and profiling tools such as NVIDIA visual profiler can be used to 

identify the bottlenecks and optimize the application  
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CHAPTER 4 

PARALLEL COMPUTING AND PROGRAMMING ON A CUDA-ENABLED GPU 

4.1.  Overview 

 Today's GPUs are fully programmable massively parallel processors designed to perform 

a massive number of floating-point calculations and achieve higher performance on non-graphics 

applications using parallel operations.  Parallel computing solves a problem much quicker 

compared to sequential execution, assuming a large portion of data can be parallelized.  Various 

languages including the CUDA language and libraries such as Thrust, have been developed to 

take advantage of the parallelism that is inherent in the multi-core CPUs and accelerative devices 

such as the GPU. 

 

4.2.  Languages and Libraries 

 Many parallel processing languages and libraries are designed to improve the 

performance of parallel computing in non-graphics applications.  Programming the GPU just ten 

years ago required direct knowledge of the GPU architecture and low-level programming 

techniques.  Languages such as CUDA have made it much easier for the non-graphics 

programmer because they abstract the hardware, alleviate having to learn the graphics API, and 

allow the programmer to focus on the application at hand.  On the other hand, the programmer 

does have to write their code for parallel execution instead of sequential execution with the 

exception being OpenACC, a compiler directive language.  Also, for the application developer to 

achieve a high-performance parallel program with an improved speedup, knowledge of the GPU 

hardware architecture is needed to make better use of the software programming tools such as 

CUDA. 
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4.2.1.  CUDA 

 CUDA is a high-level language that is an extension to the C language and is used to 

program GPU-accelerated applications.  It is a parallel computing platform and programming 

model designed to allow the non-graphics programmer to take advantage of the high 

performance of the GPU for parallel code execution.  CUDA is used in many fields related to 

cryptography, watermarking, video coding, bioinformatics, computational chemistry, 

computational fluid dynamics, electronic design automation, and imaging and computer vision to 

name a few.  CUDA is designed to work with GPU-accelerated libraries such as Thrust, a 

parallel algorithms library similar to the C++ standard template library (STL) for defining type-

generic parallel algorithms, and to work with GPU directives such as OpenACC, a programming 

standard that provides a collection of compiler directives to run parallel programs on accelerator 

devices such as APUs, GPUs, and many-core processors.   

 

4.2.1.1.  Scalability 

 As opposed to parallel programming for the CPU, parallel programming on the GPU 

using a parallel processing language is designed to allow scalability as the GPU core count 

increases.  This is due to the design of the GPU parallel programming model. 

 For example, CUDA follows a GPU parallel programming model that uses fine-grained 

data parallelism techniques with efficient threading support for graphics and parallel computing.  

The CUDA threads allow the exploitation of data parallelism inherent in a program.  Efficient 

thread scheduling in particular allows a much larger amount of data parallelism to be exploited 

than the underlying hardware resources would allow on the machine the software program is 

running on.  This is important for CUDA software programs that run on many different types of 
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CUDA-enabled GPUs that have different amounts of hardware resources and will have a long 

software life cycle.  Since the CUDA program is based on threads to expose the data parallelism 

inherent in a software program using fine-grain data-parallelism techniques, the CUDA program 

just needs to be written once and the software program will be able to take advantage of the 

hardware resources ranging from a few cores to hundreds of cores to a further increase of cores 

in the next generations to come in CUDA-enabled GPUs.  This provides a form of transparent 

and portable scalability. 

 The CUDA parallel programming model is in contrast to the parallel programming 

models for the CPU that use course-grained data-parallelism to process application tasks.  

Currently, the CPU cores available in a consumer PC range between four to eight.  The CPU-

based parallel program is designed to assign application tasks to each core.  As the core count 

increases during each new generation of CPU cores, the application needs to be rewritten to take 

advantage of the extra hardware resources.  Also, if an application is designed to run on four 

CPU cores and the application will need to run on a CPU architecture with only two CPUs, the 

application will also need to be rewritten.  Thus, the application using the current CPU parallel 

programming model is not scalable. 

 

4.2.2.  OpenACC 

 The OpenACC application program interface is a programming standard that provides a 

collection of compiler directives to run parallel programs on accelerator devices such as APUs, 

GPUs, and many-core processors and simplify parallel programming on heterogeneous CPU-

GPU architectures.  The standard is designed to support multiple levels of parallelism found in 

an accelerator such as a GPU.  OpenACC is similar to OpenMPI with some of the OpenACC 
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members serving in the OpenMP standards group.  The difference between OpenMPI and 

OpenACC is that OpenMPI is used to only specify directives for the CPU whereas OpenACC is 

for accelerative devices. 

 The simplicity of OpenACC is that programmers do not need to modify their existing 

code or learn a new syntax and style of programming to support a parallel application.  The 

programmer simply adds compiler directives, known as #pragma directives, to their sequential 

code where the directives can be ignored if the program is run on a non-OpenACC compiler.  

The programmer does not need to specify the details of data transfer between host and 

accelerator memories, thread scheduling, kernel launching, and parallelism mapping since the 

OpenACC compiler and runtime handle these details.   

 In the OpenACC execution model, the target machine includes a host and an attached 

accelerator.  There are multiple execution units at the outermost level and within each execution 

unit there are multiple threads, with each thread executing vector operations.  The execution 

units and the threads within each execution unit run in parallel.  Also, OpenACC is designed to 

work in conjunction with CUDA during program execution. 

 The OpenACC memory model treats the host memory and accelerator memory as 

separate with the assumption that each memory is not able to access the other directly.  The 

model uses similar constructs from CUDA with regards to memory allocation, copying, and de-

allocation before kernel launches and transferred results from device to host.  The difference is 

that in CUDA, this needs to be specified explicitly by the programmer whereas OpenACC does 

this automatically. 

 

4.2.3.  C++ AMP 
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 The C++ accelerated massive parallelism (C++ AMP) parallel programming model is an 

open specification developed initially by Microsoft to allow software programmers to design 

applications to run on data-parallel hardware while hiding the system intricacies of the 

underlying hardware.  This offers portability, better performance, and better productivity for the 

application as it can be run on different current hardware and future generation hardware from 

different manufactures without the application having to be rewritten.  In certain cases, the 

application may need to take advantage of the system intricacies and C++ AMP has features to 

support this.   

 The C++ AMP model contains a rich subset of the C++ language for data parallel  

computations that run on the co-processor and the model works in conjunction with the C++ 

language that runs on the host.  This allows for a small learning curve for software developers 

that are familiar with C++.   

 

4.2.4.  OpenCL 

 The open computing language (OpenCL) parallel programming model is an open 

specification designed to run on heterogeneous computing systems such as the CPU, GPU, 

digital signal processors (DSPs), field-programmable gate arrays (FPGAs), and other co-

processors as well.  OpenCL is maintained by the non-profit Khronos Group and has been 

adopted by many organizations including NVIDIA, AMD, Intel, and Apple to name a few.  The 

model is very similar to CUDA and the syntax and operations are very similar as well.  One can 

learn CUDA and easily adopt the OpenCL language in a day or two. 

 

4.3.  Programming Model 

31 



 CUDA is a parallel programming model designed to allow non-graphics software 

developers to write parallel applications for the heterogeneous CPU-GPU architecture.  The 

model supports a hierarchy of threads, thread blocks, barrier synchronization, and atomic 

operations.   

 The programming unit in CUDA is the thread and all threads in a grid execute the same 

kernel function.  Each thread is unique and a coordinate system is used to identify each thread so 

that the appropriate portion of data can be assigned to that particular thread.  The thread 

organization supports a two-level hierarchy.  The first level starts with a grid that is organized 

into thread blocks up to three dimensions.  In the second level, each thread block is organized 

into threads up to three dimensions.  The grid and blocks can have different dimensions.  Each 

thread block contains x threads that are multiples of 32 and each thread block subdivided in 

warps, the unit of thread scheduling in an SM, with each warp containing 32 threads each.  The 

warp uses the SIMD model and thus, all threads in a warp execute the same instruction.  The 

threads within a thread block coordinate their execution using barrier synchronization so all 

threads finish their current phase before moving to the next phase.  The threads can also share 

data using shared memory.  Figure 4 shows an example of a CUDA 2-Dimensional (2,2,1) grid 

organization where the grid is organized as (x,y,z).   
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Figure 4.1: 2-Dimensional (2,2,1) grid organization 

 

 The kernel configuration is specified with the grid dimensions and block dimensions 

before execution.  To execute, one or more thread blocks are assigned to each SM.  Each SM has 

a limit on the available resources assigned to it.  These limitations include thread blocks, threads, 

registers, and shared memory.  Increasing usage on one resource such as the number of threads, 

will decrease the usage on another resource, such as thread blocks.  Each SM is assigned 

multiple warps, though only a subset can be executed at any given time.  The reasoning for this is 

to hide long latency operations.  While a warp is waiting for a result, another warp can be 

scheduled to execute, thus hiding the long latency operation.   

 When writing CUDA applications, the programmer needs to be aware of the ratio of 

floating point calculations performed for each memory access, known as the compute to global 

memory access (CGMA) ratio.  To increase this ratio and thus increase floating-point 

performance, a programmer needs to optimize the program using algorithmic techniques that 

make important use of the limited resources at hand.   
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4.4.  Applications 

 Numerous non-graphics applications have been developed on CUDA-enabled GPUs in 

the academic and business world.  Many of the applications being developed are used to 

showcase the power of the GPU while other applications being developed are to be used for the 

specific needs at hand.  Fields that are utilizing the GPU for application purposes include 

cryptography, digital watermarking, video coding, bioinformatics, computational chemistry, 

computational fluid dynamics, electronic design automation, and imaging and computer vision.  

The Nvidia CUDA website showcases a number of applications ranging from different fields to 

show the usefulness and power of the GPU for these types of applications.  Many researchers 

from academia have shown significant speedups across many of these applications when porting 

the compute intensive areas of these applications to the GPU. 
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CHAPTER 5 

DIGITAL VIDEO WATERMARK 

5.1.  Introduction 

 In today's world, there are many digital multimedia applications such as DVDs, TV 

broadcasting, video-based web applications, and recording to name a few.  Today's digital 

technologies allow content sharing, lossless and high fidelity copying, ease of editing and 

modifications, and compression.  These convenient technologies also introduce the need for 

digital rights management tools to provide copyright protection, content authentication, and 

integrity.  Many content providers and copyright owners are leery of piracy of their digital 

products and hence are interested in protecting their IP and illegal copying of their digital 

products.  One solution is the digital watermark, a process of embedding additional data into 

digital multimedia objects to produce a watermarked multimedia object for the purposes of 

copyright protection and content authentication.  The watermark can later be detected or 

extracted to prove the content owner of the multimedia object.  This technology is provided on 

top of data encryption. 

 Watermarking shares its roots in steganography, the art of hiding the existence a secret 

message to protect against detection.  Watermarking has a clear distinction from steganography 

in that the hidden data is robust against removal techniques.  These removal attacks can either be 

intentional or unintentional. 

 Various watermarking algorithms have been proposed in the literature for image, audio, 

video, and text multimedia objects.  Since videos are used heavily in the entertainment industry 

and video surveillance, this thesis focuses on digital video watermarks.  Video watermarking 

algorithms are the most challenging, computationally intensive, and time consuming 
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watermarking algorithms.  Real-time encoding of video streams using a digital watermarking 

scheme is extremely computationally intensive.  What complicates this matter even more is the 

video compression format of the video the digital watermark is being inserted into, such as the 

H.264/MPEG-4 AVC (or H2.64 for short).  Video compression is needed for videos that involve 

storage and/or transmission such as movies and streaming video.  Being able to support high 

video quality and high throughput while minimizing distortion with the embedded watermark in 

a reasonable amount of time is a daunting task.  Fortunately, many of the operations of the digital 

video watermark do show a high degree of parallelism and hence these operations can be 

computed on a GPU.   

 

5.2.  Watermark Framework 

 Watermark techniques can be classified using the criteria shown in figures 5.1, 5.2, 5.3, 

5.4, and 5.5. 

 

Figure 5.1:  Human perception 

 Regarding figure 5.1, there are two types of watermarks based on human perception: 

visible and invisible watermarks.  A visible watermark is an opaque monochrome or translucent 
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image embedded as an overlay on an image or video frame.  This can be a company logo, 

copyright notice, or digital photo consisting of text.  The more popular invisible watermark 

embeds a binary image, random or pseudorandom number into the image or video frame and 

shares the characteristic of being imperceptible to the human eye.   

 

Figure 5.2:  Robustness 

 A robust watermark's performance is determined by being able to withstand intentional 

and unintentional attacks such as processing techniques and manipulative processes.  Robust 

watermarks are used in applications for copyright protection.  A semi-fragile watermark is able 

to resist simple transformations such as compression that preserve the image or video contents 

while failing to resist malignant transformations that alter the image or video contents.  Its 

applications involving image authentication are generally used in a court of law to determine if 

the image or video has been tampered.  A fragile watermark fails even the slightest 

transformation and is used to determine tamper detection in a court of law.  A fragile watermark 

is also another form of image authentication.   
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Figure 5.3:  Watermark domain 

 The spatial domain involves slight modifications to the values of the pixels.  This is the 

least computationally intensive of the two and is easier to implement.  The caveat is that it is less 

robust to attacks.  In the frequency domain, the multimedia object goes through a transformation, 

DCT for example, and the watermark is embedded in the transform coefficients by modifying 

them slightly to represent the watermark. 

 

Figure 5.4:  Watermark extraction and detection process 
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 A blind (or public) watermarking extraction scheme is the most challenging but most 

popular type of watermarking scheme.  It requires neither the original data nor the original 

watermark to extract the watermark from the watermarked object.  A semi-blind (or semi-

private) watermarking detection scheme does not require the original multimedia object but does 

use the watermarked multimedia object and original watermark for detection of the watermark in 

the watermarked multimedia object.   A non-blind (or private) watermarking scheme is the most 

robust but has limited application use.  These systems require at least the original multimedia 

object and they consist of two types.  Type I systems use the original multimedia object and 

watermarked multimedia object to determine where the watermark is hidden at so it can be 

extracted.  Type II systems  use the original multimedia object, watermarked multimedia object, 

and the original watermark for detection of the watermark in the watermarked multimedia object.  

The limited applications for semi-blind and blind schemes include copyright protection in a court 

of law setting and copy-control.   

 

a) Watermark Encoder: Watermark Embedding 
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b) Watermark Decoder: Watermark Detection 

 

c) Watermark Decoder: Watermark Extraction 

Figure 5.5:  Watermark encoder and decoder 

 The encoder is a function that embeds the watermark data into the host multimedia 

object. The type and location of the data is dependent on whether the watermark is visible or 

invisible, whether the host object is audio, text, image, or video, and what compression scheme if 

any is used for the host object.  For example, an invisible-robust watermark for an H.264 

compression format may include a copyright message watermark embedded in the luminance 

DCT coefficients before the quantization phase.  The decoder function is the opposite of the 

encoder and it can used for detection or extraction.  An extraction scheme will extract the 

watermark bits from the watermarked object, such as a robust watermark.  A detection scheme 

will detect if a watermark is present, such as a fragile watermark. 

 

5.3.  Security and Attacks 

 Intentional or unintentional modifications to the watermarked object have the potential to 

remove the watermark or obscure the watermark data, and thus make it difficult for the 

watermark to be successfully extracted or detected.  Any modification to a watermarked object is 

known as an attack, whether it is intentional or unintentional.  There are many forms of attacks 

such as geometric, signal processing, specialized attacks, cryptographic attacks, and system-
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based attacks.  The security of the watermark embedding algorithm depends on the watermark 

being able to withstand the attack either by making it too computationally difficult to remove or 

the removal causes too much distortion in the audio, image, or video.  In the case of fragile or 

semi-fragile watermarks, being able to defend against watermark counterfeit attacks is another 

security measure to be considered.   

 Geometric attacks include rotation, scaling, translation, cropping, affine transforms, 

mosaicing, and other related image and video editing operations.  These types of attacks are 

specifically for image and video watermarks.  These attacks are meant to cause distortion in the 

watermarked object and thus, make it very difficult for the watermark to be detected or extracted. 

 Signal processing attacks include lossy compression, quantization, requantization, 

dithering, adaptive filtering, denoising, collusion attacks, and stochastic attacks involving 

watermark estimation and noise addition.  These types of attacks either attempt to remove the 

watermark such as stochastic attacks or attempt to add additional signal noise to the watermarked 

object such as lossy compression.   

 A specialized attack requires direct knowledge of the watermark method.  De-

synchronization, luminance, and chrominance attacks are two such specialized attack methods.  

Cryptographic attacks use similar attacks in cryptography to breach the security of the 

watermarked object.  A system based attack would be a watermark counterfeit attack. 

 

5.4.  Video Watermarking 

5.4.1.  Overview 

 Several papers in the literature have proposed many video watermarking methods for 

various video formats and video compression schemes.  Many  of the algorithms proposed center 
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around invisible watermarks since these types of watermarks deal with copyright protection and 

image authentication.  Video watermarks have some similarities with image watermarks in that 

the watermark bits are embedded in an image.  Though in the case of video watermarks, there are 

multiple images represented as frames that are sampled over different time periods.  Thus, this 

adds additional computational complexity as watermark bits must be computed for different 

frames or in some cases in block-oriented compression schemes, different blocks.  The additional 

computational complexity also increases the time it takes to embed and extract (or detect) the 

watermark. 

 

5.4.2.  H.264/MPEG-4 AVC 

 H.264/MPEG-4 AVC is the industry standard for video compression in many multimedia 

applications and thus, it is essential to provide copyright protection and protect intellectual 

property (IP) in H.264 compressed videos.  Many watermarks in the literature have been 

proposed for the H.264 video compression.  This remains a challenging task because of the high-

coding efficiency and the redundancy removal during the encoding process.  Robust video 

watermark data is generally embedded in redundant data that minimizes distortion and is robust 

against attacks.  The efficient removal of the redundant data in the H.264 video compression 

makes this a challenging task. 

 

5.4.2.1.  Watermark Embedding and Extraction and Detection 

 Digital video watermarking methods for the H.264 compression format is classified into 

four methods depending on where the watermark is placed during video compression:  before 

compression, before quantization, after quantization, and during entropy encoding.  Also, any of 
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the four groups can take place on a video bit stream, during the decoding and encoding of a 

compressed stream, or on the compressed stream itself.  Embedding the watermark in a video bit 

stream before compression can make the digital watermark itself sensitive to video compression 

and thus, cause distortion to the compressed video.  Many of H.264 watermarking algorithms 

presented in the literature take place before quantization.  The general structure involves 

embedding the watermark in the DCT coefficients in the luma and chroma components of the 

macroblock.  This is the structure that will be used in this thesis.  Embedding watermark data 

after quantization entails embedding the watermark data in the quantized transform coefficients.  

Watermarks can also be embedded during the entropy coding phase in the Context-adaptive 

variable length coding (CAVLC) mode or context-adaptive binary arithmetic coding (CABAC) 

mode.   

 Watermark extraction and detection take place after the video has been decompressed.  

Watermark detection involves detecting whether the watermark bits are present are not in a 

secret location using an optional key if one was used in the original embedding algorithm.  

Watermark extraction requires locating the watermark secret location and extracting the 

watermarked bits from the watermarked object.  

 

5.4.2.2.  Security and Attacks 

 The H.264 video watermark is designed to be robust against signal processing and hostile 

attacks.  It is also designed to be hidden in a secret location that can only be accessible by 

authorized parties and it is generally designed to be imperceptible (invisible watermark). There is 

a large literature detailing various signal processing attacks such as the Gaussian noise, bit-rate 

reduction, contrast enhancement, frequency filtering, and non-linear filtering attacks that the 
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H.264 watermark should be robust to.  Metrics that are looked at when evaluating the strength of 

the attack are the distortion caused by the attack and errors in the embedded watermark.  An 

attack that can cause very little distortion is of higher quality.  The H.264 watermark is designed 

with these metrics in mind.   

 

5.5.  Software Implementation 

 A watermark software implementation will need to take into account the video coding 

standard it is being developed for.  The software implementation will need to consider 

performance trade-offs and capabilities such as robustness.  Other features to consider will be 

execution time of the embedding and extraction (or detection) of the watermark and the amount 

of distortion that is introduced during the watermark embedding.  Adding a watermark without 

affecting the bit-rate or video quality is a difficult task.  Parameters that need to be looked at 

during a software implementation include the bit-rate and the peak signal-to-noise ratio (PSNR), 

the ratio that is used to measure the video quality.  The watermark implementation must also be 

optimized to withstand the attacks it is designed for and this would include robust, semi-fragile, 

and fragile watermarks. 

 An example is the joint model (JM) reference software in the reference implementation 

for H.264 developed and maintained by the joint video team (JVT) of ISO/IEC MPEG & ITU-T 

VCEG (video coding experts group), the same team that is responsible for developing and 

maintaining H.264.  The JM software includes an encoder and decoder.  It also features 

watermark implementations that include robust, semi-fragile, and fragile watermarks.  

Throughout the literature and academia, the JM reference software is used to test robust 

watermark implementations and optimize the watermarks to withstand various attacks.   
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5.6.  Hardware Implementation 

 Video watermarking hardware implementations are designed on custom ICs and FPGA 

boards for use with commercial applications that include TV broadcast surveillance systems, 

DVD videos, and video-based web applications.  The intended goal of a hardware 

implementation is to produce an efficient implementation in real-time while maintaining low-

power consumption and high-reliability.  The implementation also needs to be low-cost as well.   

 The caveat for the above hardware assisted watermark implementations is that this 

requires hardware designing, thus putting a limit on programming and requiring changes in the 

hardware architecture. 

 

5.7.  Parallelization 

5.7.1.  Software Implementation on a CUDA-Enabled GPU 

 The literature regarding parallelization of video watermarking on the GPU is virtually 

non-existent.  The literature either focuses on parallelizing image watermarks or video 

compression, such as H.264.   

 Parallelizing a video watermark on a CUDA-enabled GPU can be rather complex and 

computationally intensive and this is dependent on the video compression format and the digital 

watermarking algorithm.  The digital watermark algorithm would have to support independent 

operations such as the watermark embedding after the calculation of the DCT coefficients during 

the integer transform, where each coefficient and embedded watermark data can done 

independently and hence, in parallel.  Also, once the parallelizable video watermark operations 

have been offloaded to the GPU, a key feature that needs to be part of the video watermark is to 

minimize the data transfers between the CPU and GPU.  Writing the CUDA code in such a way 
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where CUDA registers and shared memory are accessed effectively to reduce the number of 

global  memory accesses is a factor to consider when writing CUDA code.  A good operation to 

consider when dealing with very large matrices such as watermark embedding in the integer 

transform is to divide the matrices into smaller tiles so the matrices can fit into the shared 

memory, and thus, reduce the number of global memory accesses. 

 

5.7.2.  Hardware Implementation 

 Hardware implementations of digital watermarks is a new area being presented in the 

literature.  Applications that can be of use for the hardware implementations include DVD, Blu-

ray disc, cellular phones, and PDAs to name a few.  One of the advantages of the hardware 

implementations is to offer real-time performance at low power.  This is very useful for cell 

phones that are themselves lower-power devices.  Many of the new devices coming to the market 

such as cell phones have multi-core or many-core chipsets.  Implementing either a dedicated 

hardware in the chipset or adding hardware features to take advantage of the cores for digital 

video watermarking is a viable solution for reducing the overall execution time. 

 Kougianos et al. [20] presented a survey of recent hardware implementations of the 

digital video watermarks for FPGA and IC chipsets including GPUs.  The authors in [26] discuss 

an early attempt for a real-time video watermarking on an NVIDIA GPU in 2005 where the 

watermark had to be mapped onto the GPU using graphics operations.  The authors in [41] 

discuss a viable solution for a low-cost hardware implementation that can be combined with real-

time software for digital video watermarks on low-powered devices such as cell phones.  Today's 

cell phones are multi-core architectures and thus, this low-cost hardware implementation can 

take advantage of the multi-core structure.  
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CHAPTER 6 

H.264/MPEG-4 AVC 

6.1.  Overview 

 A digital video is a representation of real world phenomena featuring spatial and 

temporal locality.  The video is sampled at intervals to produce frames and each frame is made 

up of fields.  In today's world, there are many video applications such as DVDs, TV 

broadcasting, cell phones cameras, video-based web applications, and video calling to name a 

few.  Videos can take up a large amount of space, which can be a problem for storage and/or 

transmission.  One solution is video coding, the compression and decompression of video.  

Video compression reduces the amount of data of a digital video prior to transmission and/or 

storage.  Video decompression recovers a video from its compressed start back to its normal 

state. 

 There are many compression formats for audio, images, and video.  This thesis will be 

focusing on video compression and more specifically, the H.264/MPEG-4 AVC format, 

otherwise known as H.264.  The H.264 format is one of the most popular formats for 

compression, video recording, and distribution.  H.264 is a highly efficient compression format 

compared with other formats and is used in many applications such as YouTube, Blu-ray discs, 

and HDTV broadcasts to name a few.  H.264 is a data intensive task, especially for real-time 

video coding and thus, being able to offload the numerically intensive tasks to the GPU would 

decrease the amount of time for the video coding process. 

 Digital video watermark algorithmic structures are dependent on the video compression 

formats.  Designing a good watermark algorithm requires sufficient knowledge of the video 
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compression format being used.  H.264 has high complexity and compression efficiency, thus 

presenting a challenge for embedding the video watermark. 

 

6.2.  Concepts of Video Coding 

 Video coding is the process of compressing and decompressing a video.  H.264 video 

compression or video encoding, is a block-oriented compression that is performed on videos 

prior to storage and/or transmission.  H264 video decompression or video decoding is a block-

oriented decompression that is performed after transmission or on video applications such as 

playing a movie from a DVD.  H.264 data compression supports lossy and lossless compression, 

depending on the application requirements.  Lossy compression achieves higher compression, at 

the expense of the decompressed video not being identical to the source video.  Lossless 

compression produces a decompressed video that is identical to the source video, at the expense 

of the lower compression and thus, a smaller reduction in bits for the compressed form prior to 

storage and/or transmission. 

 H.264 is a specification only for encoding videos for video compression and decoding 

videos for decompression for storage and/or transmission.  The video codec is the actual 

software or hardware implementation of a specific video compression format such as the H.264 

format.  A well known video codec for the H.264 format is the x264 video encoder.  The 

encoded video is bundled with an audio stream encoded in an audio compression format such as 

advanced audio coding (AAC) in a multimedia container format such as MP4, which is the 

official container format for MPEG-4 audio and video.  Multimedia container formats such as 

MP4 do have the option of containing different video and audio compression format besides 

H.264 and AAC. 
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6.2.1.  Block Motion Compensation-Based Video Compression 

 H.264 is a block motion compensation-based video compression format that uses the 

macroblock as its processing unit for video compression.  The macroblock is an MxN block of 

pixels, usually size 16x16, that represents a small region in a frame.  Motion compensation 

prediction is the prediction of a current video frame using a past and/or future frame as reference 

with modeling of motion.  This algorithmic technique is based on the fact that there is very little 

difference between one frame and the next so calculating the difference by subtracting the 

prediction from the current frame produces a residual, which allows for better compression.  To 

produce the residuals of the frame, a candidate region of a past and/or future frame must first be 

selected.  The criterion for selecting the candidate region is finding an MxN block region in the 

reference frame(s) that best matches an MxN block region in the current frame, this process 

being called motion estimation.  The chosen block then is subtracted from the current block to 

form an MxN residual block known as block motion compensation.  The offset between the 

chosen block and current block is a motion vector.  The residual and motion vector is needed 

during the encoding and decoding process. 

 

6.2.2.  H.264 Syntax and Structure 

 The structure of the H.264 syntax is setup as a hierarchical organization consisting of 

units for representing compressed video.  The top level is a series of packets, network adaption 

layer (NAL) units, that include two parameter sets, sequence parameter sets (SPS) and picture 

parameter sets (PPS), as control parameters needed by the decoder.  The NAL units contain 

coded frames or fields, known as access units, that are represented by one or more slices.  Each 

slice consists of a slice header and data, the data being a coded 16x16 macroblock consisting of 
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compressed data.  The slice also consists of skip macroblocks, which are indicators of 

macroblock positions containing no data.  The coded macroblock itself contains the macroblock 

type, prediction information, the coded block pattern (CBP), quantization parameters (QP), and 

residual data. 

 A frame is made up of luma samples and two corresponding chroma samples.  The top 

and bottom field make up the frame.  A luma sample corresponds to luminance, the light 

intensity of the brightness component of a frame.  The chroma sample corresponds to 

chrominance, the color difference component.  There are three color difference components, 

each one being the difference between red (R), green (G),  or blue (B) and the luminance.  The 

RGB color space can produce any chrominance of an image sample using the R, G, and B 

additive primaries.  Based off the human visual model, the human eye is more sensitive to light 

and hence, the luminance (Y), red chroma (Cr), and blue chroma (Cb), otherwise known as 

Y:Cr:Cb, is used to reduce the amount of data in the chrominance components for better 

compression.  The Y:Cr:Cb is used in the construction of a macroblocks.  For example, a 16x16 

macroblock contains a 16x16 region for the luminance component and two 8x8 regions for the 

Cr and Cb sample.   

 There are three YCrCb sampling formats: the 4:4:4, 4:2:2, and 4:2:0 sampling formats 

with the 4:2:0 sampling format being the most popular.  In the 4:4:4 sampling format, for every 

four pixels sampled, there are four Y, Cr, and Cb samples each, thus preserving full resolution 

for each component.  In the 4:2:2 sampling format, for every four pixel samples, there are four 

Y, but two Cr and Cb components, thus producing the same vertical resolution for the luminance 

and chrominance components but the chrominance components having half the horizontal 

resolution as the luminance.  In the 4:2:0 sampling format, for every four pixel samples, there are 
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four Y, but 1/4 the Cr and Cb components, thus producing half the vertical and horizontal 

resolution of the luminance for the Cr and Cb components.  The 4:4:4 sampling format is used in 

high-end film scanners and cinematic postproduction applications.  The 4:2:2 sampling format is 

used in high-quality color reproduction and high-end digital video format applications.  The 

popular 4:2:0 sampling format is used in consumer applications such as DVD video and storage, 

Blu-ray disc, and digital television to name a few. 

 

6.2.3.  Profiles and Levels 

 The H.264 format specifies a set of tools and constraints needed for the encoding and 

decoding process.   

 H.264 profiles define the set (or subset) of tools to define the features and capabilities of 

encoding and decoding implementations. For example, a coded video using the high profile, a 

subset of the main profile, can only be encoded using some or all of the tools in the high profile.  

The decoder follows suit.  The features and capabilities of the main profile would be defined for 

high-definition digital TV broadcasts and Blu-ray disc storage. 

 The H.264 level defines a set of constraints that define an upper limit on the amount of 

data that the decoder can accept.  The types of data the constraints apply to include frame size, 

processing rate, and working memory.  For example, a Level 3 decoder can accept bit rates less 

than 10Mbps and resolutions up to 720×576 at a frame rate of 25 frames per second (fps).  Also, 

the Level 3 decoder can decode any Level decoder that is less than and up to the Level 3 

decoder, such as a Level 2.2 decoder for example. 
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6.3.  Encoding and Decoding 

 The H.264 codec encodes a series of frames or fields using a lossy compression format to 

produce a compressed H.264 bitstream that can be stored and/or transmitted.  The encoding 

process consists of prediction, transformation, quantization, and entropy encoding.  The decoder 

performs the reverse of the encoder to produce a reconstructed version of the original video 

sequence that is not identical to the original video sequence due to the lossy compression format.  

The decoding process consists of entropy decoder, rescaling, inverse transformation, and 

reconstruction. 

 

6.3.1.  Encoding Process 

 The encoding process consists of a series of steps to produce a compressed H.264 

bitsream: prediction, transformation, quantization, and entropy encoding as shown in figure 6.1. 

 

Figure 6.1:  The encoder stages 

52 



 The prediction model consists of two types of predictions: intra prediction and inter 

prediction.  In intra prediction, the macroblock sizes used are 16x16 and 4x4.  A predicted 

macroblock is formed by extrapolating previous values of the neighboring coded-pixels in the 

current frame to produce a predicted macroblock that is an approximation of the original current 

macroblock.  The predicted macroblock is then subtracted from the original current macroblock 

to form a residual block that is the same size as the predicted and current macroblock. 

 In inter-prediction, the macroblock size rages from 16x16 to 4x4.  As discussed in section 

6.2.1, motion estimation is used to determine the best fit macroblock from previous coded frames 

or fields that best matches the current macroblock in the current frame or field.  The previous 

coded frames can be 1 or 2 frames from past or future frames.  After a best match is found, the 

current macroblock is predicted from the best fit macroblock.  This prediction is subtracted from 

the current macroblock, known as motion estimation, to form a residual. 

 The integer transformation step consists of a 4x4 or 8x8 integer transform that is a scaled 

approximation to the discrete cosine transform (DCT).  The integer transform is applied to the 

residual samples to produce a set of luma and chroma coefficients each in their own MxN block.  

These coefficients are a set of weighted values for the set of standard basis patterns, a set of 4x4 

or 8x8 blocks of cosine functions.  When the set of standard basis patters are multiplied by the 

transform coefficients in the decoder phase, this produces the residual samples. 

 To reduce the size of the transform block, the transform coefficients are quantized.  The 

coefficient values are divided by a quantization parameter (QP) and rounded to the nearest 

integer.  For insignificant values, this reduces them to zero.    

 The last phase of encoding is the entropy encoding stage.  During this stage, the 

following values and parameters must be encoded: quantized transform coefficients, the 
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prediction mode used e.g. intra prediction or inter-prediction and motion vectors, header 

information, information on the compression tools used, and identifiers and delimiting codes.  

The values and parameters, represented as symbols, are converted into binary codes.  The 

conversion methods used are variable length coding and/or arithmetic coding to produce short 

binary codes for commonly used values and longer binary codes for less commonly used values.  

This produces an encoded bitstream, a compact binary representation of the values and 

parameters, and can be stored and/or transmitted. 

 

6.3.2.  Decoding Process 

 The decoding process consists of a series of steps to produce a decompressed video 

bitstream: entropy decoder, rescaling, inverse transform, intra-prediction or inter-prediction, and  

reconstruction, as shown in figure 6.2. 

 

Figure 6.2:  The decoder stages 
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 The entropy decoder decodes the encoded bit stream to retrieve the quantized transform 

coefficients, the prediction mode used, the header information, information on the compression 

tools used, and identifiers and delimiting codes. 

 The rescaling process multiples the quantized transform coefficients by a QP to produce 

coefficients that are similar to the original coefficients produced by the integer transformation in 

the encoder.  The rescaled values are not exact since quantization in the encoder is a non-

reversible process due to the floating point values that are rounded to integers and the 0 values. 

 The inverse transform process multiples the standard basis patterns with the set of 

weighted values, the rescaled coefficients to produce the MxN residual blocks. 

 The last phase of decoding is the reconstruction phase.  The decoder forms a prediction 

using either inter-prediction or intra-prediction.  In inter-prediction, the predicted MB is formed 

from previously decoded frame(s).  In intra-prediction, the predicted MB is formed from 

previously decoded MBs in the current frame.  In both cases, the prediction is identical to the 

prediction formed in the encoder.  The prediction is then added to the decoded residual to 

reconstruct a decoded MB. 

 

6.4.  Software Implementation  

 The H.264 compression standard defines the syntax of the compressed video and 

decoding methods.  There is no encoding standard defined and there is no reference software 

implementation.  Encoding standard software implementation and the software implementation 

of the compression and decoding methods is left to the video codec manufacturers. 

 The H.264 video codec is the actual software or hardware of the H.264 compressed 

standard.  A well known video codec for the H.264 format is the x264 video encoder.  The 
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encoded video is bundled with an audio stream encoded in an audio compression format such as 

advanced audio coding (AAC) in a multimedia container format such as MP4, which is the 

official container format for MPEG-4 audio and video.  Multimedia container formats such as 

MP4 do have the option of containing different video and audio compression formats besides 

H.264 and AAC.  Also, with regards to the implementation of the encoding phase, the video 

codec manufacturers will generally implement the video encoder that mirrors the decoding steps. 

 H.264 is an industry standard and thus, there is a large number of H.264 video codecs to 

choose from.  The key features to keep in mind when deciding what codec to use are the trade-

offs between compression performance and computational complexity.  This is depending on 

feature implementations in the video codec, the coding performance, coding options, and coding 

modes.  Some implementations, such as the x264, offer a superb coding implementation of the 

encoding phases but do not implementation the decoder. Fortunately, an x264 encoded video can 

be decoded by the FFmpeg program decoder.  The JM reference software, implemented by the 

JVT team, the same team responsible for maintaining the H264 standard, implements all the 

h264 features but is not a practical application for industry use.  Whether using free codecs or 

proprietary codecs for academia or industrial use, different mode selections will offer different 

compression performance and computational complexity.  Also, different applications require 

different limits on the coded bitrates.  Therefore, for a codec implementation to be of practical 

use, a bitrate control algorithm will need to be implemented that puts an upper and lower limit on  

bitrate while minimizing distortion in the H.264 compressed video.  Such applications would 

include internet streaming such as YouTube videos, HDTV broadcasts, video conversations on 

cell phones, and Blu-ray discs.   
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6.5.  Parallelization 

6.5.1.  Software Implementation on a CUDA-Enabled GPU 

 The software implementations of parallelizing the H.264 process usually attempt to 

parallelize the motion estimation since that is the most computationally intensive part of the 

encoding phase taking as much as 80% of the total execution time depending on how the motion 

estimation was implemented.  The integer transform is also parallelized since it is a matrix of 

independent operations. 

 In the literature, there are many studies showing success and results of the parallelization 

process for H.264 encoders and decoders.  Many show at least 20% speedup or more compared 

to the original H.264 implementation. 

 Two such codecs that have libraries that can be combined with the CUDA C libraries are 

the FFmpeg and x264 libraries.  When writing the H.264 encoding and decoding programs using 

the libraries, the codec operations can be parallelized depending on the nature of the data.  

CUDA can be used to assist with the parallelization. 

 NVIDIA has released a CUDA-based video decoding library known as NVCUVID, the 

NVIDIA CUDA Video decoder.  The library is part of the GPU computing SDK and is used to 

decode MPEG-2, VC-1, and H.264 video bit streams on video processors and CUDA-enabled 

GPUs.  This not a full codec since it only decompresses compressed data, not compress data. 

 

6.5.2.  Hardware Implementation 

 NVIDIA has produced a H.264 hardware-accelerated video encoder that uses dedicated 

hardware on Kepler-class NVIDIA GPUs to assist with H.264 encoding.  The dedicated 

hardware is designed to speed up the encoding and reduce power consumption while at the same 
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time, freeing up the CUDA and CPU cores from the encoding process so the CUDA and CPU 

cores can be used for other tasks.  The NVIDIA Encoder (NVENC) API allows software 

developers to access the dedicated hardware. 
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CHAPTER 7 

THE PROPOSED VIDEO COMPRESSION AND WATERMARK IN GPU COMPUTING 

ENVIRONMENT 

7.1.  H.264 Video Compression Algorithm  

 The H.264/MPEG-4 AVC compression format is currently the standard format for video 

coding and compression.  It achieves a much higher compression compared with other formats.  

It supports many additional options for encoding and decoding such as different modes for inter- 

and intra-prediction, variable block size, new integer transform design, and quarter-pixel 

precision for motion compensation to name a few.  This multitude of options allows better 

compression and more flexibility.  The H.264 compression format has a large computer base due 

to it being used in Adobe flash, YouTube, mobile Android devices and other mobile devices, and 

browser support.  H.264 is used across a broad application spectrum.  All these features and high 

compression come at the expense of an increase in computational complexity and execution 

time. 

 To decrease the overall computational complexity and execution time of the H.264 

compression and decompression, a massively parallel computing device, such as a GPU, can be 

used to assist with this reduction in time and complexity.  This is of course, dependent on data 

that is parallel in nature since the GPU is optimized for data parallelism, not data that is serial in 

nature.  The CUDA-enabled GPU offered by Nvidia supports a data-parallel programming 

computation model that can be useful for non-graphics applications such as H.264 video 

compression.  The integer transform uses independent operations to compute its matrix and thus, 

can be parallelized in the GPU.    A kernel function will be created to offload the integer 

transform computation onto the GPU. 
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7.2.  H.264 Digital Video Watermark Embedding Algorithm 

 The watermarking algorithm will embed the watermark data into the DCT coefficients 

during the encoding phase.  The subset of coefficients in the H.264 integer transform stage that 

will be modified will be the coefficients that correspond to the lower left portion of the video 

stream.  Since the H.264 integer transform is being parallelized, this implies the watermark 

embedding operations will also be parallelized.  To optimize the parallelization, the independent 

matrix operations will need to take advantage of the shared memory, local registers, and constant 

memory in the GPU to reduce the global memory accesses.  In order to accomplish this, since the 

matrices are too large to be stored in the shared memory, the matrices will need to be divided up 

into tiles so the matrix operations can fit perfectly into the shared memory and thus, reduce the 

global memory accesses.  Also, the local register use in conjunction will the thread count and 

block count will be taken into consideration to maximize the amount of threads per block and the 

blocks per SM that will be in use during the matrix operations.   
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CHAPTER 8 

EXPERIMENTAL RESULTS 

8.1.  Experimental Setup 

 The experimental setup regarding the hardware, GPU, system software, and 

programming software is listed in the below tables.  The program was executed using the GCC 

compiler and NVIDIA's CUDA compiler using the MSYS shell that mimics the Linux bash shell 

and MinGW-64 runtime environment that provides a runtime environment similar to Linux.  The 

FFmpeg program and libraries was used for the video compression and watermarks in the test 

videos.  The x264 library was used specifically for the video compression in FFmpeg. 

 The proposed algorithm was implemented using the hardware setup summarized in table 

8.1.  The specifications of the CUDA-enabled GPU are listed in table 8.2.  The system software 

the program was tested on is listed in table 8.3.  The encoder and decoder software and libraries 

and compilers are listed in table 8.4. 

Table 8.1  Test Hardware Setup 

System Hardware Details 

Platform:   Dell XPS 17 - L702X Laptop 

CPU Processor:  Intel Core i7-2760QM CPU @ 2.40GHz 

RAM:    16.0 GB (2x8 GB) DDR3 1600 MHz (PC3 12800) Laptop Memory 

GPU processor:  GeForce GT 555M 

 

Table 8.2  NVIDIA GeForce GT 555M Properties 

Parameters Values 
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GPU processor: GeForce GT 555M 

Driver version: 332.21 

CUDA Cores: 144  

Core clock: 590 MHz  

Shader clock: 1180 MHz 

Memory data rate: 1800 MHz 

Memory interface: 192-bit  

Memory bandwidth: 43.20 GB/s 

Total available graphics memory: 10955 MB 

Dedicated video memory: 3072 MB DDR3 

System video memory: 0 MB 

Shared system memory: 7883 MB 

Video BIOS version: 70.26.40.00.02 

IRQ: 16 

Bus: PCI Express x16 Gen2 

 

Table 8.3  Test System Software Setup 

System Software and Drivers Details 

Operating System:  Windows 7 Ultimate, 64-bit (Service Pack 1) 

Run Time Environment: MinGW-w64 

Shell MSYS 

Parallel Computing Platform CUDA 5.5 
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DirectX version:   11.0  

Direct3D API version: 11 

Direct3D feature level: 11_0 

GPU Driver version: 332.21 

Video BIOS version: 70.26.40.00.02 

 

Table 8.4  Test Software Setup 

Program Software and Libraries Details 

Multimedia Development Platform FFMPEG 

Encoding Libraries x264 

Compilers GCC and NVCC 

Profilers NVIDIA Visual Profiler 

 

8.2.  Experiments 

 Videos of different lengths were recorded using a cell phone.  Table 8.5 summarizes the 

video properties.   

Table 8.5  Video Properties 

Test Video Name Video Length (s) Dimensions 

WxH 

Size in 

MB 

File Type Frames 

Short Video 10 1920x1080 21.1 MB MP4 310 

Midsize Video 92 1920x1080 187 MB MP4 2755 
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Long Video 301 1920x1080 614 MB MP4 9025 

 

 The videos were watermarked using a .png file created in MS paint.  The .png file 

properties are shown in table 8.6 and the watermark itself is shown in figure 8.1. 

Table 8.6  Watermark Properties 

Dimensions WxH Size in KB File Type 

200x200 6.98 PNG 

 

 

Figure 8.1: A watermark logo used during the watermark insertion 

 The videos were compressed during the program execution with the watermark inserted 

before the encoding finished.  The videos were than decompressed for video playback.  Since 

this is a visible watermark, no watermark detection or extraction is needed. 
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8.3.  Results 

 The encoding and decoding results for the frame rate and bit rate on the CPU and GPU 

are shown in table 8.7.  The FFmpeg program was used in the MSYS shell to calculate the data.  

Table 8.8 displays the watermark execution times on the CPU and GPU and speedups obtained. 

Table 8.7  Frame rate and bitrate calculated for CPU and GPU 

Test Video 

Name 

Frame Rate 

on input 

file 

Frame Rate 

on output 

file 

Bitrate  

on input file in kb/s 

Bitrate on output 

file in kb/s 

Short Video 30 fps 19 16536 5245.1 

Midsize Video 30 fps 17 16989 5251.7 

Long Video 30 fps 16 17098 5253.9 

 

Table 8.8  Watermark Execution Time (s) 

Test Video Name Video Length CPU GPU Speed up Speedup 

Percentage 

Short Video 10 10.03 9.06 1.10706401 9.7% 

Midsize Video 92 159.71 148.57 1.07498149 7% 

Long Video 301 486.09 450.62 1.07871377 7.3% 

 

 As can be seen from the table, a small speedup was gained in the GPU.  Looking at the 

raw data from the profiler, the data transfers between the CPU and GPU were the more 

expensive parts in terms of execution time and this certainly did lower the speedup gained.  

65 



Figures 8.2 through 8.4 compare the original H.264 frames and watermarked H.264 frames of 

short, midsize, and long videos. 

 

 

(a)  Original H.264 Frame 

 

    (b) Watermarked H.264 Frame 

Figure 8.2:  Comparison of the original H.264 and watermarked H.264 frame in the short video 
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(a)  Original H.264 Frame 

 

    (b) Watermarked H.264 Frame 

Figure 8.3: Comparison of the original H.264 and watermarked H.264 frame in the midsize video 
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Figure 8.4: Comparison of the original H.264 and watermarked H.264 frame in the long video 

8.4.  Discussion of Results 

 The results obtained from the experiment were a bit disappointing considering the 

speedup gained.  One possible reason is the data transfers between the CPU and GPU during the 

program execution.  According to the profiler, this did add some execution time to the program 

execution.  Another reason deals with the fact that the H.264 format is an efficient compression 

format which implies high computational complexity and difficulty of watermark insertion since 

there are less insignificant values in the H.264 compressed file.  Also, the motion estimation is 

the most compute intensive part of the video compression and there are a lot of dependencies 

involved with the motion vector predictions during the motion estimation phase.  These issues 
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present a challenge in obtaining significant speeds on the GPU.  Another possible reason for the 

low speedup is the GPU test setup used.  The GPU used was a mobile chipset not meant for 

heavy duty computations and so it is possible had the benchmarks been performed on a desktop 

GPU, the results might have been a bit better.  Future research will need to be conducted on a 

desktop GPU. 

 

8.5.  Comparison With Related Research 

 With regards to H.264 video compression on the GPU, most authors obtained a modest 

speedup at around 20% and that does not include watermark insertion.  In [35], the authors 

obtained a speedup of around 20%. 

 In [25], the authors implemented a digital image watermark on a GPU and obtained a 6% 

speedup.  There were no digital video watermarks implementations on the GPU in the literature 

to be used for comparison. 

 This research combined digital video watermarks and H.264 video compression 

implementations on the GPU.  The literature was non-existent for digital video watermark in the 

H.264 video compression format.  Therefore it is a bit difficult to compare these results with 

others.  The results obtained on the compression and watermark insertion, a 8% speedup on 

average, were a bit lower compared with other H.264 compression implementations on the GPU 

but then again, their implementations did not include watermark insertion.  In [25], the method 

for watermark insertion is similar to this work’s though it is for image watermarking, not video 

watermarking.  The author did obtain a low speedup, which is similar to these results. 
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CHAPTER 9 

CONCLUSION AND FUTURE RESEARCH 

9.1.  Summary 

 Today's GPUs are massively parallel computing devices that can assist the CPUs for 

general computations in heterogeneous CPU-GPU systems.  For the GPUs to be of use, the data 

that is to be offloaded to the GPU has to be parallel in nature, not serial. 

 One of the non-graphics applications that is highly computationally intensive is digital 

video watermarks in H.264 compressed videos.  Digital video watermarking is the process of 

embedding data in an original message, such as the H.264 compressed video stream for 

protection of IP and enforce copyright protection for businesses and industry.  Digital video 

watermarks are used in many applications related to broadcast monitoring, source tracking, and 

copyright protection such as HDTV broadcasts, DVD and Blu-ray discs, and internet streaming 

to name a few.  The visible watermark can be used as a company logo to signify the owner of the 

video content.  The invisible watermark can be detected or extracted using different algorithmic 

techniques.  The embedding and extraction process can also be done in real-time as well, which 

is more computationally demanding as opposed to non-real time applications. 

 The H.264 process offers efficient compression at the expense of computational 

complexity and since the digital watermark is highly dependent on the compressed format, the 

H.264 digital video watermark is a highly computationally intensive task, especially in real-time 

applications.  To assist with the computational complexity and thus, lower the execution time, 

some of the highly computational tasks in the H.264 digital video watermark can be offloaded to 

the GPU.  There is substantial literature showing success in H.264 video watermarks being 

implemented on a CUDA-enabled GPU.  If the tasks contain dependent data and operations, the 
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algorithms can be redesigned to implement independent operations as in the case of the motion 

estimation [30]. 

 In this thesis, a generic video watermark for the H.264 compressed domain was 

implemented on a CUDA-enabled GPU.  The codec libraries used were the FFmpeg for the 

multimedia development platform and the x264 for the encoding libraries.  The operations that 

were offloaded to the GPU and parallelized were the integer transform coefficient calculations 

and the placement of the watermark data in the integer transform coefficients.  The watermark 

itself is a visible watermark.  The aim of the thesis was to offload the H.264 watermark 

operations onto the CUDA-enabled GPU to reduce execution time, and thus, the H.264 

watermark algorithm was not designed for robustness against attacks or for rate-distortion 

optimization in the H.264 compressed video. 

 

9.2.  Conclusions 

 The results obtains from the benchmarks were a bit disappointing.  A possible reason for 

this could be that the execution time did include the encoding and decoding phase and the only 

operations that were parallelized were the DCT coefficient calculations during the encoding 

phase and the watermark embedding in the DCT coefficients.  Motion estimation was not 

parallelized nor were any operations in the video decoder.  Also, the GPU test setup was on GPU 

mobile chipset that is not meant to handle heavy duty tasks and thus, it is possible that the 

benchmarks might have shown better results on a desktop GPU setup. 
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9.3.  Future Research 

 Future research will be conducted on optimizing the algorithm for CUDA by reducing the 

global memory accesses and increasing the use of shared memory and registers.  Mapping the 

motion estimation of the H.264 video compression to the GPU by removing the motion vector 

prediction (MVP) dependencies to reduce the computation time and observe the results it may 

have on the watermark algorithm.  It may require the watermark algorithm be redesigned and this 

redesign may reduce the execution time.  Also, test other watermark implementations such as 

inserting watermark data on H.264 compressed bitstreams.  This insertion would have to take 

place in the I-Frames.  Also, inserting watermark data on video streams before compression.  All 

the tests will need to be conducted on a desktop GPU to observe any additional performance 

gains compared to a mobile GPU. 
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