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Significant research efforts have been devoted to large-scale dynamical systems, 

with the aim of understanding their complicated behaviors and managing their responses 

in real-time. One pivotal technological obstacle in this process is the existence of 

uncertainty. Although many of these large-scale dynamical systems function well in the 

design stage, they may easily fail when operating in realistic environment, where 

environmental uncertainties modulate system dynamics and complicate real-time 

predication and management tasks. This dissertation aims to develop systematic 

methodologies to evaluate the performance of large-scale dynamical systems under 

uncertainty, as a step toward real-time decision support.  

Two uncertainty evaluation approaches are pursued: the analytical approach and 

the effective simulation approach. The analytical approach abstracts the dynamics of 

original stochastic systems, and develops tractable analysis (e.g., jump-linear analysis) for 

the approximated systems. Despite the potential bias introduced in the approximation 

process, the analytical approach provides rich insights valuable for evaluating and 

managing the performance of large-scale dynamical systems under uncertainty. When a 

system’s complexity and scale are beyond tractable analysis, the effective simulation 

approach becomes very useful. The effective simulation approach aims to use a few smartly 

selected simulations to quickly evaluate a complex system’s statistical performance. This 

approach was originally developed to evaluate a single uncertain variable. This 

dissertation extends the approach to be scalable and effective for evaluating large-scale 



systems under a large-number of uncertain variables. While a large portion of this 

dissertation focuses on the development of generic methods and theoretical analysis that 

are applicable to broad large-scale dynamical systems, many results are illustrated through 

a representative large-scale system application on strategic air traffic management 

application, which is concerned with designing robust management plans subject to a wide 

range of weather possibilities at 2-15 hours look-ahead time.   
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CHAPTER 1

INTRODUCTION

Significant research efforts have been devoted to large-scale dynamical systems, with

the aim of understanding their complicated behaviors and managing their responses in real-

time. One pivotal technological obstacle in this process is the existence of uncertainty.

Although many of these large-scale dynamical systems function well in the design stage, they

may easily fail when operating in realistic environment, where environmental uncertainties

modulate system dynamics and complicate real-time predication and management tasks.

This dissertation aims to develop systematic methodologies to evaluate the performance of

large-scale dynamical systems under uncertainty, as a step toward real-time decision support

(see also results documented in publications [125, 128, 129, 135, 136, 145, 146, 151–156]).

Two uncertainty evaluation approaches are pursued: the analytical approach and the

effective simulation approach. The analytical approach abstracts the dynamics of original

stochastic systems, and develops tractable analysis (e.g., jump-linear analysis) for the ap-

proximated systems. Despite the potential bias introduced in the approximation process, the

analytical approach provides rich insights valuable for evaluating and managing the perfor-

mance of large-scale dynamical systems under uncertainty. When a system’s complexity and

scale are beyond tractable analysis, the effective simulation approach becomes very useful.

The effective simulation approach aims to use a few smartly selected simulations to quickly

evaluate a complex system’s statistical performance. This approach was originally developed

to evaluate a single uncertain variable. This dissertation extends the approach to be scalable

and effective for evaluating large-scale systems under a large-number of uncertain variables.

While a large portion of this dissertation focuses on the development of generic methods

and theoretical analysis that are applicable to broad large-scale dynamical systems, many
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results are illustrated through a representative large-scale system application on strategic

air traffic management application, which is concerned with designing robust management

plans subject to a wide range of weather possibilities at 2-15 hours look-ahead time.

The rest of this dissertation is arranged as follows. In Part I (Chapters 2 and 3),

the modeling of large-scale dynamical systems under uncertainty is discussed through two

applications, strategic air traffic management and airborne networking. Models that capture

complicated network interactions and are succinct enough to meet the real time-requirement

are critical to the uncertainty evaluation of large-scale systems. In Part II (Chapters 4 and

5), uncertainty evaluation and decision-making for systems with a single uncertain variable

are discussed in detail through the strategic air traffic management application. This part

focuses on the integration of system models with uncertain environmental models for both

evaluation and decision-making. Both analytical approach and effective uncertainty evalu-

ation approach are introduced. In Part III (Chapters 6 and 7), the single-variable effective

simulation approach is generalized to the multivariate case, which is common to large-scale

system applications. The properties of the generalized method are theoretically analyzed.

In addition, this generalized approach is applied to the uncertainty evaluation and strategy

design for the strategic air traffic management application. In Part IV (Chapters 8 and

9), further theoretical development is made to bring the multivariate uncertainty evaluation

methods scalable to the number of uncertain variables, critical to its use in large-scale system

application. Both effective simulation and jump-linear approaches are developed and their

applications to strategic air traffic flow management are discussed.

1.1. Part I: Modeling of Large-Scale Dynamical Systems under Uncertainty

In Chapter 2, we introduce a queuing network model that can comprehensively rep-

resent traffic flow dynamics and flow management capabilities in the U.S. National Airspace
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System (NAS). We envision this model as a framework for tractably evaluating and design-

ing coordinated flow management capabilities at a multi-Center or even NAS-wide spatial

scale and at a strategic (2–15h) temporal horizon. As such, the queuing network model

is expected to serve as a critical piece of a strategic flow contingency management solu-

tion for the Next Generation Air Traffic System (NextGen). Based on this perspective, we

outline, in some detail, the evaluation and design tasks that can be performed using the

model, as well as the construction of the flow network underlying the model. Finally, some

examples are presented, including one example that replicates traffic in Atlanta Center on

an actual bad-weather day, to illustrate simulation of the model and interpretation/use of

model outputs.

In Chapter 3, we introduce a novel mobility model for airborne networks (ANs).

The design of effective routing protocols in ANs relies on suitable mobility models that

capture the movement patterns of airborne vehicles. As airborne vehicles cannot make

sharp turns as easily as ground vehicles do, the widely used ground-based mobile ad hoc

network (MANET) mobility models are not appropriate to use as the analytical frameworks

for airborne networking. The mobility model we developed is called the smooth-turn (ST)

mobility model, that captures the correlation of acceleration of airborne vehicles across

temporal and spatial coordinates. The proposed model is realistic in capturing the tendency

of airborne vehicles toward making straight trajectories and STs with large radii, yet is

tractable enough for analysis and design. We first describe the mathematics of this model

and then prove that the stationary node distribution is uniform. Furthermore, we introduce a

metric to quantify the degree of model randomness, and using this, we compare and classify

several mobility models in the literature. We conclude this chapter with several possible

variations to the basic ST mobility model.
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1.2. Part II: Uncertainty Evaluation and Decision-Making for a Single Uncertain Variable

In Chapter 4, we introduce a promising framework for representing an air traffic flow

(stream) and flow-management action operating under weather uncertainty. We propose to

use a meshed queuing and Markov-chain model–specifically, a queuing model whose service-

rates are modulated by an underlying Markov chain describing weather-impact evolution–to

capture traffic management in an uncertain environment. Two techniques for characterizing

flow-management performance using the model are developed, namely 1) a master-Markov-

chain representation technique that yields accurate results but at relative high computational

cost, and 2) a jump-linear system-based approximation that has promising scalability. The

model formulation and two analysis techniques are illustrated with numerous examples.

Based on this initial study, we believe that the interfaced weather-impact and traffic-flow

model analyzed here holds promise to inform strategic flow contingency management in

NextGen.

In Chapter 5, we investigate the optimal decision-making under weather and demand

uncertainties. Air traffic management at the strategic time frame (with 2-15 hours look-ahead

time) is complicated by demand and weather uncertainties. As the Monte Carlo approach

to find optimal solutions is time-consuming, we need an effective and systematic approach

to quickly 1) assess the impact of uncertain weather, and 2) design optimal management

strategies under demand and weather uncertainties. In particular, we investigate a simple

strategic flow management scenario: a stream of uncertain flow enters a single weather zone

subject to weather uncertainty. We provide an integrated weather-demand-management

modeling framework to capture the uncertain dynamics of this scenario. Using this integrated

modeling framework, we provide a jump-linear analytical approach to evaluate the first and

second moments of weather impact, and a Probabilistic Collocation Method (PCM) based
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approach for the design of optimal flow management. Possible cost functions for the optimal

management is discussed, and examples are shown to demonstrate the performance of the

proposed approaches.

1.3. Part III: Evaluation and Decision-Making Subject to High-Dimensional Uncertainty

In Chapter 6, we extend the formal analysis of single-variable PCM to the multivari-

ate case, where multiple uncertain parameters may or may not be independent. Modern

large-scale infrastructure systems have typical complicated structure and dynamics, and ex-

tensive simulations are required to evaluate their performance. PCM has been developed to

effectively simulate a system’s performance under parametric uncertainty. In particular, it al-

lows reduced-order representation of the mapping between uncertain parameters and system

performance measures/outputs, using only a limited number of simulations; the resultant

representation of the original system is provably accurate over the likely range of parameter

values. Specifically, we provide conditions that permit multivariate PCM (M-PCM) to pre-

cisely predict the mean of original system output. We also explore additional capabilities of

the M-PCM, in terms of cross-statistics prediction, relation to the minimum mean-square

estimator, computational feasibility for large dimensional parameter sets, and sample-based

approximation of the solution. At the end of the chapter, we demonstrate the application of

M-PCM in evaluating air traffic system performance under weather uncertainties.

In Chapter 7, we suggest an effective approach to design optimal strategic air traffic

management strategies under weather uncertainty. The approach is based on the M-PCM,

which constructs a good low-order polynomial approximation of the original system map-

ping over likely parameter values, from which optimal management strategies can be derived.

We illustrate the optimal management design procedure through an example of designing

Minutes-in-trail (MINIT) and routing strategies for two correlated weather zones. The per-
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formance analysis shows this approach is promising for the real-time design of strategic air

traffic management strategies due to its correctness and efficiency.

1.4. Part IV: Further Results on Scalable Uncertainty Evaluation and Decision-Making

In Chapter 8, we introduce a scalable uncertainty evaluation method to significantly

reduce number of simulations. Effective uncertainty evaluation is a critical step toward

real-time and robust decision-making for complex systems in uncertain environments. The

M-PCM was developed to effectively evaluate system uncertainty. The method smartly

chooses a limited number of simulations to produce a low-order mapping, which precisely

predicts the mean output of the original system mapping up to certain degrees. While the

M-PCM significantly reduces the number of simulations, it does not scale with the number

of uncertain parameters, making it difficult to use for large-scale applications that typically

involve a large number of uncertain parameters. We develop a method to break the curse of

dimensionality. The method integrates M-PCM and Orthogonal Fractional Factorial Design

(OFFD) to maximally reduce the number of simulations from 22m to 2�log2(m+1)� for a system

mapping of m parameters. The integrated M-PCM-OFFD predicts the correct mean of the

original system mapping, and is the most robust to numerical errors among all possible

designs of the same number of simulations. The analysis also provides new insightful formal

interpretations on the optimality of OFFDs.

In Chapter 9, we study the sensitivity of air traffic flow management performance

in the NAS to uncertain disturbances. In particular, we model the air traffic system under

weather uncertainty as a discrete jump linear system. As the performance of the system is

tractable at each time step, we are able to evaluate the transient traffic congestion caused by

weather over a time span. Then, we analyze the sensitivity of the total transient congestion

with respect to inflow rate based upon our jump linear modeling framework. Finally, we
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present our idea of aiding air traffic planning based upon the information obtained from

sensitivity analysis. We show that the design of optimal flow management preserves a simple

sensitivity structure.
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CHAPTER 2

DYNAMIC QUEUING NETWORK MODEL FOR FLOW CONTINGENCY

MANAGEMENT

2.1. Introduction

In the Next Generation Air Transportation System (NextGen), traffic flow manage-

ment (TFM) operations will require better congestion prediction and management at longer

look-ahead times (LATs) to more effectively use the limited capacity of the National Airspace

System (NAS). Specifically, a decision support capability is envisioned for NextGen, which

can account for the uncertainties inherent at these longer LATs while still providing decision

makers with effective coordinated strategies for managing congestion. In response to this

need, an operational concept for flow contingency management (FCM), which is defined by

the Federal Aviation Administration as the process which identifies and resolves congestion

or complexity resulting from blocked or constrained airspace or other offnominal conditions

[39], has been proposed [123, 127]. The FCM operational concept requires an aggregate

flow model that will allow incorporation of dynamic weather impact, design of management

strategies for likely weather impact outcomes, and evaluation of these strategies using met-

rics of interest to multiple decision makers. A critical need in this approach is the ability

to capture the types of congestion management controls available now and envisioned in the

NextGen environment, for the simulation and evaluation of aggregated traffic flow for diverse

management options.

We are developing a new dynamic queuing network model of the NAS to enable

the evaluation and design of traffic management strategies under weather uncertainties for

FCM. Herein, we describe the model, identify gaps in analysis, and present examples of its

application. Our queuing network model has several features that make it promising for
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FCM.

(1) It links stochastic weather impact with NAS performance. The model takes stochas-

tic weather impact predictions as input and simulates NAS flow dynamics, allowing

calculation of performance metrics such as delay, throughput, and congestion sta-

tistics. Given the significant weather uncertainty at longer LATs, such performance

analysis under uncertainty is critical for FCM.

(2) It quantitatively captures the impact of realistic traffic management actions at an

aggregate-flow level, which is a critical requirement for NAS-wide decision-making

and evaluation goals of FCM. Specifically, management actions (five in total) that

are used in current practice or are likely to be used in NextGen are comprehensively

modeled.

(3) It represents traffic as stochastic flows while maintaining route structures. Because

flows rather than individual aircraft are tracked, the dimension of the decision space

for FCM is significantly reduced. However, the model allows imposition of route

structures specified by an underlying flow network, as needed for the effective sim-

ulation and design of the NAS.

(4) It permits parameterization from data and interface with operational practice. The

model is constructed to provide an effective evaluation and design of manage-

ment strategies based upon an aggregated flow structure, demand information, and

weather impact data. These constructs readily correspond with physical elements

and conceptual paradigms used in the NAS, allowing easy model parameterization

from historical data and translation of model results to operational practice.

This chapter is organized as follows: Section 2.2 gives background on queuing network

models and motivates their use in FCM. In Section 2.3, we describe the key challenges in
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developing dynamic flow network (queuing) models for FCM. In Section 2.4, we describe the

new dynamic queuing network model in detail, discuss its interface with the FCM framework,

and list analytical challenges in using the model for FCM design. In Section 2.5, we present

three examples illustrating simulation and performance evaluation of FCM designs using

the model; one of the examples replicates a historical convective-weather- constrained traffic

scenario in Atlanta Center. In Section 2.6, we briefly introduce an alternative route based

dynamic queuing network model. A brief conclusion is given in Section 2.7.

2.2. Background on Dynamic Queuing Network Model

Driven by the need for NAS-wide coordinated management, several research efforts

have pursued construction of network models for the NAS, as reviewed in [117] and [53].

Most of these models are deterministic models (e.g., [13, 15, 82, 83, 90, 119]) and, as such,

have limited ability to capture uncertainties. Queuing network models provide a natural

alternative for modeling traffic systems with uncertainty. A queue comprises 1) a stochastic

arriving/upstream flow that is usually modeled as a stochastic process, 2) a flow restriction

service capturing limited capability to process flows, and 3) a downstream flow that is shaped

by the service acting on it (see Figure 2.1). In a queuing network model, downstream flows

from one queue become the arriving flows of other queues, thus forming a network. We

believe that queuing network models are promising as a centerpiece for FCM for several

reasons.

Figure 2.1. Queuing models.
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(1) They naturally capture NAS uncertainties. Both schedule and weather uncertainty

are prevalent in air traffic at longer LATs (see, e.g., [89] and [104] for analysis/

modeling of traffic uncertainties). Deterministic network models often yield man-

agement solutions that are not optimal or implementable under such uncertainty.

Queuing network models naturally capture schedule uncertainty in a tractable way

and can yield solutions that are robust to schedule and weather uncertainty.

(2) Queuing models naturally capture many current and planned traffic management

strategies, which essentially are flow constrictions. Statistical analyses of queuing

systems can permit a quantitative evaluation of these restrictions impacts on flows

and coordinated design of flow restrictions for FCM.

(3) Queuing network models track flows and management in aggregate, rather than

modeling individual aircraft motion. Aggregation reduces computation while pro-

viding sufficient fidelity for FCM decision making, which only requires generating

high-level coordinated management strategies.

2.2.1. Literature Review: Queuing in Air Transportation

We review queue and queue-network models in air traffic, to provide a context and

motivation for the development of a new sophisticated queuing network model for FCM.

Queuing models have long been used to analyze uncertain local service constrictions, such as

airport delays [60], taxi-out delays in particular [63], and backlog/delay caused by en route

restrictions on a single traffic stream [88].

Of importance to our development, queuing network models have been considered in

evaluating NAS performance. Some works model a network of airports with departing and

arriving traffic represented as queues (see [80] and [115]). In [44], a NAS-wide simulation

model, i.e., NASPAC, was developed to evaluate changes such as airport capacity variation,
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airport improvements, and demand growth. Later, in [77], a static queuing network model in-

corporating both airports and en route Centers was developed. In [120], an M/M/m Jackson

Queuing Network capturing intra-Center flows was used to analyze NAS performance and

route selection efficiency. Many of these models adopt Markovian service times and flows,

for tractability. In [130], M/D/1 queues were used to model miles- and minutes-in-trail

(MIT/MINIT), and linear network abstraction was developed thereof, allowing the design

of flow restrictions in a steady-state situation. In [55], the use of models with Erlang-K ser-

vice distributions for low-precision but flexible/tractable NAS-wide modeling and captured

timevarying aspects of traffic was sought out. Analysis of such queue network representation

is complicated: An approximate solution can be found in [80].

2.3. Queuing Models for Flow Contingency Management: Challenges

Existing queuing network approaches are not sufficiently sophisticated to achieve the

operational goals of the FCM decision support system. Several key advances are needed.

First, the model must capture routing options in the NAS (while still modeling traffic in the

aggregate). Second, the queuing model must be reasonably easy to parameterize from data

and to configure for practical needs. For instance, schedule information needs to be easily

reflected in flows. In addition, appropriate aggregation is needed to balance computational

costs with ease of transforming strategic decisions to tactical management actions. The most

significant modeling challenge is aptly representing real management actions to allow design

of effective yet realistic management strategies. Let us discuss this challenge in further detail.

2.3.1. Key Challenge: Modeling Management Actions

We consider five control actions (called traffic management initiatives or TMIs) that

are currently used or are planned for use in NextGen: MIT/MINIT, rerouting, time-based

metering (TBM), ground delay programs (GDPs), and airspace flow programs (AFPs). Here,
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we discuss how each can be captured using a queuing model for FCM. We emphasize that our

models are abstractions of operational reality. Specifically, except for MIT/MINIT (which

are intrinsically flow restrictions), we abstract current flight-specific definitions for TMIs as

flow restrictions acting on aggregate flows.

Rate Restrictions (MIT/MINIT): MIT and MINIT specify the minimum allowable

separation distance and traveling time, respectively, on a flow segment. An MIT/MINIT

restriction can be captured with deterministic service time in a queuing model, e.g., as an

M/D/1 or G/D/1 queue. Specifically, each aircraft in the coming flow is modeled as taking

a fixed service time to pass a flow restriction point; any additional arriving aircraft will be

waiting in the queue and will pass the restriction point on a first-come basis.

Routing: Aircraft are provided alternate routes to avoid convective weather or other

adverse situations. To model routing, queuing network models need to distinguish among

flows with different destinations, since route choices are destination dependent. Thus, basic

queuing network models need to be enhanced to distinguish flow destinations. Then, routing

can be abstracted as setting the fraction of flows in each possible direction at flow splitting

points. TBM: TBM requires aircraft to be delivered to fixes at precomputed times, to

reduce discrepancies between demand and capacity at arrival airports. The metering plan

along an aircrafts route is assigned based on the destination airports arrival rate and is

achieved via speed adjustment, vectoring, and holding. In contrast to MIT/MINIT, TBM

is an aircraft-specific TMI. In aggregate, TBM may be abstracted using a G/M/n model:

The multiple-server model captures that any aircraft meeting its metering schedule (as set

by the arrival airport) is permitted to pass.

GDP: A GDP delays aircraft at their departure airport so as to resolve demand/capacity

imbalances at an arrival airport. The delay assigned to an aircraft at the departure airport is

determined by the arrival airports allowed rate. We abstractly capture a GDP as shaping the
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departure demand or restricting the departure airports rate, according to a queuing model

such as G/Ek(t)/n or G/M/n. Because GDP implementation is tied to specific origindesti-

nation (OD) pairs, the queuing network model needs to distinguish origindestination pairs

to capture GDPs.

AFP: AFPs manage aircraft that are scheduled to pass through constrained airspace

through the assignment of estimated departure clearance times (EDCTs). An aircraft-specific

EDCT is assigned based on the time required for each aircraft to cross an AFP-constrained

area. AFPs can be modeled similarly to GDPs but only for flows intersecting the constrained

airspace. Flows again need to be distinguished by their origin airports.

These models for traffic management actions will be integrated into the queuing

network model in Section 2.4.

2.4. Queuing Network Model

Let us describe the new queuing network model for traffic flow and management,

which is a centerpiece of the FCM solution.We also describe challenges in interfacing the

network model with other FCM components and identify the analytical challenges that

define major research directions.

2.4.1. Core Model

Let us start with a foundational model that only captures two TMIs, i.e., routing and

MIT/MINIT. We discuss two general considerations in modeling and then present model

details.

To capture routing (and GDPs), the queuing network model needs to distinguish

origin–destination (O-D) pairs as separate subnetworks. Rates for the O-D pair subnet-

works can be obtained from schedules, whereupon stochastic process models (e.g., Poisson

processes) with these rates can be used to describe the flows. Since regional capacity con-
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straints (and some rate restrictions) act on total flows across O-D pairs, the subnetworks

must be overlapped and integrated (see Figure 2.2).

Figure 2.2. Preliminary queuing network structure. (Red nodes) Aggre-

gated origin airports. (Green nodes) Aggregated destination airports. (White

nodes) Flow splitting/merging points. (Black nodes) Boundary intersection

points. (Links) Directed routes. (Dotted curves) Region boundaries. (Orange

and blue colors) Subnetworks with different O-D pairs. Note that subnetworks

are overlapped to complete a network model.

In the network model, nodes are classified into three categories: 1) flow merging/splitting

points, 2) aggregated origin and destination airports, and 3) boundary intersection points.

The definitions for the first two categories are straightforward and in general; we can consider

a directed route as beginning at an origin airport (category-2 node), traversing through a

number of flow merging/splitting points (category-1 nodes), and terminating at a destina-

tion airport (category-2 node). To understand the third category, let us consider the NAS

as partitioned into indexed regions (e.g., sectors, clusters of sectors, etc.). The intersections

between region boundaries and directed routes are called boundary intersection points. Let

us denote a link as the portion of a directed route between two connected nodes belonging to
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category 1 and/or 2.We note that a boundary intersection point can be uniquely determined

by the ends of a link and the region index that the flow enters. As such, when we refer

to a node in this chapter, we mean a node belonging to categories 1 and 2 without specific

clarification, whereas a link and a region index specify boundary intersection points. Second,

we note that we formulate the model in discrete time, both to simplify model parameteriza-

tion and simulation and to avoid technical complexities of continuous-time queuing models.

Thus, traffic flows are captured as numbers of aircraft (on route segments or entering/exiting

the airspace), and the queuing models previously described for management actions are dis-

cretized. Our previous studies [130], [151] indicate that such discrete-time models are apt

approximations for management actions such as MIT/MINIT. To illustrate discretization,

let us briefly consider the MIT/MINIT restriction, which we model as a G/D/1 queue.

Discrete-time approximation works as follows: At each unit time interval, if backlog b (num-

ber of already-waiting aircraft) plus new inflow u (number of aircraft in the impinging flow)

is larger than service rate N (maximum number of aircraft that can be served in a unit

time), N aircraft pass to the downstream, and the backlog at the next time interval becomes

b−N +u. If instead, b+u is less than N , then all b+u aircraft can pass to the downstream,

and the backlog at the next time interval is 0.

Now, let us formally introduce the core queuing network model. Let us begin with a

list of variables.

fod[k]: Demand from origin o to destination d at time instance k. This demand is modeled

as a stochastic process (e.g., Poisson process).

ijm: Boundary intersection point uniquely determined by link (i, j) and region m.

fodij [k]: Flow rate (the number of aircraft per unit time) traveling from origin o to destination

d, which are entering j along the link from node i to node j at time k. If this link does not

exist in subnetwork o-d, fodij [k] = 0. The same rule applies to all other variables.
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godij [k]: Time-k flow rate from origin o to destination d, leaving node i along the link from

i to j.

bijm[k]: Total backlog of the flow from node i to node j at the boundary of region m at time

k.

uijm[k]: Rate of flow from node i to node j, right before entering the boundary of region m

at time k.

dijm[k]: Rate of the flow from node i to node j that has just crossed the boundary of region

m at time k.

podij : Fraction of the flow from origin o to destination d entering the link from node i to

node j.

Nijm: Number of aircraft allowed to enter region m along path (i, j) in a unit time.

Nid: Number of aircraft per unit time allowed to enter destination d from node i through

link (i, d).

ki,j: Number of time steps for an aircraft to travel from node i to node j (along a direct

connection). Here, the nodes may include boundary intersection points.

Γijm: Capacity for link (i, j) in region m, i.e., the total number of aircraft allowed to pass

through ijm along link (i, j) in a unit time.

Γm: Total capacity for region m, i.e., the total number of aircraft allowed to enter region

m in a unit time. Defining region capacity based upon entering flights naturally captures

controller workload.

Γd: Total capacity for destination airport d, i.e., the number of aircraft allowed to enter d in

a unit time.

Variables fod[k] represent inflows to the network. Variables 3–7 are state variables

of the queuing dynamics. Flow variables f, g, b, u, d are stochastic processes. Variables 8–

10 are control variables to capture management strategies, and variables 11–14 are system
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constraints. We note that variables 8–14 may be slowly time varying; however, we suppress

time dependence in our notation, to avoid confusion with state variables.

Using the given notations, the flow network model is described by the following dy-

namic equations and constraints. At each flow junction point j, the total inflow and the

total outflow are equal. Here, the four-character subscript follows the notations 3, 4, and 8,

and l denotes a downstream region of j, i.e.,

(1) godjl[k] = podjl
∑
i

fodij [k]

(2)
∑
l

podjl = 1

(3) 1 ≥ podjl ≥ 0

As a special case, at origin airport o, we have

(4) godoi = podoifod[k]

Here, podoi is subject to two constraints, i.e.,

(5)
∑
i

podoi = 1

(6) 1 ≥ podoi ≥ 0

Note that fraction variable podjl models rerouting.

At each boundary intersection point ijm, an MIT restriction (or other flow restriction

capability), which is denoted by Nij , shapes flows associated with all source/destination

pairs, reducing downstream flow (d) at the cost of increased backlog (b), i.e.,

(7) bijm[k + 1] = max(0, bijm[k + 1] + uijm[k + 1]−Nijm)
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(8) dijm[k + 1] = min(Nijm, bijm[k + 1] + uijm[k + 1])

(9) Nijm ≤ Γijm

(10)
∑
i,j

Nijm ≤ Γm

Equations (7) and (8) describe the discrete-time G/D/1 approximation, whereas (9) and

(10) enforce capacity constraints on flow restriction variables. Let us next model the flows

to a destination airport, which we assume is associated with a particular region. Using the

same index d for the airport (as a flow merging point) and region, for convenience, we have

(11) bidd[k + 1] = max(0, bidd[k] + uidd[k + 1]−Nid)

(12)
∑
i

Nid ≤ Γd

We also assume that aircraft travel at a constant speed between two connected nodes, in-

cluding boundary intersection nodes. Thus, network flows evolve as follows:

(13) uijm[k] =
∑

all(o,d)pairs

godij[k − ki,ijm]

(14)
∑

all(o,d)pairs

fodij [k] = dijm[k − kijm,j]

(15) uijn[k] = dijm[k − kijm,ijn]

(16) fodij [k] = godij [k − ki,j]

The given network model allows the evaluation and design of routing and MIT/MINIT.

Specifically, parameters podjl capture routing strategies, andNijm models MIT/MINIT strate-

gies. For simulation, state variables, including the inflow, backlog, and cross-flow, are tracked
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at all OD specific nodes according to the given recursive equations. When multiple flows are

subject to a single constraint or MIT restriction, the restriction on each flow is subject to

the following rules, with the consideration that flows with accumulated backlogs should have

the high priority to pass: If the total backlog of all flows is greater than the total available

constraint/MIT restriction, each flow is assigned a control restriction that is proportional to

its backlog; otherwise, all backlogs are allowed to cross, and the remaining control restriction

for each flow is assigned as proportional to its inflow.

Our queuing network model differs from existing flow/queuing models in several re-

spects.

• The model captures flows as stochastic processes and, hence, traces stochastic back-

logs and downstream flows. Thus, congestion (measured by the backlog) is modeled

more realistically than in deterministic models (e.g., [90]). Moreover, time delays

(widely used in practice) can be easily calculated. In particular, total delay over a

time span equals the interval duration multiplied by the summed backlogs over this

span.

• The overlapped OD pair flow network model structure allows performance analysis

and the design of management actions. We explicitly incorporate control parameters

that reflect in-practice management actions, in contrast with other models that only

implicitly capture management (e.g., [25]).

• The model is dynamic and can capture the transient dynamics of the NAS, in

contrast with most queueing approaches in air transportation. This is particularly

important for understanding the impact of transient weather events.

• Weather uncertainties can be transformed to stochastic descriptions of capacity

constraints to facilitate weather driven FCM design (see [151] and [155]).
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The queuing network model is flexible, in that it can be configured for different FCM

needs. For instance, we can model layered traffic by defining subnetworks for different al-

titudes. We note that the model abstracts away details such as variable aircraft speeds,

aggregates airports/regions, etc. Since FCM is focused on a NAS-wide long-LAT resource

distribution, we believe that these abstractions are needed given the high uncertainty. How-

ever, extensive tests are needed for validation (see Section 2.5.2 for preliminary verification).

2.4.2. Model Enhancement: Capturing GDP/AFP/TBM

Let us enhance the given core model to incorporate GDPs, AFPs, and TBM to

facilitate their analysis and design.

As previously discussed, a GDP at destination airport d can be modeled using G/M/n

queues at each impacted origin airport o. Discrete-time approximation is used here. In

particular, we replace (4) with the following set of equations:

(17) bod[k + 1] = max(0, bod[k] + fod[k + 1]−Mod[k])

(18) godoi[k + 1] = podoimin(bod[k] + fod[k + 1],Mod[k])

Here,Mod[k] is Poisson-distributed with rate Nod. bod[k] represents the GDP backlog for the

origin-destination pair. A GDP is designed by selecting multiple such destination airports d

and specifying Mod for all paired (impacted) origin airports o. We note that (17) and (18)

describe the flows at impacted origin airports. These restrictions placed do not propagate

impact to the destination airport until nominal flight time has passed, as governed by (13)-

(16).

AFPs are modeled as reshaping the stochastic departure rates for all origins o that

have flows intersecting with the weather (restricted) zone w, using a discretized G/M/n
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queue. The following two equations describe this process:

(19) bodoi[k + 1] = max(0, bodoi[k] + podoiwfod[k + 1]−Modoiw[k])

(20) godoi[k + 1] = min(bodoi[k] + podoiwfod[k + 1],Modoiw[k]) + (podoi − podoiw)fod[k + 1]

Here, Modoiw[k] is Poisson-distributed with rate Nodoiw, bodoi[k] represents the backlog as-

sociated with the flow that travels from origin o to node i and then finally to destina-

tion airport d, and podoiw specifies the percentage of flow that intersects with the weather

zone among the flows from origin o to node i and then to destination airport d. podoiw =∑
∀j,...,lm podoipodij...podlm such that m is located in the weather zone. An AFP is designed

by selecting the weather zone and designing the rates Nodoiw for intersecting flows. An

alternative modeling scheme that facilitates the modeling of AFP can be found in [125].

To represent TBM, we use discretized G/M/n queues to represent control at metering

fixes, which we assume are collocated with boundary intersection points. At a fix, there might

be multiple queues, each acting on the flows to a particular destination d. At a fix ijm where

TBM is implemented, (7)-(12) are replaced by

(21) bijmd[k + 1] = max(0, bijmd[k] + uijmd[k + 1]−Mijmd[k])

(22) dijmd[k + 1] = min(Mijmd[k], bijmd[k] + uijmd[k + 1])

(23)
∑
d

Nijmd ≤ Γijm

(24)
∑
i,j,d

Nijmd ≤ Γm
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Here, Mijmd[k] is Poisson-distributed with rate Nijmd; bijmd[k], uijmd[k], and dijmd[k]

represent the backlog and flow rates just prior to and after ijm, for the flows with destination

airport d. For TBM at the destination airport, we have

(25) biddd[k + 1] = max(0, bidd[k] + uiddd[k + 1]−Mid[k])

assuming that a destination airport can be viewed as a region and a flow merging point,

with the same index. Moreover, Mid[k] is Poisson-distributed with rate Nid, and

(26)
∑
i

Nid ≤ Γd.

uijmd[k]can be obtained through the following equations describing the en route behavior.

Thus

(27) uijmd[k] =
∑
allo

godij [k − ki,ijm]

(28)
∑

allopairs

fodij [k] = dijmd[k − kijm,j]

(29) uijnd[k] = dijmd[k − kijm,ijn]

(30) fodij [k] = godij [k − ki,j]

For simplicity, we may also assume only one restriction placed at a metering fix that acts

on flows to all destinations. In this case, we simply replace the G/D/1 constraint [see (7)

and (8)] at each boundary intersection point with the G/M/n constraint. The details are

straightforward and, hence, are omitted here.
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In sum, the given queuing network models are general and flexible high-level models

that define the progression of interacting flows subject to control actions and network con-

straints. Depending on the problem of interest, the model can be simplified. For instance,

podij can be restricted to take either a 0 or 1 value, if only one route is used for an OD pair.

Moreover, flow merging/splitting points and boundary points may be merged. In general,

flow restrictions in the network may be considered designable or not: Management actions

constitute designable restrictions, whereas restrictions caused by external factors such as

weather may not be.

2.4.3. Integrating the Queuing Network into the FCM Framework

A detailed description of our FCM concept and framework is given in [123]. The

purpose of our effort is to predict stochastic demand-capacity imbalance and, in turn, to

evaluate and design TMIs, using a coarse queuing network framework. We summarize the

framework (see Figure 2.3) and describe the queuing network model integration, to explain

its use in flow contingency analysis and design.

Figure 2.3. Complete FCM framework [39].

In Figure 2.3, FCM framework elements are grouped into four components. Data
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elements (shown in red) define the information requirements for FCM, namely, flight sched-

ule, airspace configuration, and weather data. Model-building elements, which are shown in

green, are concerned with network- and aggregate-demand definition. These model-building

elements translate flight schedules and relevant airspace configuration data into forms that

can be used for flow contingency planning.

The flow contingency development component, which is shown in black, derives and

evaluates flow contingency plans for FCM from the data and built models. It has three pieces,

namely, a weather impact predictor, a queuing model, and a flow contingency development

tool. The weather impact model analyzes the weather and configuration data to identify

evolving weather impacts on NAS parameters (capacities). This information, as well as the

aggregated demand, is provided to the queuing model, which simulates traffic under weather

impact. This simulation is leveraged to define the flow contingency plans for the different

potential weather impact outcomes. These plans are then relayed to the strategic planning

component (shown in blue), which consists of user priority inputs, a formal framework for

strategic planning, and an incremental decision–planning tool that defines the current point

plan.

The queuing network model is integral to the capabilities envisioned for FCM, i.e.,

the simulation and design of control actions to mitigate performance loss in the presence

of weather impact. Let us now discuss issues related to integrating the model and research

needs in using the model for the evaluation and design of FCM strategies.

(1) Inputs to the Queuing Network Model: The proposed queuing network model can

be adapted to network descriptions with any aggregation level. To use the queuing

model for FCM, we need to first parameterize the queuing network to reflect the

operational reality of the planning period under consideration. We call the param-
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eterized model a queuing network instance. To obtain a queuing network instance,

we require the following inputs from the other modules within the FCM framework.

(a) Flow network structure from the flow network description module: Appropri-

ate aggregation levels for queuing model elements (e.g., nodes and routes) are

needed to allow the design of management actions at a meaningful scale for

FCM, whereupon the linkflowtime parameters can be estimated. The aggrega-

tion level for flows should be closely tied to congestion (which may or may not

be related to weather severity but does not have to be). Often, multiresolution

[122] or even dynamic networks are thus appropriate.

(b) Demand rates (e.g., fod): Stochastic process demand models must be con-

structed from data. Time-varying Poisson flow models are often used (see, e.g.,

[88] and [137]) for some justification.

(c) En route, regional, and destination capacity constraints (γijm, γm, and γd):

These parameters are provided by the weather impact model (see, e.g., [150]

and [112] for the development).

(d) Controls and other flow restrictions (e.g., MIT restriction Nijm, GDP restriction

Nod, etc.): These parameters may be design variables but may be also impacted

by uncertain weather indirectly through capacity variables. These indirect

impacts are discussed in [125, 151, 155].

If we initiate the queuing model early in the morning (at a low traffic time), the

given inputs are sufficient to develop and simulate a model instance. However,

if midday starts are needed, initial conditions for the queuing network models

state variables are required for a real-time simulation. Such initial information

can be obtained either from historical rates or from a combination of schedules,

filed flight plans, and currently airborne flights. Specifically, information on
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airborne and other flights with precise schedules can be translated to determin-

istic flow rates, whereupon management actions operate on the deterministic

and stochastic flows together. However, if this information already accounts for

management actions, care must be taken such that the action is not reapplied.

(2) Simulation and Design Outputs: Direct outputs of the queuing network simulation

include the time-series statistics of inbound flow, crossing flow, and backlog at all

management nodes in the network. These statistical data capture the transient

dynamics of the NAS in response to dynamical weather uncertainties. From these

data, important decision-making indicators, such as airport delay, airport through-

put, sector count, and sector backlog, can be obtained, which can assist in FCM

design. Meanwhile, design outputs from the queuing network model are in the form

of aggregated rates at over time and location, for management actions of interest

(see Table 2.1 for relevant outputs).

Other outputs include stochastic weather generated from the integrated flow and

weather simulator, prediction of future policies associated with different weather

scenarios, performance statistics estimates, and possibly partitioning plans for the

tactical time frame. More work is needed to effectively translate the aggregated

rates to contingency plans with concrete flow actions that are understandable and

implementable at the Air Traffic Control System Command Center and other NAS

facilities.

(3) Performance Evaluation and Optimal Design: With the given queuing network

model in place, we are developing methodologies to evaluate and design effective

FCM strategies with respect to various performance measures of interest to NAS

stakeholders. Total cost measures that sum backlog/delay costs across the NAS (or

multiple critical regions) are of interest. However, many more complicated issues
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Management Design Output

Actions Variables
Notes

Nijm Flow rate entering each region boundary
MIT/MINIT

Nid Flow rate entering each destination

The flow fraction in each direction at the
Routing podij

flow splitting/merging nodes

Departure rate of flow at each origin that
GDP Nod

is paired with certain destination

Departure rate of flow at each origin that

is paired with certain destination andAFP Nodoiw

intersects with the weather zone

Rate for flows entering each region
Nijmd

boundary and destined to a destinationTBM

Nid Flow rate entering each destination

Table 2.1. Output Variables of the Queuing Network Model

may also influence cost calculation. For instance, en route delays and ground delays

will incur different costs. Routing introduces extra costs due to the extra en route

time and fuel costs [24]. Each implementation for human controllers and pilots

should be accounted for in the cost function, and fairness issues may also need to be

considered (see [111] for discussion on fairness/optimality tradeoffs). A full study

of the cost definition is left for future work.

(4) Analytical Challenges: We expect to use the queuing network model for simulation,

analysis, and design of FCM. As there is significant weather uncertainty at longer

LATs, the performance evaluation and design of FCM strategies must take into con-
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sideration the range of possible weather scenarios. Queuing models are promising

for permitting efficient performance evaluation and design for FCM, without resort-

ing to Monte Carlo simulations. Here, we list critical gaps to such analysis in our

case and discuss incipient research to fill these gaps.

(a) Analysis of queuing (network) models (e.g., G/D/1 and G/M/n) with (weather-

impacted) stochastic service rates. Noting that weather impact can be captured

using Markov models, we are interested in analyzing queues with Markov-

modulated service processes. Some steady-state analyses of such queuing pro-

cesses are available (e.g., Markov-modulated M/M/n queues [14]). Results for

other queuing disciplines and queues are needed.

(b) Transient analysis of queuing (network) models. When severe weather events

occur, NAS dynamics are usually far from a statistical steady state. Unfortu-

nately, precise transient analyses of queuing models are usually computation-

ally costly, and approximations are needed. In [101], such approximations are

studied for transient statistical analysis of landing processes at a network of

airports.

(c) Design of multifaceted management strategies under weather uncertainty. Flow

restriction design is complicated by the inherent nonlinearity, stochasticity, and

the time-varying nature of the FCM queuing model. We are pursuing approxi-

mation studies as well as dynamic programming and jump-linear-control-based

approaches to address the design problem (see, e.g., [40] and [109] for back-

ground on jump linear systems/control).

(d) The robustness of strategic time frame management to tactical time frame

implementation. Tactical management actions are used to address short-term

local constraints and weather forecast changes. Tactical decision making must
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be easily incorporated within the strategic FCM framework. TFM plans need

to be decoupled in such a way that tactical modifications do not introduce

huge disturbances to overall NAS performance/management. We believe that a

clustering approach can be used to identify/exploit tactical information-sharing

needs, to decompose NAS management into semistandalone problems. We

will evaluate the impact of stochastic weather events on this decomposition

and design a dynamic and rational decomposition algorithm that is weather

dependent and identifies partitions of the NAS that require communication.

We are in the process of developing analytical tools to address these new needs.

Specifically, for a stochastic flow entering a probabilistic weather zone, we have developed

a jump linear approach and a Master Markov approach to effectively predict the statistics

of transient delay dynamics. Moreover, we have developed an integrated probabilistic col-

location method and a jump linear approach to evaluate and design management strategies

under weather and demand uncertainties (see [151] and [155] for the complete study).

2.5. Illustrative Example

We present three examples. The first two examples are small-scale constructed case

studies that illustrate analysis and design capabilities using the queuing network model.

The third example highlights the models application to evaluate NAS-wide congestion on a

historical bad-weather day, i.e., September 26, 2010.

2.5.1. Four OD Pair Network Example

In this example, we evaluate congestion and TMI impact in a four OD pair network

(see Figure 2.4). The network has three sectors (S3, S5, and S6), two origin airports (nodes

1 and 2), two destination airports (nodes 11 and 16), and numerous sector boundary points.
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The four OD pair subnetworks are indicated by different colors. The demands at depar-

ture airports 1 and 2 follow Poisson distributions, with rates shown in Figure 2.5. We have

considered several simulation cases to study congestion resulting from sector capacity reduc-

tion and its alleviation using TMIs. In each case, flow statistics (including backlogs, sector

counts, and arrival/departure throughput and congestion) have been obtained over 24 h at

15-min intervals using 100 Monte Carlo simulations.

Figure 2.4. Four OD subnetwork example. Sector boundaries are marked

by dashed lines. The four OD subnetworks are differentiated by the colors of

edges. Flow fractions are marked on the edges. Purple numbers marked on

edges indicate transit time measured in hours.

Nominal operations are simulated first. In this case, airports 1 and 2 have departure

rate constraints of 8 and 7 aircraft per time interval, respectively. Airports 11 and 16 are

subject to arrival rate constraints of 3 and 4 per interval, respectively. Sectors 3, 5, and

6 have capacity constraints of 4, 3, and 3 aircraft, respectively (where capacity represents

the maximum allowed inflow). We also compare the nominal operations scenario with a

reduced-capacity scenario, where the capacity for sector 5 is reduced to one aircraft per
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Figure 2.5. Mean demand rates for airports 1 and 2 in example 1.

interval during the time span 14:00–17:00 (e.g., due to bad weather).

Figure 2.6 shows snapshots of a mean-node-backlog video for nominal and reduced-

capacity cases. Such 3-D videos provide direct visualization of spatiotemporal impact of

capacity reduction. In particular, capacity reduction causes congestion, as reflected by the

backlog accumulated at sector-entry nodes 3, 5, 6, and 8. Congestion in sector 5 is also

indicated by the saturation of the mean sector count in the reduced-capacity case during

14:00–17:00 (see Figure 2.7). Congestion of this magnitude would require tactical resolution,

which can be very costly. To avoid tactical mitigation responses, we consider three possible

strategic management strategies that are promising for alleviating the congestion.

1) Routing: We apply rerouting to reduce the flows into sector 5. Specifically, during

13:00–16:00, the flow fractions from nodes 1–4, 1–6, and 1–7 in the OD subnetwork 1–11

are changed to 0.1, 0.1, and 0.8. In addition, during the same time span, the flow fractions

from nodes 2–9, 2–10, and 2–12 in the OD subnetwork 2–11 are changed to 0.1, 0.2, and 0.7.

Figure 2.7 shows that rerouting is effective: The aircraft count in sector 5 remains below the

threshold during the capacity–reduction event (see red curve).

2) GDP: As an alternative control, GDPs are enforced on the OD subnetworks 1–11
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a)

b)

Figure 2.6. Snapshots from the videos of backlogs at all nodes. x and y

dimensions show the location of the nodes, and z dimension shows the mean

backlog for 100 sample runs. (a) Case 1: Normal condition. (b) Case 2:

Reduced-capacity condition.

and 2–11 (whose flows traverse sector 5), with a reduction in both departure rates to 2

during 12:00–16:00. Comparing the arrival backlog and departure backlog in Figure 2.8 (a)

and Figure 2.8 (b), we see that the GDP delays flows arriving at airport 11 to reduce the

demand–capacity imbalance, albeit at a cost of introducing departure backlog.
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Figure 2.7. Comparison of time-course mean sector counts sector 5 among

case 1 (normal condition), case 2 (reduced-capacity condition), and case 5

(rerouting in action), respectively.

3) MIT: In this case, we apply MITs to several flows upstream of sector 5. Nodes 4,

10, 6, and 9 are assigned MIT rates of 2, 2, 0.2, and 0.2 aircraft per time interval from 13:00

to 16:00. The arrival backlogs in Figure 2.8 (c) indicate that appropriately placed MITs

delay traffic to both destination airports but avoid tactical impacts due to bad weather.

2.5.2. Managing Multiple Flows Under Stochastic Weather

This example is concerned with traffic flows to a cluster of nearby airports that will

be impacted by a stochastic winter-weather event. The majority of the traffic arriving at this

cluster of airports can be viewed as coming from four different origins (i.e., for the purpose

of flow management design, the source airports can be clustered into four groups with traffic

flow originating from each). In this case, we will model the demand for each of these flows as

Poisson processes with average rates of 25 aircraft per hour (major flow), 12 aircraft per hour

(moderate flow 1), 11 aircraft per hour (moderate flow 2), and two aircraft per hour (minor

flow of very-long-distance traffic), respectively, for the duration of the planning horizon (see
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Figure 2.9). We note that the average demand for the destination cluster is thus 50 planes

per hour. During good weather conditions, the capacity of the airspace near the destination

airport is more than sufficient to handle this demand. Note that in real operations, the flow

rates would be time varying, and the queuing model handles this case as well; however, for

simplicity, this example uses time-invariant flow rates.

A winter-weather event is anticipated in the destination airspace over a 7-10-h time

period. During the winter-weather event, terminal area and en route constraints will reduce

the capacity of the destination airspace to 35 aircraft per hour. Thus, a flow contingency

plan is needed to address the demand–capacity imbalance. The exact duration of the winter

weather is uncertain; however, a 10-h event (e.g., between noon and 10 P.M.) is a conservative

estimate. In particular, the end time of the event is uncertain, and the winter weather may

cease as early as 7 P.M. but no later than 10 P.M. As such, the uncertain end time is modeled

as uniformly distributed between 7 P.M. and 10 P.M.

Several management capabilities are available to handle the capacity-and-demand

imbalance. First, a GDP can be implemented on all or a subset of the major flow and two

moderate flows. In the case where only a GDP is used, it must be implemented for the entire

potential 10-h weather event, since the distance of the origin clusters to the destination does

not permit reaction to a shorter-duration weather event. We note that the GDP will tend to

reduce flow rates proportionally (in an average sense) on the impacted flows. We also assume

that another rate-reduction capability is available for the major flow (specifically, an AFP

or perhaps a future airspace construct) that allows us to tune the rate on the major flow

compared with the other flows. This capability must be also implemented for the maximum

possible duration of the event if used as the sole management response. Finally, an en route

flow restriction can be implemented, which acts together on the major flow and moderate

flow 1 (in the form of a MINIT restriction). In particular, given the uncertainty in end time
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of the weather event, we also have the option to implement a GDP for flows arriving over a

shorter time interval (e.g., 7 h) and then use the MINIT restriction to modulate the rates

thereafter; the en route restriction has the advantage that it can be flexibly implemented

based on the weather condition (although at the cost of accumulating en route backlog, as

opposed to ground delays at the origin cluster, if insufficient capacity exists).

This example can be directly formulated in the queuing network framework previ-

ously introduced, and we can compare several flow management strategies. In particular,

we will use the queuing model to easily compute the delays and backlogs incurred by the

implementation of each strategy to enable proper strategy selection. Specifically, we consider

the following five possible strategies for flow management:

Strategy 1: Use a GDP that acts on the major flow.

Strategy 2: Use a GDP that acts on the two moderate flows.

Strategy 3: Use a GDP that acts on the major flow and the two moderate flows.

Strategy 4: Use a GDP that acts on the moderate flow and an AFP on the major flow to

tune the flow rate on the major flow compared with the others.

Strategy 5: Use a shorter-duration GDP (for all three flows) together with an en route

restriction.

We will also compare these strategies with a nominal case where strategic flow man-

agement is not used or is put in place in an ad hoc fashion.

Let us compare the performance of the strategies. Figure 2.10 - Figure 2.12 show

statistics of the numbers of aircraft delayed at each source airport and statistics of the total

number of aircraft delayed as a function of time. In particular, for each of the five GDP

strategies, the mean numbers of aircraft delayed (waiting) at each source airport is plotted

versus time, as is the mean total number of waiting aircraft. All aircraft can be delivered

to the destination, given long enough time, as management strategies impact on flows is
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transient. We note that these statistics can be obtained through a jump linear approach or a

Master Markov approach, as given in [151] and [155], or through a Monte Carlo simulation.

These preliminary results demonstrate that delays can be effectively distributed among

source airports through the use of GDPs that concurrently delay multiple flows, albeit at a

cost of increased complexity for traffic managers. The proper employment of MIT reduces

ground delay at the origin airport but introduces possible large en route delay if the winter

weather lasts longer than expected. This can be seen from the arrival backlog for Strategy

5 [see Figure 2.12(b)], assuming that the airport arrival rate (AAR) is 35 aircraft per hour.

Noting that the MIT smoothens flows so that the maximum flow rate meets the AAR (rather

than only enforcing that the average arrival flow rate is correct, as for the other strategies),

the comparison of the MIT with the other strategies is perhaps not quite fair. This also

suggests that a rigorous study of performance metrics is crucial. We leave the details to

future work.

Finally, let us briefly compare the performance of the flow management strategies with

the nominal strategy that does not initiate management actions and a strategy that mimics

current operating practice in the NAS. If no FCM strategy is implemented, a significant ca-

pacity imbalance would result at the destination, with up to 150 aircraft being forced to wait

in the air to enter the capacity-constrained airspace. In practice, current operators would

not permit such an imbalance, since many flights would be forced to divert to alternate air-

ports. Instead, a ground stop or GDP would be imposed. However, current operators would

not have the benefit of comparing different possible strategies in terms of delays/backlogs

incurred. Furthermore, it is quite possible that their enacted strategy would be reactive to

the weather conditions-possibly leading to excess delay and unnecessary cancellations. A pri-

mary benefit of queuing model representation is its use in quickly estimating costs associated

with different possible flow management strategies, thus facilitating contingency selection.
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2.5.3. Atlanta Example

Our final example highlights the extensibility of this methodology to realistic prob-

lems of interest. We begin by verifying the queuing model simulation behavior for a clear-

weather day (August 30, 2010) and then examine how the model captures capacity-demand

imbalances on a bad-weather day (September 26, 2010) for traffic between 5:00 A.M. and

midnight. Using a probabilistic forecast of weather for September 26, 2010, we generated

different representative weather scenarios using the influence model [150] and simulated the

NAS behavior with the traffic demand from August 30, 2010. The overall research is explor-

ing how to define management strategies for these conditions, as described in the previous

examples; however, as the focus of this chapter is not on the simulation but on the introduc-

tion of the dynamic queuing network model, we only illustrate the extensibility of the model

to real-world problems.

On a bad-weather day in question, there was significant convection and low ceilings

within and around ZTL, and as ZTL is the area most affected by the weather event, we fo-

cused on the traffic in ZTL. Defining ZTL as the area of interest, we abstracted the airspace

outside ZTL at the Center level and the airspace in ZTL at the sector level. This abstraction

significantly improves tractability without causing much loss of relevant information. Sim-

ilarly, airports outside ZTL are aggregated, as described in [137], and airports within ZTL

are individually represented. This resulted in a NAS-wide network with 68 airport nodes

(with 22 within ZTL); 260 regions (including 68 departure airports, 68 arrival airports, all

sectors within ZTL, and centers outside ZTL), which produced a network with 1074 nodes

(including 68 departure airports, 68 arrival airports, and all of the sector boundary points);

and 16 243 OD specific arcs.

Using this network, we first compare the accuracy of the queuing network model for
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simulating traffic flow. Comparing the actual arrivals at ATL on August 30, 2010 and the

simulated arrival rate, Figure 2.13 shows that despite the significant abstraction in network

formulation, the queuing model provides a reasonable estimation of traffic flow throughout

the NAS.

We now compare the impact of the weather-reduced capacities generated for ZTL

with the nominal conditions. Figure 2.14 shows the snapshots of the sector backlog (the

summation of all backlogs accumulated at the nodes on a sectors boundary) for the normal

weather and one bad-weather scenario, at a particular time. We see from the snapshots that

there is an increasing backlog in ZTL due to the occurrence of bad weather. We will leave

systematic model validation to future work.

Finally, we note that queuing model simulation is computationally efficient as only

the flow dynamics at management locations are tracked. For this example simulation, which

was implemented in MATLAB, a single sample run takes less than 1 min on a common

university desktop computer that is typically used for teaching purposes. We leave more

rigorous estimation of computational times and modification of the algorithm to maximize

computational efficiency to future work.

2.6. Alternative: A Route-Based Dynamic Queuing Network Model

The dynamic queuing network model is the core piece for the framework of the Flow

Contingency Management. Its key idea is to decompose the whole traffic network in the

NAS into sub-networks identified by different O-D pairs. For the traffic demand propagating

from one particular original to the destination, it is naturally to understand that there

are multiple routes available. As such, we also propose a concept of route assignment for

managing aggregate air traffic demand and evaluating the contingency plan at strategic time-

frame. The idea of the so-called route-based dynamic queuing network model is similar to
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that of the O-D specific one. The whole network is decomposed into route specified sub-

networks. The traffic demand feeds into one particular O-D pair will be assigned to multiple

available routes. Each route contains original node, a sequence of intermediate nodes and

destination node. Each node is associated with predefined sector with capacity value. The

route-based dynamic queuing network also permits us to simulate the traffic propagation

behavior in the NAS at flow level and to analyze possible strategic management plans. The

advantage of this modeling framework is to facilitate the re-routing management action since

all of its components are route specifically defined. We also use realistic data to validate the

feasibility of the this model for the sake of our FCM design. The system-wide performance

of this model is equivalent to that of our original OD specified dynamic queuing network

model. We envision those two models will complement each other to effectively deal with

the FCM tasks.

2.7. Concluding Remarks and Future Work

We have introduced a queuing network model for air TFM. The developed model

is an effort to comprehensively capture the dynamics of air traffic and traffic management

at the level of traffic flows to permit evaluation and design of management strategies at a

NAS-wide scale and strategic time horizon. As such, our queuing network model enhances

existing modeling capabilities significantly in several directions, including by permitting 1)

representation of a wide range of current and potential future traffic management actions, 2)

analysis of traffic flows under weather uncertainty, and 3) parameterization of the underlying

flow network from data. While our queuing network model is under various enhancements,

it plays a central role as a prediction and design tool in our proposed FCM method, and

we envision that the concepts introduced in this chapter will produce significant operational

impact, toward producing a decision support tool at the long strategic LAT.
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(a)

(b)

(c)

Figure 2.8. Time-course airport usage statistics. (a) Case 2: Reduced ca-

pacity. (b) Case 3: GDP. (c) Case 4: MIT.
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Figure 2.9. Cluster of airports with four incoming flows: one major flow,

two moderate flows, and one minor flow.
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(a)

(b)

Figure 2.10. (a) Aircraft delay statistics when a GDP is applied to the major

flow (Strategy 1). (b) Aircraft delay statistics when a GDP is applied to the

two moderate flows (Strategy 2). (Left plots) Mean number of aircraft that

have been delayed (i.e., are waiting) at each source airport, as a function of

time. (Right plots) Mean of the total number of delayed aircraft versus time.
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(a)

(b)

Figure 2.11. (a) Aircraft delay statistics when a GDP is applied to all three

flows (Strategy 3). (b) Aircraft delay statistics when a GDP is applied to

two moderate flows and AFP is applied to the major flow (Strategy 4). (Left

plots) Mean number of aircraft that have been delayed (i.e., are waiting) at

each source airport, as a function of time. (Right plots) Mean of the total

number of delayed aircraft versus time.
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(a)

(b)

Figure 2.12. (a) Aircraft delay statistics when a shorter-span GDP and an

MIT are applied to all three flows (Strategy 5). (Left plot) Mean number of

aircraft that have been delayed (i.e., are waiting) at each source airport, as a

function of time. (Right plot) Mean of the total number of delayed aircraft

versus time. (b) Mean of the number of aircraft delayed in flight.
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Figure 2.13. Comparison of simulated and actual arrivals at the ATL airport

on August 30, 2010. The histogram shows the number of arrivals per 15 min,

and the trend shows the average number of arrivals per hour
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Figure 2.14. Snapshots from the videos of sector backlogs (in the ZTL cen-

ter) for (a) a normal day and (b) a bad-weather day. The locations of the

sectors are plotted according to their latitude and longitude. The z dimension

shows the total backlogs of all flows entering each sector.
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CHAPTER 3

A SMOOTH-TURN MOBILITY MODEL FOR AIRBORNE NETWORKS

3.1. Introduction

The wide variety of military and civilian applications of airborne networking have

resulted in dramatically growing research efforts in airborne networks (ANs) over the past

few years. Supported by the advances in sensing and wireless communication technologies,

ANs hold promise in providing effective, wide-applicable, low-cost, and secure information

exchange among airborne vehicles. For instance, the in-flight communication among com-

mercial airlines can allow the sharing of adverse weather conditions and emergency situ-

ations, which are of significant value, especially, when the flights are in areas outside the

reach of ground control stations. Similarly, unmanned airborne vehicles (UAVs) may rely

on fast communication and networking schemes for safe maneuvering. It is anticipated that

ANs will be the platform for information exchange among airborne vehicles and connect with

space and ground networks to complete the future multiple-domain communication networks

[114, 126].

In the study of ANs, significant efforts have been focused on the development of reli-

able routing protocols that minimize the number of packets lost due to link and path failures

[45, 71, 93, 100, 107, 126]. Designing robust routing strategies is challenging considering the

unique attributes of ANs such as high node mobility and frequent topology changes. For

example, several widely-used routing algorithms that are based on the principle of shortest

path tend to find paths with relay nodes at the edges of transmission radius [75], leading to

what is known as “edge effect”. In such a scenario, even a slight movement of nodes can lead

to link failures. This edge effect prominently occurs in highly varying networks such as ANs.

Therefore, we anticipate that designing reliable routing strategies with minimal impact of
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edge effect should take into account the statistically varying AN structure. The statistics of

interest include node distribution, movement and connectivity patterns, etc [27].

Mobility models commonly serve as the fundamental mathematical framework for

network connectivity analysis, network performance evaluation, and eventually the design of

reliable routing protocols [48]. In particular, mobility models capture the random movement

pattern of each network agent, based on which rich information related to the varying network

structure can be derived, such as node distribution, link statistics and path lifetime. Some

mobility models have been extensively studied in the literature; the most well-known among

them include random direction (RD), and random waypoint (RWP) [12, 18, 21, 62]. The

RWP model assumes that an agent chooses a random destination (waypoint) and traveling

speed. Upon reaching the waypoint, it pauses, and then travels to the next waypoint. The

basic RD model assumes that nodes travel between endpoints located at region boundaries

[59]. The extended version allows an agent to randomly select a speed and direction after the

completion of a randomly chosen traveling time [49, 51]. The stochastic properties of these

common models such as their spatial distributions can be found in e.g., [12, 18, 21, 62, 92].

Developing suitable mobility models for ANs is, undoubtedly, the foundation for de-

signing realistic AN networking strategies. We note that the widely-used RWP and RD

models are well suited to describe the random activity of mobile nodes in Mobile Ad Hoc

Networks (MANETs); however, they lack the ability to capture the unique features of air-

borne mobility. In particular, mobile nodes on ground can easily slow down, make sharp

turns, and travel in an opposite direction (see an enhanced random mobility model that cap-

tures such movement [16]). However, airborne vehicles tend to maintain the same heading

speed and change direction through making turns with large radii. This unique feature is

caused by the mechanical and aerodynamic constraints for airborne vehicles and reflected

in the correlation in acceleration along spatial and temporal dimensions. Our aim here is
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to develop realistic models that capture such features unique to airborne networks, yet are

simple and tractable enough to facilitate connectivity analysis and routing design.

Let us relate our modeling efforts with the very limited existing AN mobility models

[106, 126, 138]. We believe that AN mobility models need to be application-specific, because

of their wide variety of applications, and the associated different movement patterns. Within

this framework, let us summarize three types of AN models in the literature including our

proposed model, by focusing on specific applications and the movement patterns associated

with each application.

1) Semi-random Circular Movement (SRCM) Mobility Model for Search and Rescue

Applications: In this model, each UAV moves around a fixed center with a randomly selected

radius; after it completes a round, it chooses another radius and circles around the same

center [138]. Although this model seems to be limited as the movement is constrained by the

location of the fixed circling center, it captures well the mobility of UAVs in search and rescue

applications, in which the potential location of search target is usually available and chosen

as the fixed center, and UAVs are dispatched to hover around the center to pinpoint the

exact target location. The knowledge about the potential target location (used as the fixed

center) provides extra information for predicting trajectories and connectivity structures of

the AN.

2) Flight Plan-based (FP) Mobility Model for Cargo and Transportation Applica-

tions: In this mobility model, a mobility file is created using the pre-defined flight plan,

and is then converted into a time-dependent network topology map (TDNT) for the design

and update of routing protocols [126]. If the actual flight status deviates from the pre-

described plan, the TDNT and the relevant routes are updated. The flight plan-based model

is well suited for cargo and transportation purposes, in which the entire trajectory is usu-

ally planned in advance. Although various uncertainties such as weather events, departure
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delays, etc., may effect the adherence to the flight plans [130, 132], the existence of a plan

allows for a more accurate prediction of flight trajectories and hence the varying network

topology beforehand [19, 143]. The Ground-station (GS) mode of the AeroRP protocol [93]

is similar in the sense that the GS broadcasts the update of AN topology periodically and

also when a change in topology is sensed.

3) Smooth-Turn (ST) Mobility Model for Patrolling Applications: The above two AN

mobility models assume the availability of abundant trajectory information. However, in AN

applications such as patrolling, a predefined trajectory or a potential target location might

not be available; instead, airborne vehicles simply swarm in a certain defined region in the

airspace. Such flexible movement resembles the highly random RD model for MANETs. In

this chapter, we present a novel mobility model named the smooth-turn mobility model,

which allows flexible trajectories while also takes into account the features unique to air-

borne vehicles, e.g., the preference toward smooth rather than sharp turns. Capturing such

smooth-turn features in mobility models can better represent realistic maneuvering of air-

borne vehicles, and improve the capability of path estimation and connectivity analysis for

ANs. This new model is realistic in capturing the random movement of airborne vehicles in

favor of smooth turns, and yet is analyzable for node distribution and connectivity analysis.

We note that Gaussian Markov models (as described in [12, 74, 106]) may also be suited for

patrolling applications, as they describe the memory-equipped movement of airborne vehi-

cles. However, as we will discuss in Section 3.2.2 and was also presented in [73, 91], these

models may not directly capture the kinematics of turning aerial objects.

This chapter contributes to the existing literature on mobility models in the following

aspects:

• A novel AN mobility model that captures smooth turns: This mobility model resem-
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bles the traditional RD model in terms of the flexibility of trajectories, but captures

the temporal and spacial correlation specific to the movement of airborne vehicles.

The model is well suited for patrolling applications, in complementary to limited

existing AN models in the literature. Also, a significant feature of the model is that

it is simple enough to serve as the framework for not only simulation studies, but

also tractable theoretical analysis.

• The stationary analysis and preliminary connectivity analysis of the model: We

prove that the stationary node distribution of this ST model is uniform. The nice

uniformity directly leads to a series of closed-form results for connectivity.

• A metric to quantify the degree of randomness for mobility models: We envision

that the formal analysis of trajectory predictability/randomness can help better un-

derstand the difference and applicability of AN (and more general) mobility models,

and more importantly, help design smart predictability-based routing algorithms.

As such, we introduce a metric to quantify the randomness of future trajectory using

the concept of entropy, and compute this metric for four mobility models.

• The classification and comparison of different types of AN mobility models: We

identify the need to use different mobility models for different applications, and

group AN mobility models according to application categories and entropy-based

randomness levels.

The chapter is organized as follows. In Section 3.2, we describe the ST mobility

model, and also present the basic analysis of its dynamics. In Section 3.3, we investigate

the stationary distribution of the model using theoretical analysis as well as simulations.

In Section 3.4, we motivate and formulate the concept of predictability/randomness, and

provide a comparison of our model with three other mobility models in the literature in terms
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of the degree of randomness. In Section 3.5, multiple variants and enhanced versions of the

ST mobility model are discussed and simulated. Finally, a brief conclusion and discussion

about future works are provided in Section 3.6.

3.2. Smooth-Turn Mobility Model

In this section, we first describe the basic mathematical ST mobility model in Section

3.2.1. We then discuss the roles of model parameters, and relate the model with relevant

models in the literature in Section 3.2.2. We also describe the models capturing how nodes

move at boundaries. Finally, in Section 3.2.3, we present the basic analysis of the model

dynamics.

3.2.1. Basic Model Description

We introduce the ST mobility model to capture the movement of airborne vehicles

in highly random ANs. The model captures the unique feature of airborne vehicles—the

tight spatiotemporal correlation of acceleration. Incorporating this special feature into mo-

bility models increases the predictability of a vehicle’s trajectory, which in turn, facilitates

connectivity analysis and the design of networking strategies.

The idea behind the ST random mobility model is simple. An airborne vehicle selects

a point in the space along the line perpendicular to its heading direction and circles around it

until the vehicle chooses another turning center. This perpendicularity ensures smooth flight

trajectories. Besides that, we assume the waiting time for the change of turning centers to

be memoryless, i.e., the timing of the center change does not depend on the duration for

which the UAV has maintained its current center. This memoryless model is typically used

to abstract the waiting time for the occurrence of random events, as it brings in the nice

tractability of renewable processes [97]. For instance, connectivity analysis can be taken at

any time instance without prior knowledge of how long a vehicle has kept its current mobility
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status. Furthermore, since a vehicle commonly favors straight trajectories and slight turns

than very sharp turns, we model the inverse length of the turning radius to be Gaussian

distributed.

Now let us describe the mathematics of the model. We use lx(t), ly(t), vx(t), vy(t),

w(t), and Φ(t) to describe the X and Y coordinates, velocities in X and Y directions,

angular velocity, and the heading angle at time t. For simplicity and realistic considerations,

we assume a constant forward speed V in a 2-D plane; therefore, the tangential acceleration

at(t) is 0 (see Equation (31)). This assumption is reasonable for airborne vehicles, especially

for jets and gliders, as they tend to maintain the same speed in flight and “reduce speed”

through zigzagging and circling [3].

Furthermore, the vehicle changes its centripetal acceleration an(t) at randomly se-

lected time points T0, T1, T2, ...., where 0 = T0 < T1 < T2 < .... The duration for the

vehicle to maintain its current centripetal acceleration τ(Ti) = Ti+1 − Ti follows exponential

distribution as motivated by its memoryless property [97]. In particular, the probability

density function f(τ(Ti)) = λe−λτ(Ti), where 1
λ
is the mean of τ(Ti).

Next, we describe how the new centripetal acceleration an(t) is selected at each time

point Ti. an(Ti) is determined by the randomly selected turning radius r(Ti) according to

an(Ti) = V 2

r(Ti)
(Equation (32)). The selection of r(Ti)—the distance between the vehicle’s

current location (lx(Ti), ly(Ti)) —also determines the new turning center with coordinates

(cx(Ti)), cy(Ti)) (see Figure 3.1b and the details in Section 3.2.3). It is important to note that

the new turning center (cx(Ti)), cy(Ti)) resides along the line perpendicular to the heading

of the vehicle at time Ti (denoted as Φ(Ti)), to guarantee smoothness. Also of note, the

random variable r(Ti) ∈ R allows turns to both left and right, with r(Ti) > 0 representing

the right turns. 1
r(Ti)

is a Gaussian random variable with zero mean and variance σ2. This

distribution is selected so that straight trajectories and large-radius turns are favorable than
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sharp turns with small radii.

Finally, Equations (33)-(35) describe the relationships between location, heading an-

gle, velocity, and angular velocity (see [73] for a review of dynamic models for moving aerial

objects). In summary, the dynamics of the basic ST mobility model during the time interval

Ti ≤ t < Ti+1 is shown in Equation (31)-(35), where the “.” symbol represents the first-order

derivative with respect to time. Because a vehicle keeps its centripetal acceleration for a

duration of τ(Ti) before changing its centripetal acceleration, it is easy to see that during

the interval Ti ≤ t < Ti+1, r(t) = r(Ti), an(t) = an(Ti), cx(t) = cx(Ti), cy(t) = cy(Ti), and

τ(t) = τ(Ti). A typical trajectory of the model is shown in Figure 3.1. The simulation is

written in Matlab and the code is available at [1].

at(t) = 0(31)

an(t) =
V 2

r(Ti)
(32)

Φ̇(t) = −w(t) = − V

r(Ti)
(33)

l̇x(t) = vx(t) = V cos(Φ(t))(34)

l̇y(t) = vy(t) = V sin(Φ(t))(35)

3.2.2. Further Discussions of the Model

The ST mobility model naturally captures the highly random movement patterns of

ANs, and the preference toward straight trajectories and large smooth turns with constant

speed and turn rate. In this section, let us first comment on the three parameters in the

model, and then connect the model with the RD model and target tracking models. Finally,

we discuss two models capturing the movement at boundaries.

55



−100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

200

X

Y

a)

r(Ti)

Φ(Ti)

(cx(Ti), cy(Ti))

(lx(t), ly(t))

(lx(Ti), ly(Ti))

θ(t)

Φ(t)

b)

Figure 3.1. a) A simulation of the trajectory (shown in red) of an UAV in

a 2-D domain. Green spots are the randomly chosen turning centers. b) The

trajectory analysis diagram to predict the location of an airborne vehicle at

any Ti+1 ≥ t ≥ Ti. The dashed red curve represents the trajectory.

The first parameter is the vehicle speed V . ANs typically have high vehicle speed (in

the range of 50−500 miles per hour or even more), which causes highly varying connectivity

structures. The second parameter is the inverse of the mean of the exponential random

variable τ(Ti), λ. A large λ indicates that the airborne vehicle changes its turning center

frequently, and thus results in a more wavy trajectory. The last parameter is the variance of
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the Gaussian variable 1
r(Ti)

, σ2, which determines the preference for straight trajectory versus

turns. In particular, a small variance denotes the high possibility of a very large turning

radius, and therefore a more straight trajectory. At one extreme, if the variance is close

to 0, the ST mobility model has very straight trajectories which resemble those of the RD

model without directional change, as shown in Figure 3.2a. At the other extreme, a large

σ2, large V and large λ result in more curvy trajectories (Figure 3.2b). Through choosing

proper combinations of the parameters V , λ, and σ2, the model can capture a wide range of

AN mobility patterns.

It is worthwhile to relate our ST mobility model with two relevant categories of models

in the literature. First, we can view the ST model as an RD model equipped with smooth

trajectory because of their similarities. In the RD model, an agent chooses a random straight

direction and follows it before choosing the next direction. Similarly, in the ST model,

an agent chooses a random turning center and circles around it before choosing the next

center. We will see in Section 3.2.3 that the node distribution of our model also resembles

that of the RD. Second, our model is built upon the abundant literature in the context of

aerial target tracking (see e.g., [73] for a thorough review). Let us briefly discuss the works

in this field, as they thoroughly studied the kinematics of aerial objects and laid out the

theoretical foundation for our model. Early models in this field assume that the acceleration

is uncorrelated in 2-D or 3-D space, and abstract acceleration in each coordinate as a Markov

process (e.g., random noise passing through a linear system) [57, 73, 116]. The Gaussian-

Markov model adopted in [106] is an extension of these works. The latter models, known as

the coordinated turn models, reflect the physical laws of airborne objects, see e.g., [73, 91],

and therefore better capture the correlation of acceleration among coordinates. However,

because these models are built for target-tracking purposes, they focus on the high-precision

prediction of the acceleration and path of an individual aircraft; and therefore their motion
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Figure 3.2. Simulations of the ST mobility model to show the impact of

parameters on the trajectories: a) when σ2 is close to 0; b) when σ2 and λ are

large and the ratio between V and them is also large.

dynamics are more complex than necessary for our purpose. We capture the correlation

across spatiotemporal coordinates through a simple parameter—the turning radius r, making

the model at a coarse statistical-group level, and simple enough for mobility analysis.

Another topic to discuss is the modeling of node movements at boundaries. In this

chapter, we adopt the boundary models typically used for the RD model, namely the “wrap-

around” and the “reflection” models [17, 92]. In the “wrap-around” model, after an airborne
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vehicle hits the boundary, it wraps around and appears at the opposite side of the region.

Alternatively, in the “reflection” model, the trajectory is mirrored against that boundary.

Typical trajectories of these two boundary models are shown in Figure 3.3. Although these

movement patterns may not be typical in reality, they provide rich analyzability and permit

us to focus more on the mobility itself instead of the impact of boundaries. In the rest of

this chapter, we largely focus on the “wrap-around” model, but will also briefly discuss the

“reflection” model.

3.2.3. Basic Model Analysis

We consider an airborne vehicle flying within an rectangular airspace [0, L]× [0,W ].

Assuming the wrap-around boundary model, the mobility state of the vehicle at any Ti ≤

t < Ti+1 can be obtained from the state at time Ti, as shown below:

cx(Ti) = lx(Ti) + r(Ti)sin(Φ(Ti))(36)

cy(Ti) = ly(Ti)− r(Ti)cos(Φ(Ti))(37)

θ(t) =
V

r(Ti)
(t− Ti)(38)

Φ(t) = Φ(Ti)− θ(t)− 2π

⌊
Φ(Ti)− θ(t)

2π

⌋
(39)

lx(t) =

∣∣∣∣cx(Ti)− r(Ti)sin(Φ(t))−W �cx(Ti)− r(Ti)sin(Φ(t))

W
�
∣∣∣∣(40)

ly(t) =

∣∣∣∣cy(Ti) + r(Ti)cos(Φ(t))− L�cy(Ti) + r(Ti)cos(Φ(t))

L
�
∣∣∣∣(41)

These equations can be easily derived from (31)-(35) by observing the relationship

between node locations and the turning center as shown in Figure 3.1b. In particular, as

the turning center is along the line perpendicular to the heading direction, its x and y

locations cx(Ti) and cx(Ti) can be expressed in terms of node locations at time Ti using the
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Figure 3.3. Illustration of a) the reflection (1) and the wrap-around (2)

boundary models in a rectangular region, b) the reflection (1) and the wrap-

around (2) models in a circular region. Red bold curves represent the real

trajectories.

trigonometric functions as shown in Equations (36) and (37). The turning angle θ(t) is the

difference between Φ(Ti) and Φ(t). As the velocity V is fixed, θ(t) equals the arc length

divided by the turning radius r(Ti) as shown in Equation (38). The floor function (denoted
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by “��”) in Equation (39) guarantees that Φ(t) is within 0 and 2π (see [92] for the detailed

illustration). Once the heading direction at time t, Φ(t), is calculated, the node location at

time t can be expressed in terms of the turning center, again using trigonometric functions

(see Equations (40) and (41)). Similar to Equation (39), these floor functions implement

the wrap-around boundary model: if the location is beyond (W,L) by (w, l), it is shifted to

(w, l).

With regard to the reflection boundary model, the only changes are to replace Equa-

tions (40) and (41) with:

lx(t) =

∣∣∣∣cx(Ti)− r(Ti)sin(Φ(t))− 2W �cx(Ti)− r(Ti)sin(Φ(t))

2W
+

1

2
�
∣∣∣∣(42)

ly(t) =

∣∣∣∣cy(Ti) + r(Ti)cos(Φ(t))− 2L�cy(Ti) + r(Ti)cos(Φ(t))

2L
+

1

2
�
∣∣∣∣ .(43)

The floor functions and the addition of 0.5 guarantee that the trajectory is reflected back

into the region when an agent moves to the boundary (as motivated by triangular wave forms

[2]). The above motion analysis (Equations (36) to (43)) will be used to derive a variety of

properties of the ST mobility model in the rest of this chapter.

3.3. Node Distribution and Connectivity

In this section, we consider multiple airborne vehicles following the ST mobility model.

We analyze the distribution of node locations and heading angles in Section 3.3.1. The

analysis is based upon that of the RD model [92], but here for the mobility model with

smooth trajectory. The uniform node distribution gives rise to interesting properties in

terms of network connectivity, which we will briefly summarize.

61



3.3.1. Node Distribution

Lemma 3.1.
∫ b

u=0
1
{
u+ a− b�u+a

b
� < x

}
du = x holds for any x ∈ [0, b], where a ∈ R,

b ∈ R+, and 1{} is 1 if {} is true and 0 if {} is false.

Proof. Introduce u′ = u
b
. According to the property of floor operations [92], we have

∫ b

u=0

1

{
u+ a− b�u+ a

b
� < x

}
du(44)

= b

∫ 1

u′=0

1
{
u′ +

a

b
− �u′ +

a

b
� < x

b

}
du′ = b

x

b
= x.

�

Theorem 3.2. N airborne vehicles move independently in the space [0, L)×[0,W ) according

to the ST mobility model associated with wrap-around boundary model. If the initial locations

of these vehicles are uniformly distributed in [0, L]× [0,W ], and the heading angles are also

initially uniformly distributed in [0, 2π), then the node locations and heading angles remain

uniformly distributed for any t > 0.

Proof. Let us first examine a single vehicle and show that if its position and heading angle

are uniformly distributed initially, they remain uniformly distributed. Then, because the

vehicles move independently, we can show the uniform distribution of node locations and

heading angles for all vehicles.

For a moment, we consider the fixed movement pattern of a vehicle. In particular, the

time sequence to change the turning center 0 = T0 ≤ T1 ≤ T2, ... and the corresponding radii

r(T0), r(T1), ...., are all fixed. Let us show that for each fixed movement pattern, uniform

distribution remains for any t > 0.
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We start with examining any time t ∈ [T0, T1). At initial time T0, the joint probability

distribution function (PDF) satisfies P (lx(T0) < x0, ly(T0) < y0,Φ(T0) < Φ0) =
x0

L
y0
W

Φ0

2π
, for

any 0 ≤ x0 < L, 0 ≤ y0 < W , and 0 ≤ Φ < 2π. Let us prove that P (lx(t) < x, ly(t) <

y,Φ(t) < Φ) = x
L

y
W

Φ
2π

for any 0 ≤ x < L, 0 ≤ y < W , and 0 ≤ Φ < 2π.

Equations (36)-(41) inform that lx(t), ly(t), and Φ(t) are functions of lx(T0), ly(T0),

Φ(T0), r(T0), and T0:

Φ(t) = Φ(T0)− V

r(T0)
(t− T0)− 2π

⌊
Φ(T0)− V

r(T0)
(t− T0)

2π

⌋
(45)

lx(t) = lx(T0) + r(T0)sin(Φ(T0))− r(T0)sin(Φ(t))

−W � lx(T0) + r(T0)sin(Φ(T0))− r(T0)sin(Φ(t))

W
�

ly(t) = ly(T0)− r(T0)cos(Φ(T0)) + r(T0)cos(Φ(t))

− L� ly(T0)− r(T0)cos(Φ(T0)) + r(T0)cos(Φ(t))

L
�.

For the convenience of presentation, we denote the expressions in the right of the above

three equations as Ψ(Φ(T0), r(T0), t, T0), Λx(lx(T0),Φ(T0), r(T0), t, T0), and Λy(ly(T0),Φ(T0),

r(T0), t, T0), respectively. Using the abbreviated notations and according to Equation (45),

we can find the joint PDF of P (lx(t) < x, ly(t) < y,Φ(t) < Φ) as:

P (lx(t) < x, ly(t) < y,Φ(t) < Φ) =(46)

P (Λx(lx(T0),Φ(T0), r(T0), t, T0) < x,

Λy(ly(T0),Φ(T0), r(T0), t, T0) < y,Ψ(Φ(T0), r(T0), t, T0) < Φ)

=

∫ 2π

Φ(T0)=0

1

2π

∫ L

lx(T0)=0

1

L

∫ W

ly(T0)=0

1

W
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1 {Ψ(Φ(T0), r(T0), t, T0) < Φ}1 {Λx(lx(T0),Φ(T0), r(T0), t, T0) < x}

1 {Λy(ly(T0),Φ(T0), r(T0), t, T0) < y} dlx(T0)dly(T0)dΦ(T0),

=
1

2πWL

∫ 2π

Φ(T0)=0

1 {Ψ(Φ(T0), r(T0), t, T0) < Φ}
∫ W

lx(T0)=0

1 {Λx(lx(T0),Φ(T0), r(T0), t, T0) < x} dlx(T0)

∫ L

ly(T0)=0

{Λy(ly(T0),Φ(T0), r(T0), t, T0) < y}dly(T0)dΦ(T0).

The last equality is due to the independence of lx and ly.

According to Lemma 3.1, we can easily see that
∫ W

lx(T0)=0
1
{
Λx(lx(T0),Φ(T0), r(T0),

t, T0) < x
}
dlx(T0) = x. Similar relationship holds for ly. As such, Equation (46) is further

simplified to

P (lx(t) < x, ly(t) < y,Φ(t) < Φ) =(47)

xy

2πWL

∫ 2π

Φ(T0)=0

1 {Ψ(Φ(T0), r(T0), t, T0) < Φ} dΦ(T0) =
x

L

y

W

Φ

2π
.

The above proof shows that the uniform distribution remains in the time interval [T0, T1)

for a particular movement pattern. Furthermore, let us denote the time right before t as t−.

We then easily observe that Φ(T1) = Φ(T−
1 ), because choosing a new center (cx(T1), cy(T1))

along the line perpendicular to the heading angle Φ(T−
1 ) at time T1 does not change the

heading angle at T1. Combining the facts that lx(T1) = lx(T
−
1 ), ly(T1) = ly(T

−
1 ), we conclude

that the uniform distribution also holds for the closed time interval [T0, T1].

The proof to show that the uniform distribution remains during [T1, T2] and any

[Ti, Ti+1] follows exactly the same procedure. Therefore, uniform distribution remains for

any time t ≥ 0 for each particular movement pattern, and therefore generally for a particular
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vehicle.

Because the N vehicles move independently, the joint distribution of node locations

and heading angles is the multiplication of individual distributions. As each individual

distribution is uniform, we can conclude that the N vehicles’ node locations and heading

angles remain uniformly distributed at any time t ≥ 0. The proof is complete. �

Theorem 3.2 informs that the uniform distribution at the initial time is preserved.

The next theorem says that the steady-state distribution is uniform, independent from the

initial distribution.

Theorem 3.3. N airborne vehicles move independently in the space [0, L]× [0,W ] according

to the ST mobility model associated with wrap-around boundary model. Assuming that λ and

σ are finite and not equal to 0, the distributions of node locations and heading angles are

uniform in [0, L) × [0,W ) and [0, 2π), respectively, in the limit of large time, regardless of

the distribution at the initial time.

Proof. Let us first sketch the structure of the proof. We first construct a Markov process

with states S(t) =
(
lx(t), ly(t),Φ(t),

1
r
(t), τ(t)

)
and find the probability transition kernel for

the Markov chain defined at the time sequence Ti, namely S(Ti). We then find the invariant

distribution of S(Ti). The Palm Formula [11, 92] is then used to find the limiting probability

distribution of the Markov process S(t).

First, we note that S(t) is a Markov process, because S(t + Δt) is only dependent

upon S(t), but not on any state before time t. S(Ti) for i = 0, 1, ... form a discrete-time

Markov chain, with the transition probability kernel:
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f(S(Ti+1)|S(Ti)) = f(lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti), Ti+1, Ti),(48)

ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti), Ti+1, Ti),

Φ(Ti+1) = Ψ(Φ(Ti), r(Ti), Ti+1, Ti),
1

r
(Ti+1), τ(Ti+1)|lx(Ti),

ly(Ti),Φ(Ti),
1

r
(Ti), τ(Ti))

= 1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}

1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}

1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti), Ti+1, Ti)}

f(
1

r
(Ti+1), τ(Ti+1)|lx(Ti), ly(Ti),Φ(Ti),

1

r
(Ti), τ(Ti)).

This is because lx(Ti+1), ly(Ti+1), and Φ(Ti+1) are fully determined by S(Ti) according to

Equation (45). Furthermore, since 1
r
(Ti+1) and τ(Ti+1) are independently and identically

distributed (i.i.d.) normal and exponential random variables selected at time Ti+1, they are

independent from S(Ti). Therefore, we can simplify Equation (48) to

f(S(Ti+1)|S(Ti)) = 1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}(49)

1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}

1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti), Ti+1, Ti)f(
1

r
(Ti+1), τ(Ti+1))

= 1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}

1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}

1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti), Ti+1, Ti)}

66



λe−λτ(Ti+1)
1√
2πσ

e
− 1

2r2(Ti+1)σ
2 .

The Markov chain S(Ti) is aperiodic, Φ-irreducible, and Harris recurrent, when λ and

σ are finite and not equal to 0. Hence there exists a unique invariant distribution measure,

which is the stationary distribution [85]. Let us prove that the invariant distribution takes

the following form:

lim
i→∞

f(S(Ti)) =
1

L

1

W

1

2π
λe−λτ(Ti)

1√
2πσ

e
− 1

2r2(Ti)σ
2 .(50)

To prove it, we only need to show that limi→∞ f(S(Ti)) as demonstrated in Equation

(50) satisfies Equation (51).

lim
i→∞

f(S(Ti)) = lim
i→∞

f(S(Ti+1))(51)

= lim
i→∞

∫
S(Ti)∈Ω

f(S(Ti))f(S(Ti+1)|S(Ti))dS(Ti),

where Ω is the sample space of S(Ti). The first equality is straightforward as τ(Ti) and

τ(Ti+1) are i.i.d. random variables, and r(Ti) and r(Ti+1) are also i.i.d. random variables.

To show the second equality in Equation (51), we substitute Equations (49) and (50)

into the right side of (51). Noticing that
∫W

lx(Ti)=0
1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}

dlx(Ti) = 1 according to Lemma 3.1 and also similar relationships hold for ly(Ti) and Φ(Ti),

we obtain

∫
S(Ti)∈Ω

f(S(Ti))f(S(Ti+1)|S(Ti))dS(Ti) =(52)

∫
S(Ti)∈Ω

1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}
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1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti), Ti+1, Ti)}

1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti), Ti+1, Ti)}λe−λτ(Ti+1)

1√
2πσ

e
− 1

2r2(Ti+1)σ
2 1

L

1

W

1

2π
λe−λτ(Ti)

1√
2πσ

e
− 1

2r2(Ti)σ
2 d(S(Ti))

=
1

L

1

W

1

2π
λe−λτ(Ti+1)

1√
2πσ

e
− 1

2r2(Ti+1)σ
2 = f(S(Ti+1)).

Finally, let us find the limiting probability distribution of the Markov process S(t).

According to the Palm formula [11, 92], the limiting distribution can be found by conditioning

upon the stationary distribution of S(Ti), where Ti → ∞. In particular,

lim
t→∞

f(S(t)) =
1

E0[τ(Ti)]
E0

[∫ Ti+τ(Ti)

Ti

1(S(t))dt

]
(53)

= λE0

[∫ Ti+τ(Ti)

Ti

1(S(t))dt

]

= λ

∫
S(Ti)∈Ω

∫ Ti+τ(Ti)

t=Ti

f(S(Ti))f(S(t)|S(Ti))dtdS(Ti),

where E0 represents the empirical average. As shown in Equation (53), E0[τ(Ti)] = 1
λ

because τ(Ti) is independently exponentially distributed with a finite mean 1
λ
.

Furthermore, noticing that when t is between Ti and Ti + τ(Ti), f(S(t)|S(Ti)) can be

found in a similar way to obtain Equation (49). Substituting the expression of f(S(t)|S(Ti))

and Equation (50) into Equation (53) and using the same reasoning that derives Equation

(52), we obtain

∫
S(Ti)∈Ω

∫ Ti+τ(Ti)

t=Ti

f(S(Ti))f(S(t)|S(Ti))dtdS(Ti)(54)

=
1

L

1

W

1

2π
λe−λτ(t) 1√

2πσ
e
− 1

2r2(t)σ2
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∫ ∞

τ(Ti)=0

∫ Ti+τ(Ti)

t=Ti

λe−λτ(Ti)dtdτ(Ti)

=
1

L

1

W

1

2π
λe−λτ(t) 1√

2πσ
e
− 1

2r2(t)σ2

∫ ∞

τ(Ti)=0

τ(Ti)λe
−λτ(Ti)dτ(Ti)

=
1

L

1

W

1

2π
λe−λτ(t) 1√

2πσ
e
− 1

2r2(t)σ2
1

λ
.

Substituting Equation (54) to Equation (53) leads to limt→∞f(S(t)) = 1
L

1
W

1
2π
λe−λτ(t)

1√
2πσ

e
− 1

2r2(t)σ2 . Integrating with respect to τ(t) and 1
r(t)

, we obtain that f(lx(t), ly(t),Φ(t)) =

1
L

1
W

1
2π

as t → ∞. The proof is complete. �

Theorems 3.2 and 3.3 demonstrate the uniform distribution of node locations and

heading angles. The results also suggest the close analogy between the ST and RD models.

Imposing the smooth trajectory requirement in the ST mobility model does not change the

stationary uniform distribution of the RD model. This is because the wrap-around model

avoids boundary impact, a key reason for non-uniform node distribution.

A Monte Carlo simulation of the node distribution is shown in Figure 3.4a. The

simulation verifies the uniform node distribution proved in Theorem 3.3. In the simulation,

an aerial vehicle is initially randomly placed in a 300× 400km2 simulation area divided into

grids of size 10× 10km2. The vehicle then moves within the area following the ST mobility

model (with V = 100m/s, σ = 5 × 10−5, Δt = 1s, and λ = 0.01/s) and the wrap-around

boundary model. The number of times that the vehicle falls in each grid is tracked. After

sufficiently long simulation time, the counts are used to produce the node distribution at

steady state. We note that the uniform distribution also applies to the reflection boundary

model, as shown in Figure 3.4b. The proofs can be easily adapted from the proofs for
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Theorems 3.2 and 3.3, by noticing the equivalence between these two boundary models [92].

The results also hold for the circular area (see simulations in Figure 3.4c and 3.4d).

The uniform stationary node distribution directly leads to a series of network connec-

tivity results, such as the distribution of the number of neighbors for an individual node, the

expected number of neighbors, the probability for a network to be connected, the probability

for a network to be k-connected, and the transition range and number of neighbors required

for the network to be connected with probability 1. Please refer to [17, 43, 148] for the

details.

3.4. Exploring Randomness

We envision that the randomness/predictability of mobility models is a crucial factor

for the design of effective routing schemes, but has not received much attention in the

literature (see [16] for a very brief discussion). If a mobility model captures some degree

of predictability for future trajectories, routing design could be significantly more effective

by smartly taking into account this information. At one extreme, the routing design is

fairly simple for a network of agents with deterministic trajectories. As relative locations

of agents at future times are available beforehand to each agent, global optimization can

be enacted to find the best routing design. At the other extreme, in completely random

networks without any predictive information about future movement, it is highly possible

that a relay node located at the boundary of transmission range (selected by the routing

algorithms to minimize the number of hops) is moving out of the transmission range, leading

to the loss of data transmission. There has not been quantitative studies on capturing the

degree of randomness/predictability for mobility models, per our knowledge. In this section,

we provide an entropy-based randomness measure for mobility models. As the focus of

this chapter is on modeling, we leave the utilization of randomness/predictability in robust
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Figure 3.4. Simulation of node distribution with: a) wrap-around model in a

rectangular region, b) reflection model in a rectangular region, c) wrap-around

model in a circular region, and d) reflection model in a circular region.
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routing design to the future work.

Another motivation to the study of randomness is concerned with better understand-

ing of the existing AN mobility models. We observe that the three AN mobility models

suitable for different applications are also aligned with different degrees of randomness. For

instance, mobility patterns of UAVs for security and patrol purposes (captured by the ST

mobility model) may be highly random. However, the ST model may be more deterministic

than the RD model, because it captures the spatiotempoeral correlation of movement. UAVs

used for search and rescue purposes (captured by the SCRM mobility model) are usually

provided with certain target location information to start with, and hence their mobility

patterns are less random. Commercial aircraft and UAVs envisioned for NextGen cargo

transportation have pre-planned trajectory information and hence their mobility patterns

(captured by the FP mobility model) are almost deterministic. Because of the significance

of mobility models in routing design, there is a need to understand and differentiate the var-

ious AN mobility models in great depth, and explore routing strategies to enhance network

connectivity in each. Randomness/predictability provides a measure for such investigation.

3.4.1. Definition of Randomness/Predictability

A natural metric for randomness is the entropy measuring the predictability of future

trajectory conditioned upon the current information. We note that the entropy defined on a

long look-ahead time does not help. For instance, RD, ST and the SRCM mobility models

all result in a uniform stationary node distribution, which does not differentiate among

themselves. Therefore, we are motivated to study an immediate entropy measure defined at

a very short time-frame, using a Markov chain that describes the trajectory dynamics.

Specifically, the state of the Markov chain represents the vehicle status, such as

position and direction. Randomness is defined based upon the entropy rate H [37]:

72



H = − ∫
i

∫
j
piQijlnQij , where pi is the probability to stay at state i, and Qij denotes the

transition probability from state i to j.

As a special case, if the states are uniformly distributed (e.g., when t → ∞ for the

RD and ST mobility models) and therefore pis are all equal, and also the pattern of the

transition probabilities Qij associated with different state i is the same, the calculation of H

can be simplified to H ′ = − ∫
j
QijlnQij , for any i.

To facilitate analysis, we consider a discretization of time, and assume that the tran-

sition from one state to the other takes a unit time Δt, where Δt is sufficiently small.

3.4.2. Comparison of Randomness for AN Mobility Models

In this section, we estimate the degree of randomness for four mobility models, includ-

ing RD, SRCM, ST and FP, using the entropy rate-based metric. The quantitative analysis

also allows us to evaluate the impact of model parameters on randomness, and compare the

four different mobility models. For a fair comparison, we assume that every model takes the

same fixed forward speed V , and also ignore boundary effects.

3.4.2.1. RD Mobility Model

Assume that a vehicle keeps its direction for an exponentially distributed duration

(with mean 1
λ
) before choosing its new direction uniformly distributed between 0 and 2π.

Because of the uniform stationary distribution and the memoryless property, we can use the

simplified randomness measure H ′. Without loss of generality, assuming that the vehicle is

moving from location 0 to the right, let us examine the probability of location and direction

at time Δt. The probability for changing direction k times within Δt thus follows the

Poisson distribution P (n = k) = (λΔt)ke−λΔt

k!
. As Δt is sufficiently small, we assume that

the change of direction occurs at most once within Δt. Therefore, P (n = 1) ≈ λΔt, and

P (n = 0) ≈ 1 − λΔt. If n = 0, the vehicle moves to the right and ends up at the location

73



VΔt with direction to the right. If n = 1, we assume that the change of direction occurs

at the very beginning, as Δt is very small. In this simplified case, the vehicle will locate

uniformly on a circle centered at the starting location with heading directions pointing

outwards. As the direction is completely correlated with the location at Δt, we can find the

probability associated with the ending location/direction as 1
2π
. Therefore, we can compute

the randomness as

HRD = −P (n = 0)lnP (n = 0)−
∫ 2π

Φ=0

P (n = 1)

2π
ln
P (n = 1)

2π
dΦ(55)

= −(1− λΔt)ln(1 − λΔt)−
∫ 2π

Φ=0

λΔt

2π
ln
λΔt

2π
dΦ

= −(1− λΔt)ln(1 − λΔt)− λΔtln
λΔt

2π
.

Interestingly, the speed of a vehicle does not affect the randomness of the model.

Moreover, the degree of randomness increases with the increase of the parameter λ as sug-

gested by Figure 3.5a. This result is reasonable, as λ represents how frequently a random

direction is selected. The more frequently a random direction is selected, the more random

the future trajectory becomes.

3.4.2.2. ST Mobility Model

As defined earlier in this chapter, the basic ST mobility model assumes that a vehicle

circles around for an exponentially distributed duration with mean λ, before selecting a new

turning radius with its inverse normally distributed with mean 0 and variance σ2. Similar

to the RD model, if no change of turning center occurs within Δt, the vehicle will travel

around its original turning center for a duration Δt. Otherwise, the vehicle will end up at a

random location/heading direction by following a curve with the inverse of its turning radius
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Figure 3.5. a) Randomness against λ in the RD model (Δt = 0.001s), b)

Comparison of the randomness between the RD and ST mobility models (Δt =

0.001s, λ = 2/s).

r normally distributed with probability e
− 1

2r2σ2√
2πσ

. We thus can find the randomness for the

ST model, in a way similar to that of the RD model, as follows:

HSR = −P (n = 0)lnP (n = 0)−(56)

∫ ∞

1
r
=−∞

P (n = 1)e−
1

2r2σ2

√
2πσ

ln
P (n = 1)e−

1
2r2σ2

√
2πσ

d
1

r
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= −(1 − λΔt)ln(1 − λΔt)−
∫ ∞

1
r
=−∞

λΔte−
1

2r2σ2

√
2πσ

ln
λΔte−

1
2r2σ2

√
2πσ

d
1

r

= −(1 − λΔt)ln(1 − λΔt)− λΔtln
λΔt√
2πeσ

.

The result suggests that V also does not impact the randomness of the ST mobility

model. However, both λ and σ play a role in the degree of randomness. In particular, the

randomness is less with smaller σ, which suggests more straight trajectory. For a large σ,

denoting high variability of turning radius, the location and direction of the vehicle can be

very uncertain. In summary, the randomness of the ST mobility model is less than that of

the RD model when σ is less than a threshold. The comparison between Equations (55) and

(56) suggests that the threshold σ = 2π
e
(also see Figure 3.5b).

3.4.2.3. Semi-Random Circular Movement Mobility Model

We consider a SRCM model that is slightly different from the one described in [138].

Again, we assume a constant forward speed V and a fixed center. Upon the completion of

one round, the vehicle chooses a radius r uniformly distributed between rI and rO (where

VΔt << rI < rO). We also assume that the transition time from one radius to the other is

neglected, and we only consider the circular movement as suggested in [138]. The resulting

node distribution is uniform as shown in Figure 3.6a. We note that the analysis of randomness

for the SRCM model is different from that of the RD and ST models, in the sense that the

original randomness measureH needs to be used, instead of the simplified H ′. This is because

the SRCM model does not have the memoryless property; as such, how long the vehicle has

traveled along a circle matters, and hence the pattern of Qij is different for different i. In a

small time interval Δt, if the vehicle has traveled along a circle with radius r for a distance

less than 2πr, the vehicle will continue moving along the circle with probability Qij = 1;

otherwise, the vehicle will end up at a circle with the radius uniformly distributed with
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probability Qij =
1

rO−rI
.

To facilitate the analysis, we first obtain the entropy rate conditioned upon the current

radius r, and then integrate over all possible radii. As the randomness associated with any

radius r only occurs when the vehicle changes its radius within Δt (with probability VΔt
2πr

),

we find HSC|r = −VΔt
2πr

∫ r=rO
r=rI

1
rO−rI

ln 1
rO−rI

dr = −VΔt
2πr

ln 1
rO−rI

.

Integrating over the range of r, we obtain

HSC =

∫ r=rO

r=rI

−VΔt

2πr
ln

1

rO − rI

1

rO − rI
dr(57)

= − 1

rO − rI
ln

1

rO − rI

VΔt

2π

∫ r=rO

r=rI

1

r
dr

= − 1

rO − rI
ln

1

rO − rI

VΔt

2π
(lnrO − lnrI).

In the ST mobility model, both the velocity V and the area defined by the radii RO and RI

affect the randomness. Clearly, the degree of randomness increases proportionally with the

increase of V ; however it typically decreases with the increase of RO (as shown in Figure

3.6b). It is also observed that under typical maneuvering conditions, the randomness of the

ST model is larger than that of the SRCM model.

3.4.2.4. Flight Plan-Based Mobility Model

With the simplest assumption that a trajectory follows a pre-planned trajectory with

a tiny variation modeled by a Gaussian noise (with mean 0 and variance σ̂2), we have

HFP = ln(
√
2πeσ̂). When σ̂ < 1√

2πe
, the entropy is negative, representing the randomness

to be less than a uniform distribution in [0, 1] [31].

In summary, the randomness and application categories of the RD model and three

AN mobility models discussed in this section are listed in Figure 3.7.
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Figure 3.6. a) The uniform distribution of the SRCM model, b) The degree

of randomness decreases with the increase of the outer radius RO (Δt = 0.001s,

V = 40m/s, and RI = 100m).
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Figure 3.7. Comparison of randomness among the four mobility models.
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3.5. Variants of the ST Mobility Model

Finally, let us also discuss possible variants and enhancements of the ST mobility

model.

Enhanced Modeling of Model Parameters This basic ST mobility model can be easily

generalized to include varying forward speed and 3D movement. Also, as an airborne vehicle

typically has certain minimum safe turning radius, instead of roughly modeling 1
r
as a Gauss-

ian variable, we can provide a more detailed model for r, and require r to reside in the safe

range. All of the above enhancements maintain the uniform distribution of node locations

and directions. We also note that the random model in [71] is a variant of the ST model,

e.g., with the assumption that the radius r takes two fixed constants and ∞. An enhanced

pheromone repel model that maximizes coverage is also introduced therein. Geographical

routing is developed for this mobility model[70].

Collision Avoidance In the current mobility model, we assume that each vehicle moves

independently. In reality, neighboring airborne vehicles need to satisfy a safe separation

distance, and therefore proper collision avoidance mechanisms may be included. As the

centripetal and tangential accelerations are directly captured in the mobility model, control

mechanisms for collision avoidance can be easily added (see [20] for a related implementation)

if desired.

RWP-like ST Mobility Model The current ST mobility model resembles the RD model

equipped with smooth trajectory. We can similarly develop RWP-like ST mobility models.

Possible strategies include: 1) randomly choosing a center which satisfies the smooth tra-

jectory requirement and is uniformly distributed in the region, and circling around it for an

exponential duration, before choosing another center; 2) randomly choosing a destination

uniformly distributed in the region and reaching it along a smooth trajectory, before choos-
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ing another destination. Similar to the RWP models, we also observe non-uniform node

distributions (see Figure 3.8).
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Figure 3.8. Simulation of node distribution for a) the random-center RWP-

alike ST mobility model b) the random-destination RWP-alike ST model after

smoothening.

3.6. Concluding Remarks and Future Work

In this chapter, we present a novel ST random mobility model for highly random ANs.

The ST mobility model captures the tendency of airborne vehicles toward making straight

trajectories and smooth turns. It is developed based upon the physical laws and aerodynamic

constraints governing moving aerial objects, whereas is simple enough for tractable analysis.

We prove that, similar to the RD model, the stationary node distribution is uniform. This

result permits a series of closed-form connectivity properties.
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The randomness is an important characteristic of mobility models in that 1) it is a

natural metric to characterize mobility models, and 2) it serves as an important factor for

the design/selection of robust routing algorithms. As such, we have developed a quantified

randomness measure using entropy rate. We then compute and compare the degrees of

randomness for four mobility models. Compared to the FP and SRCM mobility models, the

ST model represents the highest degree of randomness, but is less random than RD because

of the constraint on smooth trajectory specific to airborne vehicles. The ST mobility model

can be viewed as an RD model equipped with smooth trajectory, with the only difference

that it randomly chooses a turning radius instead of a heading direction. The classification

of AN mobility models based upon the degree of randomness aligns with the classification

based on applications. Different AN mobility models are needed for different applications

(e.g., transportation, search and rescue, and patrolling) due to their diversity.

We will investigate various enhanced versions of the ST mobility model as suggested

in Section 3.5 in the future. We will also fit model parameters using real UAV flight data

for model validation. Moreover, we will investigate area coverage, as the full coverage and

the time needed are also important characteristics of ANs [76, 99]. Finally, we will further

our investigation with more advanced connectivity properties such as path duration and link

duration, fully investigate the impact of randomness on the performance of routing protocols,

and design effective routing protocols that utilize this information.
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CHAPTER 4

A STOCHASTIC MODELING AND ANALYSIS APPROACH TO STRATEGIC

TRAFFIC FLOW MANAGEMENT IN A WEATHER IMPACTED REGION

4.1. Background

Let us start with a review of the existing literature relevant to management at the

strategic time-frame, with the aim of summarizing the current research status, stressing

research needs, and also motivating our approach.

Because deterministic traffic models lack the capability to capture uncertainty at the

strategic time-frame, stochastic flow network models (and in particular queuing network

models) are considered to be valuable for strategic decision-making. Some recent efforts,

including our group’s, in using queuing models to capture uncertain traffic and obtain insights

for planning can be found in e.g., [54, 68, 88, 111, 120, 130, 131, 135]. Of most interest to us,

the article [120] used a center-level open Jackson network model to evaluate path efficiency.

In [130, 134], with the aim of designing network-level en route flow rates, a M/D/1 queuing

network model was constructed, and various abstractions of it were sought to facilitate

design. Articles [130, 134] were extended to provide insights into optimal routing design

through a sensitivity study on queuing models [131]. These modeling and analysis efforts

using queuing-network models provide a natural framework for the evaluation and design of

management actions at the strategic time-frame, because they consider traffic as flows and

ignore the schedule details of individual aircraft. However, these studies do not address the

performance of the NAS in response to dynamic and uncertain weather events.

In a parallel vein, there have been advances in the evaluation and design of man-

agement actions under dynamic and uncertain weather. One straight-forward approach to

address this problem is Monte-Carlo simulations, i.e., using ensembles of uncertain weather
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to evaluate management actions and select optimal ones. An intelligent way of selecting

a minimum set of ensembles was given in [132]; these numerical methods however are not

appropriate for robustly solving large-scale design problems. In order to improve efficiency,

systematic analysis and design has been sought using stochastic programming approaches

(see e.g. [30, 94, 95]). For instance, in [95], weather was modeled using Markov chain models,

and routing design was formulated as a Markovian Decision Processes. These studies are

valuable in providing systematic designs that take into consideration of uncertain weather.

However, they address the management of individual aircraft instead of flows, while flow-

level designs are necessary at the strategic horizon considering the large dimension of the

decision space at this horizon.

Because of the significant role that weather plays in strategic decision-planning, an-

alytical tools that permit the evaluation and design of strategic management actions under

uncertain weather are urgently needed. To meet this need, I take the perspective that un-

certain weather-impact models must be seamlessly interfaced with aggregated traffic flow

models, and the analysis of the integrated models must be completed. Pursuing this direc-

tion, in this chapter I model traffic as stochastic flows, and model management actions as flow

restrictions or queues that shape downstream flows (to comply with capacity constraints)

at the cost of delay/backlog upstream. Moreover, I model dynamic and uncertain weather

impact using Markov chains. To capture the impact of uncertain weather events on flow, I

consider the parameters of the queuing models as being modulated by uncertain weather. In

particular, the service rates of the queuing models are viewed as being randomly reduced by

convective weather impact. Such an integrated weather and flow modeling perspective lays

is the modeling foundation for the performance analysis under weather uncertainty that I

pursue here.

The performance analysis of queuing systems with random service rate reduction, such
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as I am seeking in this work, is mostly studied outside the air traffic management domain. In

the field of road traffic planning, random service rate reduction is instead caused by uncertain

events such as traffic accidents, vehicle failures, and other emergent road conditions. In paper

[14] and the references therein, random service rate reduction was modeled as a Markovian

process, and queuing analysis with markovian modulated services was sought. These studies

are mostly focused on the analysis of steady-state performance, i.e., the statistics of queuing

performance in a long run. However, in air traffic planning, transient performance is typically

of significant value. For instance, a predicted temporary surge of traffic due to a severe storm,

and the resultant congestion, plays a key role in strategic planning. To some extent, I can

say strategic planing is in essence redistributing resources in advance to alleviate temporary

congestion caused by uncertain transient weather. In this chapter, I aim to provide novel

analytical tools that allow the evaluation of transient queuing performance.

Our main contribution in this chapter is the development of analytical tools that allow

the evaluation of the impact of transient convective weather on uncertain flows, and thus

give insight toward optimal management strategy design under weather uncertainty at the

strategic time-frame. Let us briefly discuss the specific analyses of the integrated stochastic

weather and flow model that I complete here. In particular, I consider two approaches that

allow the transient performance analysis for queuing models driven by uncertain weather.

In the first approach, I track both weather and flow dynamics using Markov chains, and

investigate the analysis of steady-state and transient statistics of traffic delay under weather

uncertainty. Though accurate, the computational complexities associated with intensive

(transient) Markov chain analysis makes it hard to generalize this approach to queuing

network models at a broader spatial scale. I then suggest a novel scalable jump-linear

approach to analyze the integrated weather and flow models. I will show that the jump-

linear approach is capable of effectively evaluating and comparing management actions under
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uncertainty. I envision that the jump-linear approach developed in this chapter is promising

to allow the evaluation and design of optimal flow contingency plans at a broad spatial scale,

and is robust to likely weather scenarios.

It is worthwhile to note that this work is part of our ongoing effort in developing

flow contingency management (FCM) framework for the NextGen [127]. In [112, 150], I

provided the tool for the modeling and prediction of uncertain weather impact, using a

stochastic automaton; in [135], I established a queuing network framework that allows the

design of several management actions in practice or potential for use in NextGen. This

chapter discusses our efforts in integrating the above two directions, by developing systematic

analytical and design tools for management actions under weather uncertainty.

The remainder of this chapter is organized as follows. In Section 4.2, I overview the use

of stochastic models to represent weather impact, and the use of queuing models to capture

management actions. I thus formulate the problem of analyzing the integrated two models.

In particular, a stochastic automaton known as the influence model is used to capture the

dynamics of stochastic weather at a broad spatio-temporal scale. Weather dynamics in a

single region can be predicted from the model, and approximated using a low-order Markov

chain model. Moreover, queuing models are used to represent management restrictions (e.g.,

miles-in-trail (MIT) or minute-in-trail (MINIT)) acting on flows. In Section 4.3, I provide an

extended Markov modeling approach to analyze the performance of management actions on

flows in the presence of uncertain weather. Specifically, the statistics concerning the backlog

of traffic can be obtained from the Markov analysis of the integrated flow and weather

model. In Section 4.4, I re-formulate the model as a jump-linear system, and show that this

formulation permits an efficient performance analysis. Moreover, I use an example to show a

key insight that the jump-linear modeling approach provides, concerning the role of detailed

stochastic weather information in the performance of management actions. Finally, I discuss
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Figure 4.1. A stochastic entering a single weather zone.

several features of the jump-linear approach. In Section 4.5, a brief conclusion is provided.

4.2. Stochastic Weather and Flow Restriction Modeling: Overview and Problem Formulation

In this section, I provide an overview of the stochastic modeling of uncertain weather/

weather-impact and of traffic flows/restrictions. I then motivate the problem of evaluating

delay and backlog under uncertain weather, using Monte Carlo simulations to illustrate our

motivation.

4.2.1. Modeling Restriction’s Impact on Stochastic Flow

Queuing models are widely used to capture management actions’ impact on air traf-

fic flows. In [135], I discussed the use of queuing models to capture various management

actions, including MINIT/MIT, rerouting, time-based metering (TBM), ground-delay pro-

grams (GDP), and airspace flow programs (AFP), as part of a comprehensive network model

for air traffic. In our work, I focus on a single traffic flow entering a weather zone (see Figure

4.1).

To begin, I recall that a single en route restriction’s impact (e.g., an MIT/MINIT

restriction’s impact) under fixed weather conditions can be modeled using an M/D/1 queue.

Here let us briefly review the modeling of a single restriction under fixed weather, and then

describe the M/D/1 model and the approximation of it using a saturation model (please see

[130] for more illustration).

I assume that a flow enters the boundary of a weather zone with an inflow rate λ

(the number of coming aircraft per unit time). In this chapter, I focus on Poisson flows (see
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[88] for motivation), i.e., the distribution of the number of aircraft coming to the restriction

per unit time is P (λ, k) = λkeλ

λ!
. However, the study developed in our work can be generalized

to other stochastic flows. In those cases, further parameters in addition to flow rate may

be required to describe the flow. As a flow is approaching a boundary, it is considered as

entering an imaginary buffer. The number of aircraft in the buffer at time t is denoted

as buffer length b(t). Because of the en route rate restriction set either by management

actions or by weather-impact capacity constraints, only a portion of the aircraft in the buffer

is allowed to cross. The relationship between the crossing flow e(t) and buffer length is

denoted by e(t) = f(b(t)). In general, f() can be either a deterministic or a stochastic

function, depending on the nature of the restriction. The Backlog B(t), which captures the

number of aircraft being delayed at time t, is defined as the number of aircraft in the buffer

excluding the ones crossing the boundary at the current time.

In the case of an M/D/1 queue, each aircraft takes a fixed service time (denoted

as Tc) to cross the boundary. The service rate uc is defined as 1
Tc
. Specifically, if the buffer

is not completely empty within Tc time units after an aircraft leaves the boundary, the first

aircraft in the buffer cannot cross the boundary until the Tc duration is completed. The

deterministic service time in the M/D/1 model forces a minimum separation distance/time

between successive aircraft, and as such the M/D/1 model is natural to capture MINIT/MIT

en route restrictions. Using standard queuing analysis (see [50]), some steady-state backlog

and delay statistics for the M/D/1 queue can be calculated. For instance, the mean backlog

in steady-state can be calculated as

(58) E(B) =
λ2

2(u2
c − λuc)

Unfortunately, it is not straightforward to find higher-order steady-state statistics

or characterize transient dynamics for the M/D/1 model using standard queuing analysis,
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hence a saturation model was developed to approximate the M/D/1 model to permit

richer analysis (especially for networks of restrictions) [130]. The saturation approximation

is a discrete-time model that assumes the following: during any time interval Δt, a maximum

number of Nc = ucΔt aircraft (denoted as saturation restriction) is allowed to cross the

boundary. The saturation model can be mathematically described as:

e[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b[k − 1], (b[k − 1] ≤ Nc))

Nc, (b[k − 1] ≥ Nc))

(59)

b[k] = b[k − 1] + x[k]− e[k]

B[k] = b[k − 1]− e[k]

where e[k], b[k] and B[k] represent the crossing flow, the buffer length, and the backlog at

time interval k. Clearly, the saturation model is a discrete-time version of the M/D/1 model.

In the limit as Δt is made small, the saturation model approaches the M/D/1 model. Let us

briefly discuss validation of the model. In Table 4.1, I approximate the steady-state mean

backlog of an M/D/1 queue through Monte-Carlo simulation of the saturation model, when

the inflow rate λ = 9.5 and service rate uc = 10. As seen from the simulation results, as

the time interval of the approximation is made smaller, the saturation model approaches the

M/D/1 queuing model in predicting steady-state mean backlog, which is 9.025 according to

Equation 58.

In this chapter, I use the saturation model to capture the impact of restrictions on

flows. I will show that this discrete-time recursive description of an M/D/1 model permits

systematic analysis of the queue’s transient dynamics, even under weather uncertainty.
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Table 4.1. Steady State Mean Backlog Obtained from Simulating the Satu-

ration Model with Different Time Intervals (λ=9.5, uc = 10).

Time Interval Δt 3 hour 1 hour 0.1 hour

Mean Backlog 6.87 7.90 9.025

4.2.2. Modeling Stochastic Weather-Impact

Properly modeling and predicting weather impact is significant to decision-making

at the strategic time-frame. Existing ensemble and probabilistic forecast products are not

suitable to be directly employed in strategic planning because of 1) they focus on describing

weather rather than weather impact, 2) they lack spatio-temporal descriptions of weather

dynamic, and 3) they are computationally incredibly complex [150]. These limitations mo-

tivated us to develop a spatio-temporal weather-impact model using a stochastic automaton

called the influence model [112, 150].

Analysis of the spatio-temporal stochastic weather model can provide various weather-

impact statistics of interest, e.g., the statistics of weather dynamics in a single weather zone.

Such information may be of particular interest, for instance when a critical weather zone

plays a significant role in delay performance (see [112] for more illustration). When the

statistics/pdf of the dynamical weather impact at a single zone is obtained from the stochastic

weather model, continuous-time Markov chain models can be constructed to approximate

the statistics (see e.g. [47] for a technique for parameterizing Markov models so that state

transition durations match desired pdfs). I am particularly interested in these Markov models

for local weather impact,since I would like to study impact of weather on particular traffic

flows; let us thus discuss these models in further detail. Specifically, in the Markov chain

model, states represent different stages of weather or weather-impact evolution, and the
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weather-state probabilities are governed by

(60) ṗw(t) = pw(t)Qw

where pw(t) = [pw1(t), ...., pwi
(t), ...., pwn(t)], pwi

(t) represents the probability of weather

being at state i at time t, n is the number of states in the Markov chain, and Qw ∈ Rn×n is

the continuous-time transition matrix.

In this development, I examine two classes of weather events separately, namely an

extended-duration severe weather event (e.g. repeated occurrence of storms during a busy-

traffic period, or a long-duration winter-storm) and a transient weather event that lasts for a

while and then disappears (e.g. morning fog in San Francisco). In the first case, convective

weather can be modeled using a recurrent Markov chain. In the second case, the weather

is represented using a non-recurrent Markov chain1.

For instance, consider the case that bad weather is temporarily present in an airspace

region, causing a decrease in the region’s capacity, but then disappears. The pdf of the

duration of the capacity reduction at the single region due to the convective weather as

shown in Figure 4.2a, as generated by the full spatio-temporal weather-impact model. The

pdf can be well approximated as being generated from a non-recurrent four-state continuous-

time Markov chain with Qw =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.95 0.85 0 0.1

0 −0.85 0.85 0

0 0 −0.85 0.85

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(see Figure 4.2b). Specifically

in this example, state 1 to 3 represent bad weather (the zone is at reduced capacity), and

state 4 represents that the bad weather is gone (the zone is at normal capacity). Once

1A Markov chain is recurrent, if starting from any state in the Markov chain, there is a non-zero probability
that the Markov chain will return to the starting state; otherwise, the Markov chain is non-recurrent.
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the Markov chain jumps into state 4, it stays at state 4 forever. The duration of capacity

reduction is the length of time that takes the Markov chain to reach state 4 for the first time.

To track weather-state probabilities described by the Markov chain, it is simpler and

more apt for air traffic decision-making to use a discrete-time approximation of the Markov

chain. It is not difficult to obtain an accurate discretization, simply through choice of a small

discretization interval, as shown in Equation 61 (see Figure 4.3 for a discrete time version of

the example, with discretization time-step Δt = 20 min).

pw[k + 1] = pw[k]Pw(61)

= pw[k](QwΔt + I),

where pw[k] = [pw1[k], ...., pwi
[k], ...., pwn [k]], pwi

[k] represents the probability of weather state

i at time interval kΔt, Pw ∈ Rn×n is the transition matrix, and PwI,J
represents the condi-

tional probability that the Markov chain is at state J given that the state is I at the previous

time step. For the weather model example discussed in this section, the probability that the

duration of capacity reduction takes k time steps can be obtained by recording pw4 [k] (the

probability of being at state 4), and subtracting pw4 [k] from the probability being at state 4

at the previous time step pw4[k − 1].

4.2.3. Problem Formulation

The variability in weather events, and especially convective weather, creates signifi-

cant difficulties in defining strategic traffic management actions as these uncertainties must

be accounted for in the models developed. I take the perspective that by integrating the

stochastic weather model (using the influence model) and the flow restriction model (using

the queuing network model) I can analyze and design strategic management under weather

uncertainty. In this development, I begin the investigation by addressing the backlog analysis
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Figure 4.2. (a) Pdf of the duration of capacity reduction at a single region

(generated from the simulation of the influence model, (b) Pdf reconstructed

from a 4-state Markov chain model.

when a single stream of flow intersects with a weather zone. Here, the bad weather reduces

the service rate of the traffic restriction acting on the flow, to reflect deliberate flow man-

agement or intrinsic rate reduction due to the weather. In Figure 4.4, I show the dynamics

of backlog statistics using Monte Carlo simulations. The comparison between Figure 4.4c

and 4.4d reveals that the mean value and the mean duration of abnormal backlog caused

by bad weather are enlarged if there is a greater chance of a prolonged bad weather event.

The comparison between Figure 4.4d and 4.4e shows that larger inflow rates (representing
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Figure 4.3. Discrete time 4-state Markov model to generate the pdf of the

duration of bad weather (Δt = 20 min).

more demand) also increases the mean value and the mean duration of the abnormal back-

log. The Monte Carlo simulations demonstrate that both weather and inflow uncertainties

produce significant impact on the number of aircraft delayed. Due to the computational cost

of Monte Carlo simulations, and its limitations as a design tool for management actions,

it is important to develop efficient analytical tools that permit the prediction of backlog

dynamics with uncertain weather and flow.

In the next two sections, I investigate the prediction of dynamical backlog statistics

for a stochastic flow under the impact of uncertain weather. Specifically, uncertain weather

is modeled using a discrete-time Markov chain model, and the weather-impact-modulated

restriction is modeled using a saturation model that approximates a M/D/1 queue with

time-varying service rates. The number of aircraft coming during each time interval follows

a Poisson distribution, with the probability at time step k represented as

(62) Pλ(x[k] = c) =
(λΔt)ce(−λΔt)

c!
, c ≥ 0.

Note: In all examples presented in our work, I assume that the discretization interval Δt =

20min for both the saturation model and the weather Markov model, considering that 20min
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Figure 4.4. Illustration of the impact of stochastic weather and inflow on

backlog. Capacity/service rate (number of aircraft allowed to pass in a hour) is

3 under bad weather conditions, and 10 under good weather conditions. Plot

(a) shows the pdf of the duration for a short span of bad weather. (b) shows

the pdf of the duration for long span of bad weather. (c),(d), and (e) are the

performance analyses for the two-weather-impact-distribution models, under

two possible inflow conditions. Blue lines represent the backlog dynamics

obtained from Monte Carlo sample runs, red lines represent the mean backlog,

and yellow lines represent mean backlog plus the standard deviation of backlog.

(c) shows the backlog corresponding to the inflow rate 3.1 and short span of

bad weather. (d) is corresponding to the inflow rate 3.1 and prolonged span

of bad weather. (e) is corresponding to the inflow rate 3.5 and long span of

bad weather.
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allows a reasonable approximation and also that it is a reasonable time interval for planning

at the strategic time frame.

4.3. Integration of Weather and Flow Models for Performance Evaluation: A Markov Ap-

proach

To predict the statistics of backlog/delay caused by flow restrictions in the presence of

uncertain weather without using time-consuming Monte Carlo studies, I develop a discrete-

time Markov approach to the modeling and analysis of the integrated weather and flow

restriction models. Specifically, I use a Markov chain to track the dynamics of buffer length

as described by the saturation model. I then construct a master Markov chain, whose states

are the combined pairs of weather states and buffer lengths, so as to track the dynamics

of buffer length under uncertain weather. Markov chain analysis permits the prediction of

steady-state and transient backlog. Finally, I pursue approximation studies of the transient

analysis for extreme weather/flow scenarios.

4.3.1. Integrated Markov Model for Weather and Poisson Flow

Let us first consider tracking the dynamics of a saturation model with a fixed service

rate uc. (or equivalently, with saturation restriction Nc = ucΔt during a time interval Δt).

The dynamics can be tracked using a Markov chain. Specifically, I construct an infinite-state

Markov chain with each state i ∈ {0, 1, 2, ....,∞} representing the buffer length, i.e., the

number of aircraft in the buffer. The transition probability PQi,j
= P (s[k + 1] = j|s[k] = i)

representing the probability of transiting from buffer length i to buffer length j can be

calculated as
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(63) PQi,j
(Nc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Pλ(j), 0 ≤ i ≤ Nc; j ≥ 0

Pλ(j − i+Nc), i > Nc; j ≥ i−Nc

0, i > Nc; j < i−Nc.

I note that in simulation or analytical studies, I usually use a truncated finite-state Markov

chain to approximate the infinite-state Markov chain. As long as the dimension of the

finite-state Markov chain is sufficiently large, the approximation is accurate.

Now let us consider the full model with overlayed stochastic weather. When the flow

enters a weather zone, I model the service rate of the flow-restriction as varying because of

changing weather impact, and hence the transition probabilities in a Markov model for the

queue will also vary. Recall from Section 4.2.2 that weather impact in a single region can be

represented by a discrete-time Markov chain with transition probability PwI,J
, where I and J

represent the states of weather as described by the Markov chain. For each weather state I,

I model the flow-restriction as having an (in general) different service rate. Therefore, when

the weather state is I, the queue length transitions according to the probability PQi,j
(NI);

where NI is the saturation restriction value (which reflects the service rate) at weather impact

state I.

Now I integrate the queuing and weather Markov models by modeling flow restric-

tions (specifically, queue service rates) as being driven by the stochastic weather model.

Specifically, I construct a larger-size master Markov chain, whose states are each defined as

a combination of both a weather state I and a buffer length i (which I denote as the pair Ii).

The states transition in the master Markov chain according to both weather propagation and

incoming flow. Since, given a current weather state and buffer length, weather and buffer

length evolve independently, the transition probability of the master Markov chain is equal
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to the multiplication of the transition probabilities of the two individual Markov chains.

Specifically, the transition probability of beginning at weather state I when the number of

aircraft in the buffer is i (i.e., state Ii) and going to weather state J and buffer length j (i.e.,

state Jj) is represented as

PMIi,Jj
= P (s[k + 1] = Jj|s[k] = Ii)(64)

= Pw(s[k + 1] = J |s[k] = I)PQ(s[k + 1] = j|sw[k] = I, sQ[k] = i)

= PwI,J
PQi,j

(NI)

Let us denote that the transition matrix for the master Markov chain as PM .

Let us illustrate the construction of the master Markov chain using the weather

impact model discussed in Section 4.2.2. In the weather-impact Markov model, weather

impact takes two states: for the good weather condition, the maximum number of aircraft

allowed to pass during a time interval Δt is Nc1; for the bad weather condition, the maximum

number of aircraft allowed to pass during a time interval Δt is Nc2. The integrated Markov

chain for the 4-state weather model and M/D/1 queue model I considered is shown in

Figure 4.5. In this case, I = 1, 2, 3, 4, j = 1, 2, ...∞, and NI = Nc2 for I = 1, 2, 3, and

N4 = Nc1. When I = 1, 2, 3, the transition probability PMIi,J,j
= PwI,J

PQi,j
(Nc2); when

I = 4, PMIi,J,j
= PwI,J

PQi,j
(Nc1) For the good weather circumstance, the queue length

transitions according to the probability PQi,j
(Nc1); and for the bad weather circumstance,

the queuing length transitions instead according to PQi,j
(Nc2).

4.3.2. Steady-State and Transient Analysis

The construction of the integrated Markov chain allows us to obtain statistics of

backlog in a systematic fashion, instead of using intensive Monte-Carlo simulation. In this

section, I summarize the steady-state and transient analysis of backlog statistics using the
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Figure 4.5. Integrated master Markov chain

Markov chain approach.

Steady-state statistics can allow performance analysis over a long time horizon, e.g.,

computation of the average backlog or delay over a long time-span. For extended-duration

severe weather, steady-state statistics of traffic backlog under weather uncertainty gives a

valuable performance measure. However, for transient weather events, transient dynamics

of the flow statistics is often of more interest, because of the short span of severe weather. I

now examine both steady-state and transient analysis in greater detail.

In order to obtain the steady-state statistics of performance in terms of backlog, I

need to first identify the steady state distribution of the integrated master Markov chain

pM(s[k → ∞])Ii for I = 1, ..., n and i = 1, ...,∞, i.e., the steady-state probability of state Ii

(where i is the queue length and I represents weather state). This steady-state probability

can be found from the probabilistic recursion of the master Markov chain (or from one sample

run, according to the ergodicity theory [97]). From the steady-state probability distribution,
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the lth-order moment of backlog can be found as

(65) E(Bl) =
∑
∀i

∑
∀I

max(i−NI , 0)
lpM(s[k → ∞])Ii.

where function max(a, b) takes the maximum value of a and b. I note that statistics of other

performance metrics, such as delays, can be found in a very similar way.

The transient backlog at any time instance can be found by invoking the probability

recursion of the combined Markov chain. Upon doing so, the lth-order moment of the backlog

at time k can be found as

(66)
∑
∀i

∑
∀I

max(i −NI , 0)
lpM [k − 1]Ii,

where pM [k − 1]Ii is the probability of the master Markov chain being at state Ii at time

step k − 1.

Figure 4.6 shows that the mean and variance calculated from the the integrated

Markov chain match those calculated from the Monte Carlo simulation. In this example,

Nc1 = 4,Nc2 = 1, Δt = 20min, and λ = 3.5.

The Markov approach allows the prediction of dynamical backlog statistics for both

extended duration severe weather and transient weather. However, from the analysis, I

see that the computation is not effective because of the use of infinite-state Markov chain

(or a large truncated finite-state Markov chain for approximation) to track the saturation

model. In order to obtain a good approximation, even for a single region, the dimension

of the transition matrix is high. This limitation makes this approach hard to generalize to

the evaluation of backlog for a network of regions, since the dimension of the Markov chain

grows exponentially with the number of regions. Next, I seek for some lower-computation

approximations of key performance metrics.
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Figure 4.6. Comparison between the mean and variance calculated from the

integrated Markov chain (b) and the Monte Carlo approach (a). The red curve

shows the mean of backlog, and the yellow line shows the mean of backlog plus

standard deviation.

4.3.3. Approximations for Transient Statistics

In many cases, I may not care about the complete transient dynamics, but only care

about a few characteristics of the transient performance, such as the time that the maximum

delay occurs, the maximum backlog, and the duration for the excessive backlog to vanish

after a severe weather event passes. Our approach has been to use abstractions of the
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Markov-chain analysis to obtain simple approximations to the above quantities.

For instance, if I plot the peak of backlog with respect to a small range of varying

parameters such as inflow rate, service rates, and the mean of bad weather duration (as shown

in Figure 4.7a-c), I see that the peak of backlog can be predicted from these parameters using

linear relationships. Similarly, the extended duration for the excessive backlog to vanish after

a severe weather event passes can also be predicted using a linear relationship as shown in

Figure 4.7d. In fact, under extreme conditions (i.e., inflow rate is much greater than service

rate at bad weather, and much smaller than the service rate at good weather) and stochastic

weather duration with small variance, I can verify that the peak of backlog (denoted as Bp)

and the extended duration (denoted as Ts) can be roughly calculated from the following

simple equations:

Bp = (λ− Nc2

Δt
)Td(67)

Ts =
Bp − Bs

Nc1

Δt
− λ

(68)

where Bs is the steady state backlog after the bad weather is gone and Td is the mean

duration of bad weather. Such measures of backlog and excessive delay predicted using

the linear relationships can be used to assist in the design of management actions to reach

performance goals, under uncertain severe weather conditions.

For non-extreme conditions, the above linear relationships do not yield good pre-

dictions. I instead introduce a jump-linear approach to analyze the transient congestion

in Section 4.4. The jump-linear approach allows novel and effective evaluation and possi-

bly design of strategic management plans that take into account of all probable weather

scenarios.
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Figure 4.7. Linear prediction of the characteristics of transient dynamics:

(a) The linear relationship between mean value of peak backlog and the sat-

uration restriction under bad weather (Nc1 = 12, λ = 5.3, prolonged bad

weather (see Figure 5.3b)); (b) The linear relationship between mean value of

peak backlog and inflow rate (Nc1 = 12, Nc2 = 5, prolonged bad weather (see

Figure 5.3b); (c) The linear relationship between mean value of peak backlog

and the mean of bad weather duration (Nc2 = 4, Nc1 = 7, and λ = 5.3));

(d) The linear relationship between the extended duration of backlog and the

saturation restriction under bad weather (Nc1 = 7, λ = 5.3, prolonged bad

weather (see Figure 5.3b)).
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4.4. Integration of Weather and Flow Models for Performance Evaluation: A Jump-Linear

Approach

To evaluate the dynamical impact of convective weather on uncertain flows at a

broad spatial scale, I need analytical tools that are computationally-efficient. In this section,

I develop a jump-linear approach to the modeling and analysis of the effect of uncertain

weather’s impact on flows.

Markovian Jump-linear systems—i.e., linear systems whose parameters are modulated

by an underlying Markov chain with finite state-space—are a broad class of stochastic hybrid

models which have nice tractabilities (e.g., [32, 110, 113]). In this section, I first introduce

the jump-linear modeling of the integrated stochastic weather and flow restriction models,

then present the prediction of impact statistics using this model, and finally discuss some

features and benefits of the jump-linear approach.

4.4.1. Formulation of the Dynamics as a Jump-Linear System

The jump-linear modeling of the integrated flow and weather model is based upon a

linear abstraction of the impact of a restriction’s impact on flows. Linear abstractions are

appealing for large-scale traffic flow modeling because of their tractability and scalability. Let

us first describe the principles for developing a linear abstraction, and then the formulation

of the integrated weather and flow restriction model into a jump-linear system based upon

the linear abstraction [130].

A linear restriction model approximates the relationship between the crossing flow

and buffer length as a linear (actually, affine) function [130]. Specifically, in a unit time, the

crossing flow e[k] is modeled as a fraction of buffer length b[k] plus a constant, as shown in

Equation 69.

(69) e[k] = ab[k] + c
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I note that the linear restriction can be made to resemble the saturation restriction well,

through proper choice of the parameters a and c. In essence, the linear restriction is a sto-

chastic linearization of the nonlinear saturation model. For stringent saturation restrictions

(i.e., λΔt is close to Nc), a is typically small while c is moderate. Meanwhile, for loose

saturation restrictions (i.e., λΔt is much small than Nc), a is close to 1 and c is close to 0.

The parameters a and c can be found by matching the statistical impact of the linear and

saturation restrictions on flows. For instance, a procedure to find a and c by matching the

steady-state mean backlog and downstream flow variance for Poisson flows was presented in

[130]. In cases where transient dynamics need to be matched, I can apply curve fitting tools

to find the corresponding a and c for a particular combination of saturation restriction and

incoming flow.

Now consider the case that the flow restriction is subject to modulation by stochastic

weather. In this case, I model the linear restriction’s parameters as being modulated by

the stochastic weather. That is, at different weather severities, the restriction strength and

hence linear restriction parameters will be different. Since weather is modeled using a Markov

chain, the parameters of the restriction are changing according to the weather Markov chain.

The dynamics of the integrated model can thus be represented as a jump-linear system:

e[k] = a([q[k])b[k − 1] + c([q[k])(70)

b[k] = b[k − 1] + x[k]− e[k]

B[k] = b[k − 1]− e[k]

where q[k] ∈ Rn×1 has only one entry as 1 and all other entries as 0, representing the state

of the weather Markov chain at time step k, and a(q[k]) and c(q[k]) represent the values of

the parameters a and c associated with the state of the Markov chain q[k]. For instance,
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Figure 4.8. Comparison between the jump-linear model and the saturation

model for a specific inflow sequence and weather sample.

for the weather Markovian model shown in Figure 4.3, a and c take the same value when

the Markov chain is in states 1, 2, 3 representing a bad weather, and takes a different value

when the chain is in state 4 representing good weather. The parameters a(q[k]) and c(q[k])

change values as the Markov chain jumps among states q[k].

The jump-linear formulation presented above resembles the original saturation model

integrated with weather, but allows nice tractability as shown in the next subsection. Here

in Figure 4.8, I show the simulation of the jump-linear representation and the saturation

representation for a particular Poisson flow with λΔt = 4.9, Δt = 20min, and a particular

weather ensemble where bad weather lasts for 5 hours on average and then disappears. The

plots in Figure 4.8 demonstrate that the jump-linear abstraction captures the saturation

restriction well.

4.4.2. Statistical Analysis of the Jump-Linear Model

In this section, let us demonstrate the prediction of backlog statistics using the jump-

linear model. To do so, I write recursions for the moments the jump-linear model (Equation
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71) into a moment-linear representation [110], which allows us to trace the statistics of a

jump-linear model.

Specifically, as an illustration, let us trace statistics of the backlog. To begin from

Equation 71, the dynamics of backlog B[k] can be represented as

(71) B[k + 1] = (1− a(q[k]))(B[k] + x[k])− c(q[k])

Now let us introduce the vector σ[k], which is defined as

(72) σ[k] = q[k]⊗

⎡
⎢⎣B[k]

1

⎤
⎥⎦ .

I note that the conditional expectation E[σ[k + 1]|σ[k]) can be written as

E[σ[k + 1]|σ[k]] = E

⎡
⎢⎣q[k + 1]⊗

⎡
⎢⎣B[k + 1]

1

⎤
⎥⎦ |B[k], q[k]

⎤
⎥⎦(73)

= E[q[k + 1]|q[k]]⊗ E

⎡
⎢⎣
⎡
⎢⎣B[k + 1]

1

⎤
⎥⎦ |B[k], q[k]

⎤
⎥⎦

= Pw
′q[k]⊗

⎛
⎜⎝
⎡
⎢⎣1− a[q[k]] c[q[k]]

0 1

⎤
⎥⎦
⎡
⎢⎣B[k]

1

⎤
⎥⎦+

⎡
⎢⎣λΔt

0

⎤
⎥⎦
⎞
⎟⎠

= Pw
′q[k]⊗

⎡
⎢⎣λΔt

0

⎤
⎥⎦+ Pw

′q[k]⊗

⎡
⎢⎣1− a[q[k]] c[q[k]]

0 1

⎤
⎥⎦
⎡
⎢⎣B[k]

1

⎤
⎥⎦

= Pw
′q[k]⊗

⎡
⎢⎣λΔt

0

⎤
⎥⎦+ P ′

w ⊗

⎡
⎢⎣1− a[q[k]] c[q[k]]

0 1

⎤
⎥⎦ σ[k]

From Equation 74, I can find the mean of σ[k + 1] as

E[σ[k + 1]] = E[E[σ[k + 1]|σ[k]]](74)
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= Pw
′E[q[k]]⊗

⎡
⎢⎣λΔt

0

⎤
⎥⎦+ P ′

w ⊗

⎡
⎢⎣1− a[q[k]] c[q[k]]

0 1

⎤
⎥⎦E[σ[k]]

Since all quantities in Equation 75 except the variables E[σ[k]] are known, this equa-

tion allows us to calculate the dynamical mean of σ[k] through an effective recursive fashion.

In fact, if I define A = Pw
′E[q[k]]⊗

⎡
⎢⎣λΔt

0

⎤
⎥⎦ and B = P ′

w ⊗

⎡
⎢⎣1− a[q[k]] c[q[k]]

0 1

⎤
⎥⎦, E[σ[k+1]]

can be found using

E[σ[k + 1]] = Bk(E[σ[0]] + (B − I)−1A)− (B − I)−1A.(75)

Moreover, from Equation 72, I can easily derive that E[B[k]] can be calculated from E[σ[k]]

using

(76) E[B[k]] = E[σ[k]]− 1.

In Figure 4.9, I show the prediction of mean backlog using the integrated Markov

chain approach and the jump-linear approach. In this example, stochastic weather model is

shown in Figure 4.2 and 4.3, λΔt = 4.9, Δt = 20min, Nc1 = 10 andNc2 = 5. The comparison

between the two plots shows that the jump-linear approach allows a good prediction of mean

backlog.

I note that higher-order statistics of the backlog, as well as statistics of other perfor-

mance metrics, can be computed in similar fashion.

4.4.3. Example and Discussions

The major contribution of this section is the introduction of the jump-linear approach

to the evaluation of air traffic system performance in the presence of uncertain weather.
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Figure 4.9. Prediction of mean backlog: comparison between the jump-

linear and the integrated Markov chain approaches.

In this section, let us first use an example to show the insights the jump-linear approach

provides, and then discuss some features/benefits of this approach.

It is very efficient to obtain various insights using the jump-linear approach. As an

example, let us answer whether the mean of weather duration is sufficient for performance

prediction. In Figure 4.10, I compare backlog predicted from the full weather pdf and from

the mean weather (i.e., assuming that the weather duration is equal to its mean value), using

the simple recursions of the jump-linear approach. I see that there is a large offset between

the two dynamics, as reflected by the measures such as the maximum mean backlog and the

duration of excessive delay. This insight is indeed informative since it is typical in practice

to use mean weather duration for traffic system performance evaluation, due to the difficulty

in performance evaluation under uncertain dynamical weather. The use of mean weather

condition as a deterministic condition for performance evaluation avoids dealing with the

stochastic weather. However, this example shows that mean weather is not sufficient for a

good prediction, and the availability of richer weather information (such as a pdf) allows a
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Figure 4.10. Comparison of backlog predicted from weather pdf and mean

weather.

more precise prediction.

Here let us summarize the features of the jump-linear approach in air traffic system

performance evaluation under weather uncertainty:

• Efficiency. As shown in the previous section, the jump-linear approach provides

an effective way to evaluate traffic backlog (and other performance metrics) under

uncertainty. There is no need to carry out intensive Monte Carlo simulations to

understand the performance under uncertainty. The approach is also much more

effective than the integrated Markov chain approach. The dimension of the recursion

to find means in the jump-linear approach is 2n, where n is number of states in the

Markov chain model for weather. Meanwhile, the integrated Markov chain requires

a recursion with the order mn, where m is the number of states in the truncated

Markov chain that tracks the queue length. As the truncated Markov chain is used

to approximate the infinite-state Markov chain, m is large for a good approximation
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(i.e., m >> 2).

• Precision. The jump-linear approach allows the prediction of backlog statistics

with weather modeled as a stochastic automaton. As shown by Figure 4.9, the use

of a precise stochastic model for uncertain weather provides an evaluation of backlog

with nice precision. In fact, the only offset comes from the use of linear restriction

to capture the saturation constraint. Moreover, the prediction is much more precise

compared to the use of mean weather information as shown in the example in this

section.

• Scalability The approach is promising to be generalized to evaluate performance at

a broad spatial scale, with the whole system modeled as a big jump-linear system.

The significant characteristic of the approach is that the dimension of computation

grows linearly with the increase of the number of regions in consideration. As

such the jump-linear approach has significant potential for the evaluation of NAS

performance for the NextGen.

• Designability The design of optimal management actions using the jump-linear

approach is concerned with choosing parameters of the linear restriction for best

statistical performance under stochastic weather and flow. This task is in essence

related to the control of jump-linear systems [40, 109]. The tractability of the

jump-linear model makes the design problem tractable. I leave the design problem

to future work.

4.5. Concluding Remarks and Future Work

Weather uncertainty plays a critical role in the performance of air traffic systems,

especially in the strategic time-frame. Systematic and effective evaluation of system perfor-

mance under dynamical weather uncertainty is a crucial step toward the design of strategic
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management actions. In this chapter, I have made two contributions to the study of strategic

traffic management under weather uncertainty:

(1) I have formulated integrated models of stochastic weather and traffic flow. Specif-

ically, I have introduced models in which traffic flows and flow constrictions have

parameters that are modulated by an underlying transient or long-duration weather

process. I have argued that such models permit useful analysis of traffic performance

metrics under weather uncertainty.

(2) I have developed two methods, namely the integrated Markov approach and the

jump-linear approach, that allow prediction of performance statistics like backlog

under uncertain weather. Of particular note, the jump-linear approach models flow

restriction using linear relationships, with parameters modulated by a Markov chain

describing weather uncertainty. The tractability and scalability of the approach

makes it promising for the evaluation and design of strategic management actions

under uncertain weather at a broad spacial scale.
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CHAPTER 5

PERFORMANCE EVALUATION AND OPTIMAL DECISION-MAKING FOR

STRATEGIC AIR TRAFFIC MANAGEMENT UNDER WEATHER UNCERTAINTY

5.1. Introduction

Strategic air traffic flow management is concerned with planning air traffic 2-15 hours

in advance. The decision-making process at this long look-ahead time is complicated by

a variety of uncertainties, the most prominent of which include weather and demand un-

certainties [84, 85, 112, 118, 140]. In particular, traffic demand is subject to a range of

uncertain variabilities, caused by delay events, management initiatives, pop-up flights, etc

[140]. With respect to weather, a precise prediction of the intensities of further weather

events is currently unavailable due to the limitation of meteorological techniques. Because

of the uniqueness of weather condition in the United States, convective weather events (such

as storms) account for the primary reason of traffic delays, according to the Federal Aviation

Administration (FAA) [4].

Effectively finding the best management strategies is nontrivial considering the weather

and demand uncertainties, and nonlinear impact of management strategies and convective

weather on flows [130, 135]. As such, the most intuitive way to assess weather impact and

optimal management strategy design is to use Monte Carlo simulations as shown in Figure

5.1. In particular, this process involves finding the performance of each management strategy

through simulating it against each possible pair of weather and demand ensembles. As both

weather and demand are stochastic processes, enumerating pairs of weather and demand en-

sembles typically results in a very large ensemble space and thus intensive simulation runs.

In this chapter, I seek effective simulation and analysis methods to reduce the computation

load for weather impact and optimal management studies.
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Monte Carlo Simulation
Algorithm

for each s
for each pair (w,d)

run simulation to find the
associated performance

end
end
statistical analysis to find the
performance of s

A range of Management
strategies (s)

Strategy 1

Strategy 2

Strategy i

Strategy n 1

Strategy n

…
…

Weather ensemble
generator (w)

Demand ensemble
generator (d)

Statistical Performance of each
strategy

Performance 1

Performance 2

Performance i

Performance n 1

Performance n

…
…

Find the
statistically
optimal
strategy

Figure 5.1. Illustration of the Monte Carlo decision making process.

In order to permit effective evaluation and design methodologies, I introduce an in-

tegrated weather, demand, and management modeling framework. In particular, I model

demand as a stochastic process. Examples of demand models include Poisson processes and

more realistic models that capture fixed flight plans and uncertain pop-up flights (obtained

from historical data) [130, 140]. I also model uncertain dynamic weather impact as Markov

chains [112, 151]. Weather impact is captured by capacity reduction, due to the increased in-

trail distance requirements and controller workload. Moreover, I model traffic management

plans and capacity constraints as queuing service rates. Their effects are to shape down-

stream flows at the cost of accumulated backlog (i.e., the number of aircraft being delayed

due to the service rate) [130, 135]. The integration of the above three models permits an

analytical framework for weather impact evaluation and optimal management design under

uncertainty.

As a step toward the optimal management design at a National Airspace System

(NAS) level, I focus on a simple scenario in this chapter: a stream of flow enters an un-

certain weather zone. I then study: 1) the predicted statistics of delayed aircraft due to
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uncertain weather, and 2) the design of optimal management restrictions subject to weather

and demand uncertainties. The contribution of this chapter is summarized in the following.

(1) Evaluation of uncertain weather impact on the statistics of delayed aircraft.

Transient backlog is an important metric to evaluate the impact of uncertain

weather on flows. In [151], we studied a master-Markov approach and a jump-linear

approach to predict transient mean backlog. In this chapter, I extend the previous

results to higher moments, and show that these statistics can also be easily obtained

through a simple recursion. These higher moments provide rich information about

uncertain weather impact, such as the range of variability around the mean backlog.

(2) Performance metric capturing both management and non-management induced de-

lays.

Interestingly, I find that the mean total backlog when no management is applied

represents the minimum achievable one in the presence of uncertain weather. As

flow management is always designed in advance, it is impossible for any specific

pre-planned management to be optimal for each of the possible weather ensembles.

This observation suggests to me that total mean backlog cannot be used as the

sole cost function for optimal management design. In this chapter, I suggest the

use of a combination of management and non-management induced backlogs as the

optimization cost functions.

(3) Design of optimal flow management subject to weather and demand uncertainties.

I provide a systematic approach to find the best management plan under weather

and demand uncertainties. The method is based upon a mesh of an effective simula-

tion method called Probabilistic Collocation Method (PCM) and a Markov chain (or

jump-linear) analysis to quickly identify a low-order mapping between management
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plan and total cost, from which the best management solution is obtained.

The remainder of the chapter is organized as follows. In Section 5.2, I present the

modeling framework and preliminary results required for the development of this chapter.

In Section 5.3, I present a closed-form analytical approach to predict weather impact. In

Section 5.4, I introduce the PCM approach for optimal management design. Section 5.5

includes a brief conclusion.

5.2. The Modeling Framework and Problem Formulation

In this section, I describe the modeling framework, and then formulate the weather

impact evaluation and optimal management design problems to be investigated in this chap-

ter.

5.2.1. Modeling Framework

The modeling framework integrates the demand model, weather model, and queuing

model as shown in Figure 5.2. Let me describe the details of each model.

Flow Restriction and Weather 
Induced Constraints 

Crossing flow  e(t)=f(b(t)) 

Upstream Flow Downstream Flow 

… 
Buffer 

 
b(t) 

Flow 
Management 

Actions 

Figure 5.2. Illustration of the modeling framework.

5.2.1.1. Demand Model

Demand, capturing the number of aircraft coming to a region, can be modeled as a

stochastic process x[k]. The most commonly used stochastic demand model is the Poisson
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process [97]. Poisson process is an independent stochastic process, in which x[k] at each time

k is a Poisson random variable with mean λΔT and variance λΔT , where λ is the average

number of coming aircraft per unit time and ΔT is the time interval between adjacent time

steps. In [140], more complicated demand models that utilize both deterministic flight plan

information and uncertain historical pop-up flights information are introduced. In this study,

I model the demand as a general independent stochastic process x[k] with mean u[k] and

variance v[k].

5.2.1.2. Weather Model

Stochastic weather impact is modeled as a finite state Markov chain. In the Markov

chain, each state si represents a particular stage of weather development, and the transition

probability Pwij
represents the chance for the weather to progress from state si to sj during

a time interval ΔT . I denote the transition probability matrix as Pw, in which the ith row,

jth column entry is Pwij
. Each state si ∈ S is associated with a flow restriction constraint

w(si) ∈ W = [w1, w2, ...] that is related to weather intensity, reflecting capacity reduction.

For the convenience of my presentation, we introduce a vector q[k] to indicate the state of

the Markov chain at time k. In particular, q[k] is of length n, where n is the total number

of states. All the entries in q[k] are 0, except the ith entry qi[k] being 1, indicating the state

of Markov chain at time k to be si.

Let me use an example to illustrate the weather model. If the weather-induced

capacity reduction has two levels, no reduction (with flow restriction rate w1) and partial

reduction (with flow restriction rate w2), and if the duration of weather-induced reduction is

captured by the pdf shown in Figure 5.3a, the stochastic weather impact can be modeled as 4-

state Markov chain shown in Figure 5.3b. Also, w([1 0 0 0]′) = w([0 1 0 0]′) = w([0 0 1 0]′) =

w2 and w([0 0 0 1]′) = w1. The symbol ′ denotes the transpose of a vector or a matrix.
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Figure 5.3. (a) Probability distribution function (pdf) of the duration of

capacity reduction at a single region, (b) Discrete-time 4-state Markov model

to generate the pdf in the left (ΔT = 20 min) [151].

5.2.1.3. Queuing Model

As shown in Figure 5.2, a queuing model is a natural framework for capturing the

impact of weather and management on traffic flows [135]. A queuing model is composed

of three parts: buffer, flow restriction, and crossing flow. A discrete-time queue model

works as follows. All coming aircraft to a region enters the buffer automatically. I denote

the buffer length as b[k]. At any time k, a portion of aircraft in the buffer (denoted by

f(b[k − 1])[k]) can pass the flow restriction and enter the downstream region, where f() is
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the restriction function dependent on the type of queue. This crossing flow is denoted as e[k].

In this chapter, I consider a discrete-time version of the G/D/1 (general inflow, deterministic

service rate, and single server) queue. In this queuing model, f()[k] is a saturation function,

i.e. if b[k−1] is larger than the maximum service rate N [k], f(b[k−1])[k] = N [k]; otherwise

f(b[k − 1])[k] = b[k − 1]. The dynamics of such a queue are captured by the following

equations [130]. In this equation, the backlog B[k], which captures the number of delayed

aircraft at time k, is a natural performance metric. B[k] can be found as the number of

aircraft in the buffer at time k − 1 subtracting the crossing flow at time k.

e[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b[k − 1], (b[k − 1] ≤ N [k])

N [k], (b[k − 1] > N [k])

(77)

b[k] = b[k − 1] + x[k]− e[k]

B[k] = b[k − 1]− e[k]

At the limit of small ΔT , the saturation model approaches the G/D/1 model [130, 135].

5.2.2. Problem Formulation

Convective weather events reduce region capacity, inducing accumulated backlog.

As discussed in [151], the statistics of transient backlog is a natural metric to evaluate

weather impact. This is the first problem that I investigate in this chapter. Besides weather

impact evaluation, I also study optimal strategic traffic management before the occurrence

of convective weather. Strategic management can increase the efficiency of traffic systems

for several reasons: 1) it enhances safety as pilots and controllers can prepare ahead-of-time,

rather than having to deal with urgent events; 2) it can reduce costs as advanced strategic

management strategies such as Ground Delay Programs (GDP) can reduce fuel consumption;
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and 3) it also permits NAS-wise planning to better allocate limited resources. In this chapter,

I investigate how to design statistically optimal management strategies under the weather

and demand uncertainties. Let us formulate these two problem mathematically below.

PROBLEM 1: EVALUATION OF TRANSIENT WEATHER IMPACT

As I discussed above, weather impact is captured by the statistics of backlog B[k].

In this chapter I evaluate the first two moments of B[k], namely E[B[k]] and σ2[B[k]], given

the stochastic demand model x[k] and the Markov chain stochastic weather model. These

moments provide rich information about the severity and variability of weather impact on

flows.

Since convective weather reduces region capacity (or flow restriction rate), I can

capture weather impact by expressing the maximum service rate N [k] in Equation 77 as the

weather-induced flow restriction rate wi at time k. As weather is modulated by a Markov

chain, N [k] is a function of the Markov state q[k]

(78) N [k] = w(q(k]).

For instance, in the example of weather model shown in Figure 5.2, we have N [k] = w1 when

q[k] ∈ {[1 0 0 0]′, [0 1 0 0]′, [0 0 1 0]′}, and N [k] = w2 when q[k] = [0 0 0 1]′.

PROBLEM 2: OPTIMALMANAGEMENT DESIGNUNDERWEATHER ANDDEMAND

UNCERTAINTIES

Management strategy is captured by a series of deterministic flow restrictions Nc[k].

When both flow management and convective weather are in place, N [k] in Equation 77

is captured by the minimum of the management restriction and the weather-induced flow

restriction, i.e.,

(79) N [k] = min(Nc[k], w(q[k])).
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The optimal management is a series of Nc[k] that minimizes a cost function (typically con-

nected to delay statistics), given the stochastic demand and convective weather models.

In this chapter, I consider a simple scenario: the convective weather starts at the

initial time k = 0 with uncertain ending time. When the convective weather is present, the

restriction rate is w2; and when the weather event is over, the restriction rate goes back to

the normal w1. Designing the optimal management plan is concerned with finding the start

time, end time, and intensity of Nc[k], given all the uncertainties. As convective weather

starts from the initial time with a fixed intensity w2, it is a reasonable practice to start the

flow management Nc[k] at k = 0 with intensity w2. As such, I am concerned with finding

the optimal end time of the management Nc[k].

5.2.3. Overview of Our Approaches

In this chapter, I introduce two effective approaches to address the above weather

impact evaluation and optimal flow management design problems. In particular, I take an

analytical approach to characterizing transient impact statistics, specifically one based upon

a Markov jump-linear approximation. This approach provides simple assessment of backlog

and its variability caused by uncertain bad weather in a particular day. I also suggest using

a smart simulation technique known as PCM for designing the flow management capability.

As a purely analytical method is difficult to obtain while Monte Carlo simulations are time-

consuming (for a problem of realistic scale), PCM permits an approximated suboptimal

but much faster approximation, which also incidentally gives the mapping between design

parameters and cost. The results in this chapter are presented in a very concise form, as they

are heavily built upon our previous modeling and analysis efforts [112, 130, 132, 135, 151].

Please refer to these earlier papers for the background.

120



5.3. Using Jump-Linear Approach to Evaluate Uncertain Weather Impact

The Monte Carlo approach (as illustrated in Figure 5.1) is a straightforward approach

to evaluate uncertain weather impact. However, as both weather and demand are subject to

uncertainties, the Monte Carlo approach results in a large number of simulations and thus is

time consuming for real-time management. As such, I seek a systematic analytical approach

to effectively evaluate uncertain weather impact. This approach is based on a stochastic

linearization of the original dynamics (Equation 77), transforming it into a Markov jump-

linear system (see Equation 80) [151]. Markov jump-linear system is the type of linear

systems with parameters modulated by a Markov chain [110].

e[k] = a(q[k])b[k − 1] + c(q[k])(80)

b[k] = b[k − 1] + x[k]− e[k]

B[k] = b[k − 1]− e[k]

Equation 80 leads to the following dynamics of the backlog B[k] through simple algebra.

(81) B[k + 1] = (1− a(q[k]))(B[k] + x[k])− c(q[k])

I note that in the jump-linear representation, the cross flow e[k] is a stochastic linear approx-

imation of the original nonlinear saturation function shown in Equation 77. The parameters

a and c are associated with different values for different w(q(k]). As such, a and c are also

functions of the Markov state q[k]. The selection of these two parameters is critical for the

performance of the jump-linear approximation. Please refer to [151] for the procedure to

choose a and c. A complete treatment of selecting these two parameters is left to future

work.
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Let me demonstrate the use of the jump-linear formulation to analyze transient un-

certain weather impact. In particular, I show how the first and second moments of backlog

can be analyzed using simple recursions.

5.3.1. Transient Analysis of Mean Backlog

In [151], I introduced a procedure to find transient mean backlog when the demand

is a Poisson flow. This result can be easily generalized to the case when demands are

modeled as general independent stochastic processes with mean u[k] and variance v[k]. Here

I only summarize the result. To obtain the transient mean backlog, I introduce a vector

σ[k] = q[k] ⊗

⎡
⎢⎣B[k]

1

⎤
⎥⎦. The mean of σ[k] can be found through a linear recursion as shown

below.

(82) E[σ[k + 1]] = Pw
′E[q[k]]⊗

⎡
⎢⎣u[k]

0

⎤
⎥⎦+ P ′

w ⊗

⎡
⎢⎣1− a[q[k]] c[q[k]]

0 1

⎤
⎥⎦E[σ[k]]

The mean backlog E[B[k]] at each time k is found to be 11×l1E[σ[k]] − 1, where l1 is the

length of the vector σ[k].

5.3.2. Transient Analysis of the Variance of Backlog

Higher moments can be obtained using a similar approach. In this section, I show how

the variance of transient backlog σ2[B[k]] is obtained through a simple recursion. Variance

of backlog describes performance variability in a range of weather possibilities, which helps

in estimating the robustness of management initiatives.
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To permit the analysis, I introduce a vector σ2[k] which contains both B[k] and B2[k].

(83) σ2[k] = q[k]⊗

⎡
⎢⎢⎢⎢⎢⎣
B2[k]

B[k]

1

⎤
⎥⎥⎥⎥⎥⎦ .

Squaring both ends of Equation 81 leads to

B2[k + 1] = (1− a(q[k]))2B2[k] +
(
2(1 − a(q[k]))2x[k]− 2(1− a(q[k]))c(q[k])

)
B(k)(84)

+(1− a(q[k]))2x2[k] + c2(q[k])− 2(1− a(q[k]))c(q[k])x[k],

from which the conditional mean of E[B2[k + 1]] given B[k] can be found as

E[B2[k + 1]|B[k]](85)

= (1− a[q[k]])2B2[k] +
(
2(1 − a[q[k]])2u[k]− 2(1 − a[q[k]])c[q[k]]

)
B(k)

+ (1− a(q[k]))2(v[k] + u2[k]) + c2[q[k]]− 2(1 − a[q[k]])c[q[k]]u[k].

For the ease of presentation, I denote A2 = 2(1 − a[q[k]])2u[k] − 2(1 − a[q[k]])c[q[k]] and

B2 = (1−a(q[k]))2(v[k]+u2[k])+c2[q[k]]−2(1−a[q[k]])c[q[k]]u[k]. The conditional expectation

E[σ2[k + 1]|σ2[k]] can then be written as

E[σ2[k + 1]|σ2[k]] = E

⎡
⎢⎢⎢⎢⎢⎣q[k + 1]⊗

⎡
⎢⎢⎢⎢⎢⎣
B2[k + 1]

B[k + 1]

1

⎤
⎥⎥⎥⎥⎥⎦ |B[k], q[k]

⎤
⎥⎥⎥⎥⎥⎦

= E[q[k + 1]|q[k]]⊗ E

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣
B2[k + 1]

B[k + 1]

1

⎤
⎥⎥⎥⎥⎥⎦ |B[k], q[k]

⎤
⎥⎥⎥⎥⎥⎦(86)
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= Pw
′q[k]⊗

⎡
⎢⎢⎢⎢⎢⎣
1− a2[q[k]] A2 B2

0 1− a[q[k]] (1− a[q[k]])u[k]− c[q[k]]

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
B2[k]

B[k]

1

⎤
⎥⎥⎥⎥⎥⎦

= Pw
′ ⊗

⎡
⎢⎢⎢⎢⎢⎣
1− a2[q[k]] A2 B2

0 1− a[q[k]] (1− a[q[k]])u[k]− c[q[k]]

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ σ2[k].

Taking the expectation of both sides of this equation with respect to σ2[k], the mean of

σ2[k + 1] can be obtained as

(87) E[σ2[k + 1]] = Pw
′ ⊗

⎡
⎢⎢⎢⎢⎢⎣
1− a2[q[k]] A2 B2

0 1− a[q[k]] (1− a[q[k]])u[k]− c[q[k]]

0 0 1

⎤
⎥⎥⎥⎥⎥⎦E[σ2[k]].

The above recursion can be used to obtain E[σ2[k]] at any time from the the initial

condition E[σ2[0]]. E[B2[k]] can then be derived from E[σ2[k]] by realizing that

E[B[k]] = 11×n ⊗ [0 1 0]′E[σ2[k]](88)

E[B2[k]] = 11×l2E[σ2[k]]− 1− E[B[k]],(89)

where n is the length of q[k] and l2 is the length of the vector σ2[k]. The variance of B[k]

can be expressed as

σ2[B[k]] = E[B2[k]]− (E[B[k]])2.(90)

The result suggests that the first and second moments of demand and weather Markov

chain are sufficient to infer the mean and variance of backlog at any time using the jump-

linear approach. This fast approach to second moment analysis is of significant value, as

it could potentially be used to evaluate the local impacts of TMIs on performance in flow
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contingency management (FCM) [123], without requiring simulation of the full NAS; it also

gives an indication of the variability of performance over the range of weather outcomes.

5.3.3. An Illustrative Example

Let me use a simple example to illustrate the jump-linear approach to obtain the vari-

ance of transient backlog. In the example, demand is modeled as Poisson process x[k] with

mean u[k]=4.9/20mins. Moreover, weather is represented by a 4-state Markov chain with

two intensity levels (w1 = 10/20min and w2 = 5/20min) as shown in Figure 5.3b. In partic-

ular, the transition probability matrix of the Markov chain is Pw=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.68 0.28 0 0.04

0 0.72 0.28 0

0 0 0.72 0.28

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Under good weather conditions (when q[k] = [0 0 0 1]′), I have a[q[k]] = a1 = 0.98 and

c[q[k] = c1 = 0.09. Under bad weather conditions (when q[k] = [1 0 0 0]′, [0 1 0 0]′, or

[0 0 1 0]′), I have a[q[k]] = a2 = 0.04 and c[q[k]] = c2 = 4.22.

To facilitate the presentation, I denote the matrix⎡
⎢⎢⎢⎢⎣
1− a2[q[k]] A2 B2

0 1− a[q[k]] (1− a[q[k]])u[k] − c[q[k]]

0 0 1

⎤
⎥⎥⎥⎥⎦ in Equation 87 as k1 when q[k] = [0 0 0 1]′,

and as k2 when q[k] = [1 0 0 0]′, [0 1 0 0]′, or [0 0 1 0]′. It is easy to obtain that

k1=

⎡
⎢⎢⎢⎢⎢⎣
4.84× 10−4 9.59× 10−4 0.0028

0 0.022 0.0218

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ and k2 =

⎡
⎢⎢⎢⎢⎢⎣
0.91 0.87 4.68

0 0.95 0.46

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ by substituting the

values of a1, a2, c1, and c2. According to Equation 87, the recursion of E[σ2[k]] can thus be
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expressed as:

(91) E[σ2[k + 1]] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.68k2 0k2 0k2 0k1

0.28k2 0.72k2 0k2 0k1

0k2 0.28k2 0.72k2 0k1

0.04k2 0k2 0.28k2 1k1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
E[σ2[k]]

Assuming that there is no backlog at the initial time, and weather starts from the state s1,

the initial condition can be expressed as E[σ2[0]] =

[
1 0 0 0

]′
⊗
[
0 0 1

]′
. The variance

σ2[B[k]] at each time step can thus be obtained using Equation 91.

5.4. Optimal Management Design under Both Weather and Demand Uncertainties

In the previous section, I provide an effective approach to predict the statistics of

weather-induced transient backlog. In practice, it is unrealistic to directly use stochastically-

varying weather-induced capacity reduction as flow management restrictions. This is because

strategic management is planned in advance using weather prediction, and hence its update

always lags the change of weather. As described in Problem 2, optimal management design is

concerned with devising deterministic flow restrictions under the uncertainties of weather and

demand. In this section, I first discuss the performance metrics to be used as optimization

cost functions, and then present a novel method to design optimal management under the

uncertainties.

5.4.1. Metrics to Evaluate the Performance of Flow Management

The usefulness of optimal management solutions is highly contingent upon the cor-

rectness of performance metrics (used as the optimization cost functions). As such, before

I present the optimal design, I first introduce and evaluate three candidate cost functions.

The first function is defined as the total backlog over a duration of interest. I show that

this cost function cannot capture the advantage of flow management, and always results in
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“no management” as the optimal solution. To account for this problem, I then introduce

a second cost function, by separating management and non-management induced backlogs.

Finally, I present a third performance metric to penalize high transient backlogs.

I note that my focus here is not to determine the exact form of cost functions through

real cost analysis. Instead, I try to understand the type of cost functions that allow the

optimal solution to reflect the considerations in reality.

5.4.1.1. Total Backlog

The most intuitive performance measure is proportional to the total backlog

(92) O1 =

kp∑
k=0

C1E(B[k]),

where kp > 0 is the end time of consideration, and C1 is a scaling factor. I prove that

this performance metric always results in “no management” as the optimal solution. Or in

another words, the cost O1 (or total backlog) caused by pure uncertain weather with zero

management is always the minimum among all deterministic management plans.

To prove this statement, it is sufficient to show that for any possible combinations of

weather and demand ensembles at any time k, the backlog B[k] caused by a deterministic

management Nc[k] is equal to or greater than that caused by just weather w(q[k]). This is

straightforward by considering the following two cases. If Nc[k] < w(q[k]), I have N [k] =

min(Nc[k], w(q[k])) = Nc[k] < w(q[k]), and clearly the backlog with management is larger

than that with no management according to Equation 77. On the other hand, if Nc[k] ≥

w(q[k]), I have N [k] = min(Nc[k], w(q[k])) = w(q[k]), and thus the backlog with management

is equal to that with only weather. The proof is thus complete.

The above proof suggests that any deterministic management plan always results

in higher total backlog. As such, the total backlog-based metric O1 cannot capture the

advantage of flow management, and thus I need to modify it.
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5.4.1.2. Separation of Management and Non-Management induced Costs

To account for the advantage of flow management, I note that the unit cost associ-

ated with management-induced backlogs is typically less than that associated with weather-

induced backlogs. For instance, if a severe storm is predicted, aircraft can be delayed taking

off through the Ground Delay Program (GDP). If no management is adopted in this circum-

stance, aircraft has to be instead held in air before being allowed to enter a weather zone,

incurring more costs, such as extra fuel, higher challenge to controllers, and endangered

safety-levels. Therefore, even though flow management plans (such as GDPs) may result in

higher total backlog (as suggested in Section 5.4.1.1), they are still desirable in practice. To

account for the low costs associated with management-induced backlogs, I separate manage-

ment and weather induced backlogs in the cost function, and assign different unit cost to

each. In particular, the cost function is defined as

(93) O2 =

kp∑
k=0

(C2E(Bm[k]) + C3E(Bnm[k])) ,

where Bm[k] and Bnm[k] represent the management and non-management (such as convective

weather and normal capacity constraints) induced backlogs at time k respectively, and C2

and C3 are scaling factors representing the unit costs associated with each type.

Typically, the management induced cost C2 is much smaller than the non-management

induced cost C3. As such, I can phrase that the purpose of flow management is to transform

weather-induced backlogs into management-induced backlogs so as to reduce the total costs.

I also note that if multiple managements are applied concurrently, the cost associated with

each management may need to be considered.
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5.4.1.3. Penalization for High Transient Backlogs

High transient backlogs may not be allowable in reality, and as such need to be

panelized. For instance, the maximum number of aircraft being held in air (caused by

management strategies such as MIT/MINIT) cannot pass a limit. The cost function O2

cannot reflect this panelization as the relationship between backlog and cost is linear (see

Figure 5.4 for a comparison). I am thus motivated to modify O2 and change the backlog-cost

relationship to be nonlinear. A general representation of the cost function is:

(94) O3 =

kp∑
k=0

(f1(E(Bm[k])) + f2(E(Bnm[k]))) ,

where f1 are f2 are nonlinear functions that capture the negative impact of high transient

(management and non-management induced) backlogs. Possible candidates of fi(x) include:

(95) fi(x) = Cix+Hi1(x− Γi),

where Γi is a threshold and Hi is a scaling factor representing the extra unit cost of high

transient backlog. 1(x) is the function defined as 1(x) = x if x ≥ 0 and 1(x) = 0 if x < 0;

or simply,

(96) fi(x) = Cix+Hixpeakδ(k − kpeak),

where xpeak is the peak value of x, kpeak is the peak time, and δ(x) is an impulse function,

i.e., δ(x) = 1 if x = 0 and δ(x) = 0 if x�= 0. The first candidate (in Equation 95) penal-

izes transient backlogs higher than a threshold, and the second candidate (in Equation 96)

penalizes the peak transient backlog. Choosing the specific format needs to be determined

based on real cost data.
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Figure 5.4. Comparison between two backlog scenarios. The cost functions

O1 and O2 cannot distinguish between these two, as both have the same total

backlog.

5.4.2. A PCM Approach to Find Optimal Flow Management

In this section, I introduce a PCM approach to find the optimal flow management

plan. Compared to the Monte Carlo approach (see Figure 5.1), PCM consumes much less

computational time, as it requires to evaluate only a few number of management solutions

to find the optima. In this section, I first review the PCM approach, and then discuss how

PCM is adapted for optimal management design.

5.4.2.1. Review of the PCM Approach

PCM, originally developed for power applications [58, 108], is an effective method to

evaluate uncertainty. Consider a system with uncertain input and complicated input-output

relationship. The Monte-Carlo approach can be used to find the output statistics through

enumerating a large number of inputs. Unlike Monte-Carlo, PCM is concerned with smartly

choosing only a few samples from the input distribution. Evaluating system outputs at these
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selected inputs produces a low-order input-output mapping, from which the output statistics

can be obtained. It was shown in [58, 132] that for a higher-order input-output polynomial

mapping of order 2m − 1, PCM can find the same output expectation with only m input

samples. We have also shown that the PCM mapping has several other nice properties: 1)

it is the minimum-mean-square-estimation (MMSE) mapping among polynomials of certain

degree, and 2) it predicts the correct cross-correlation up to certain degree [132]. In paper

[152], I extended the single-parameter PCM to the multivariate case.

Because of the good performance of PCM, I can imagine that it may be used as

an optimization method. In particular, the low-order input-output PCM mapping can be

directly used to identify the input that optimizes the output. In this section, I discuss

how PCM can be used to find the best flow management that minimizes the cost functions

discussed in Section 5.4.1.2. Before I present the PCM approach, let me first discuss a

property of the optimal management solution for a fixed weather ensemble. In particular,

I show that the optimal management duration and weather duration are the same. This

property will be used later for optimal management planning.

5.4.2.2. Discussion on the Optimal Management Duration for Deterministic Weather

I assume that a deterministic weather ensemble lasts from time 0 to t0 with restriction

rate w2, and the management restriction rate is also w2 (see the problem formulation in

Section 5.2.2). To find the optimal length of management (denoted as tc), I compare the

following four categories: 1) no management (tc = 0), 2) appropriate management (tc = t0),

3) mild management (tc < t0), and 4) excessive management (tc > t0).

Figure 5.5 displays the transient mean backlog for each category of management

duration. As weather and management have the same restriction rates, management in-

duced backlogs (show in dashed lines) occur whenever management actions are applied. The
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non-management induced backlogs (shown in real lines) occur after the complication of man-

agement. In this case, the flow is either subject to weather restriction w2 or normal capacity

constraint w1.

The cost associated with each category can be expressed in terms of the area under

the curves (representing the total backlog in a time-span). Without loss of generality, let me

consider the cost function O2. According to Equation 93, the total cost for “no management”

(Figure 5.5a) is C3(B1+B2) as all backlogs are caused by non-management flow restrictions.

In the “appropriate control” case (Figure 5.5b), the total backlog is of the same amount, but

the total cost is C2B1+C3B2 since the backlog B1 is induced by flow management, and B2 is

induced by normal capacity constraint. In the “mild control” case (Figure 5.5c), despite the

same total backlog as the previous two cases, the total cost is C2B
′
1 + C3B̂1 + C3B2, where

B′
1 + B̂1=B1. Because the management induced unit cost C2 is typically smaller than non-

management induced unit cost C3, it is easy to conclude that the cost relationship among the

three cases is that “appropriate management” < “mild management” < “no management”.

The “excessive control” case (Figure 5.5d) results in a cost C2B̃1+C3B̃2 which is higher than

that of the “appropriate management”, as B̃1 > B1 and B̃2 > B2. Therefore, I conclude from

the above comparison that the “appropriate management” represents the best management

strategy for any fixed weather condition. As the analysis for the cost function O3 is similar

to that for O2, I omit the proof here.

5.4.2.3. Using PCM to Find the Optimal Flow Management Plan

Using PCM to find the optimal management duration involves a process of 1) con-

structing a low-order PCM mapping between the management duration (as the input) and

the total cost (as the output), and 2) finding the optimal solution from the mapping. Con-

structing the low-order PCM mapping requires selecting a few critical management dura-
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Figure 5.5. The relationship between management durations and backlogs:

a) no management; b) appropriate management; c) mild management; d) ex-

cessive management. The dashed lines represent management induced back-

logs, and the real lines represent the non-management induced backlogs.
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tions, and obtaining the cost associated with each. Let me first discuss how these critical

management durations are selected.

According to PCM, selecting the critical management durations requires the knowl-

edge of their distribution. As the the distribution of weather duration is known, and for

each fixed weather duration the optimal management duration is the same (as discussed in

Section 5.4.2.2), the management duration can be assumed to follow the same distribution

of the weather. This observation allows me to find the optimal management duration using

the procedures summarized below.

Step 1: Selection of m simulation points

Based upon the distribution of weather duration, choose m durations as the PCM

evaluation points. According to PCM, these m points are the roots of the mth-order or-

thonormal polynomial hi(x) that satisfy [34, 58]

(hi(x), hj(x)) =

∫
hi(x)hj(x)fX(x) dx(97)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if i = j

0, if i �= j

h0(x) = 1,

where fX(x) is the pdf of weather duration.

Step 2: Cost Evaluation of the m Selected Management Durations

This step is concerned with finding the cost associated with each selected management

duration, under both weather and demand uncertainties. Two approaches can be adopted

for an effective evaluation: 1) the Master Markov approach (as illustrated in [151]) and 2)

the jump-linear approach as described in Section 5.3.
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Step 3: Derivation of the Optimal Management Solution

The last step is concerned with deriving a (m− 1)th order polynomial mapping that

passes through the selected evaluation points [58, 132]. The optimal solution can be quickly

solved through taking a derivative of the PCM polynomial mapping.

5.4.3. An Optimal Management Design Example

Let us present a simple example to illustrate the PCM-based optimal design approach.

As suggested by this example, the PCM approach obtains near-optimal flow management

solutions, with many fewer simulations than that would be needed by the Monte Carlo

approach.

In this example, the convective weather model is shown in Figure 5.3, with reduced

flow restriction rate w2 = 1/20mins and normal restriction rate w1 = 6/20mins. The

demand is modeled as a Poisson flow with inflow rate u[k] = 3.5/20mins. If no strategic

management initiatives is enacted, aircraft will be held in air through tactical management

strategies, wasting fuel and causing safety concerns. Instead, the strategic management

initiative GDP can significantly reduce fuel cost and controller workload, as it delays aircraft

on the ground. In this example, I aim to find the optimal duration of GDP to minimize

a cost function O2 (which weights the costs of management and non-management induced

backlogs), and O3 that further penalizes high transient backlogs. I first demonstrate how

the optimal solutions are found using the PCM approach, and then discuss the impact of

weighting factors in cost functions on the selection of optimal management solutions.

From the weather pdf, four weather duration instances (or equivalently management

duration instances) are selected to serve as the PCM evaluation points: 12.48h, 7.19h, 3.49h,

1.039h. As the resolution of management duration is 20 minutes in this particular example,

I approximate these four points as 12.33h, 7.33h, 3.33h, 1h (see Figure 5.6). Let me show
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the design of optimal GDP solutions for the following two cost functions:
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Figure 5.6. Weather pdf and the selection of four PCM points

Cost Function O2: As GDP delays aircraft on the ground, the unit costs of GDP-

induced backlog and weather-induced backlog should be significantly different. In this exam-

ple we use C2=1 to capture the unit cost of GDP-induced backlog whereas C3=5 to capture

the non-management-induced unit cost.

I then evaluate the total cost O2 for each of the four selected management dura-

tions. Using the Markov approach, I find the management duration—total cost pairs to

be (12.33, 9835), (7.33, 3453), (3.33, 1184), (1, 1147). These four points define a third-order

PCM mapping O2(k) = −0.7265k3 + 95.52k2 − 386.78k+ 1438.49 between management du-

ration and total cost. As shown in Figure 5.7a, The PCM mapping matches very well with

the mapping obtained using the Monte Carlo approach, but with much less computational

cost. The optimal management duration 2.07h is obtained through taking the derivative of

the polynomial mapping O2(k). This solution is close to 2.33h, the optimal solution of the

Monte Carlo approach. The mismatch is caused by the resolution of management durations
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used in Monte Carlo. As the management is updated every 20 minutes, the optimal solution

found by Monte Carlo is only available at a 20-minute resolution.

Cost Function O3: As there is always a limit on the number of maximum allowed

holding aircraft in air for safety concerns, it is important to penalize high weather-induced

backlogs in the cost function. In this example, I assume that the number being held in air is

not suggested to pass a threshold Γ = 10. To capture this realistic consideration, I penalize

the number of non-management-induced backlog over the threshold Γ by an extra unit cost

H2 = 20. I also penalize the GDP-induced backlog over the same threshold by a small extra

unit cost H1 = 1.

Using the same Markov approach, I obtain the management duration—total cost

pairs as (12.33, 36152), (7.33, 10799), (3.33, 2183), and (1, 1306). As shown in Figure 5.7b,

these evaluation points lead to a PCM mapping O3(k) = 3.82k3 +236k2 − 705.84k+1771.6.

The optimal management 1.44h is close to 1.33h obtained from the Monte Carlo approach.

Again, the small offset is mainly caused by the resolution of management durations.

Comparing the above two optimal management solutions suggests that the selection

of cost functions plays a significant role in the optimal flow management planning. As such,

I end this chapter with a comparison study to understand the impact of weighting factors in

the cost functions on the optimal management solutions. Specifically, I keep the unit cost C2

associated with management-induced backlog as 1 without the loss of generality, and vary

the unit cost of non-management-induced backlogs C3 and the penalties of high transient

backlogs H1 and H2.

Figure 5.8a shows the effect of C3 on the optimal management duration. In this

comparison, the management and non-management penalization scaling factors H1 and H2

are set to be 1 and 1.5, respectively. As seen from the plot, the optimal management

duration increases monotonically with the increase of C3. This is reasonable as the higher
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Figure 5.7. a) Performance comparison between PCM and Monte Carlo

Simulation for the cost function O2 (C2 = 1 and C3 = 5); b) Performance

comparison between PCM and Monte Carlo Simulation for the cost function

O3 (H1 = 1 and H2 = 20).

cost of non-management-induced backlogs will naturally shift the optimal solution toward

the transformation of non-management-induced backlogs to management-induced backlogs

through prolonged management durations.

Next, I fix non-management-induced unit cost as C3 = 1.5, and vary the penalties
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for management and non-management-induced backlogs H1 and H2 together. As shown in

figure 5.8b, increasing H1 and H2 results in reduced length of management durations. The

result is also understandable, as extended-length of flow management durations easily leads

to accumulated large backlogs that pass the maximum allowable thresholds.
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Figure 5.8. a)The relationship between C3 and optimal management dura-

tion; b)The relationship between H1 = H2 and optimal management duration.
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5.5. Concluding Remarks and Future Work

In this chapter, I introduce an integrated demand-weather-management modeling

framework to evaluate weather impact and design optimal flow management under uncer-

tainties. In particular, I model demand as a stochastic process, convective weather as a

Markov chain, and flow management as queuing restrictions. The contributions of this chap-

ter include:

(1) I develop a closed-form jump-linear approach to quickly evaluate the mean and

variance of weather impact. The variance of weather impact is a critical measure

that indicates the variability of weather severity.

(2) I provide a discussion on the candidate cost functions for optimal management. I

note that the total backlog cannot capture the benefits of strategic flow management.

As such, I induce a cost measure that separates management and non-management

induced backlogs. I also introduce several nonlinear cost measures that penalize

high transient backlogs. The effect of parameters in the cost functions on optimal

management solutions is studied in the example at the end of this chapter.

(3) I introduce a PCM-based approach to quickly find the optimal management. The

method is concerned with establishing a low-order mapping between flow manage-

ment and total cost, and finding the optimal solution from the mapping. PCM is

used to smartly identify a limited set of evaluation points to construct the low-order

mapping. Markov or Jump-linear approach can be used to effectively evaluate the

cost associated with each selected management plan.
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CHAPTER 6

MULTIVARIATE PROBABILISTIC COLLOCATION METHOD FOR EFFECTIVE

UNCERTAINTY EVALUATION WITH APPLICATION TO AIR TRAFFIC FLOW

MANAGEMENT

6.1. Introduction

There is a growing need to effectively and strategically manage large-scale infrastruc-

ture systems, such as air traffic systems, power grids, and environmental systems. These

systems are typically subject to a wide range of uncertainties, which significantly compli-

cate the evaluation and management of system performance. To give some examples, flow

contingency management solutions are being developed for air traffic systems, which seek to

automatically generate management plans over a 2-15 hour lookahead time that are robust

to weather uncertainties [123, 124]. In analogy, strategic resource scheduling and real-time

surveillance/control algorithms are sought for the power grid, that are flexible to uncertain-

ties in renewable generation and load, and robust to complex and uncertain fault events

[58, 133]. As a step toward real-time management, techniques are needed for accurate yet

computationally efficient evaluation/prediction of system performance over a range of para-

metric uncertainties. To address this need in broad infrastructure system applications, this

chapter develops a systematic method to effectively evaluate output statistics for systems

with multiple uncertain input parameters.

System uncertainty evaluation problems are typically addressed from two angles: an-

alytical solutions and simulations. However because of the large scale and complicated

nature of large-scale infrastructure systems, analytical solutions for system dynamics are

typically unavailable; therefore, simulations using complicated computerized models are the

primary approaches for uncertainty evaluation. Monte Carlo methods have been widely used
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to evaluate system performance under uncertainty by practitioners in many application do-

mains [144]. Broadly, Monte Carlo methods have three main steps: 1) generation of a large

number of samples covering the range of parameter uncertainties, 2) simulation of system

performance for each parameter sample, and 3) summary of simulation outputs to obtain

the system-performance statistics. Often, Monte Carlo methods may not be suitable for

large-scale infrastructure applications, because of their inherent computational cost. Specif-

ically, Monte Carlo methods typically require evaluation of a large number of simulations

of the mapping of interest; since infrastructure-network simulations are rather computation-

ally intensive, such exhaustive simulations are often impossible (especially when real-time

decision-making is needed).

Driven by this limitation, our group (as well as others) have sought for alternative

simulation methods to effectively evaluate parametric uncertainties. Our philosophy is that a

limited number of simulations, if appropriately chosen, can provide adequate approximations

of the mapping between uncertain input parameters and system performance over the range

of likely parameter values. In particular, an adequate low-order mapping allows us to obtain

statistical characterizations of system performance, and to evaluate system performance

at any particular parameter value of interest. How to smartly choose the values of input

parameters as simulation points and to construct the low-order mapping that allows best

characterization of system-performance statistics is the key.

The probabilistic collocation method (PCM) is a method to evaluate the uncertainty

of computationally expensive models at a low computational cost. It suggests a smart

way of selecting simulation points to construct a low-order polynomial mapping between

uncertain parameters and output or performance variable, that performs well over the likely

range of parameter values [121, 141]. The idea behind PCM is as follows: although system

parameters are uncertain, we typically have some statistical knowledge about the parametric
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uncertainties; smartly utilizing this information allows us to find representative simulation

points, from which a reduced-order mapping of high fidelity can be constructed. In particular,

it was proved in [58] that the low-degree polynomial mapping generated by PCM is able to

predict the mean output (performance) correctly, even if the actual mapping is a much higher

degree polynomial. In [133], we further explored the statistical performance of PCM, and

the practical use of it when data or empirical low-order statistics is available instead of the

probabilistic density function (pdf).

Several studies have detailed applications of PCM in transportation- and power- net-

work management [58, 78, 79, 108]. While these efforts are promising, a limitation is that only

one uncertain input parameter is considered. In practice, large-scale infrastructure systems

typically involve multiple (sometimes a large number of) spatially/temporally distributed

uncertain parameters. In these cases, more than one uncertain parameter (which may be

correlated) may exert significant impact on system performance or other output variables.

Thus, we are motivated to develop smart simulation techniques analogous to PCM, and to

understand their effectiveness and cost, when multiple correlated, uncertain parameters are

present. Specially in this chapter, we extend the formal analysis of the single-variable PCM

to the multivariate case, where the uncertain parameters may or may not be independent.

The essence of our multivariate PCM approach lies in the smart selection of simula-

tion points. Parsimonious selection of sampling points is needed for a range of applications,

and has been widely studied (including in the specific context of uncertainty evaluation

and mapping identification for complex systems). Here we provide a brief and incomplete

review of these methods, focusing primarily on differentiating our approach from related

ones. For the purpose of polynomial interpolation, Chebyshev nodes are widely used to

overcome the Runge’s phenomenon observed in using equally-spaced sampling [9]. For the

purpose of uncertainty evaluation, besides Monte Carlo methods (also called random samp-
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ing), several other techniques have been proposed. For instance, the stratified sampling

and Latin hypercube Design (LHD) and their variants were developed to improve the cov-

erage and projective properties [61, 66, 81]. Multiple steps are involved in these methods:

first the space is subdivided to ensure full coverage, and then random sampling is used for

each portion. These above methods are primarily designed to ensure appropriate coverage

of the sampling space and to select sampling densities in the space, rather than to guar-

antee accurate estimation of output statistics. Gaussian Quadrature techniques also have

been widely studied for uncertainty evaluation, both under the heading of PCM and using

other terminology [65, 142, 147]. When multiple independent input parameters are involved,

[65, 141, 142] suggest different procedures to select simulation points, among which [65] in-

volves the most number of points. Gaussian Quadrature techniques have also been used

to solve ODE/PDEs with uncertain parameters (see e.g. [10, 42, 78, 96]). These works

mesh finite element decomposition in space and collocation methods on random variables,

to approximate continuous high-dimensional solutions. All these works are relevant to our

study, as they also consider the utilization of Gaussian Quadrature techniques when multiple

uncertain variables are present. However, the purpose of our investigation in this chapter is

different from these studies in two aspects. First, these studies consider the approximation

of system mapping using expansions of orthogonal polynomials (e.g., Hermite for Gaussian

distribution, Laguerre for Gamma distribution, Jocobi for Beta distribution, and Legendra

for Uniform distribution) with small error, instead of general polynomial system mapping

and its low-order approximation that predicts precisely the same statistics as we do. Second,

their studies are not focused on understanding how correlations in parametric uncertainties

may affect expected performance while our study does consider correlated uncertainty.

Our major contribution here is a formal investigation of the properties of PCM for

systems with multiple uncertain input parameters (see also [154] for the brief conference
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version). Specifically, we 1) identify precise conditions on mapping functions and distribu-

tions to permit zero-error mean prediction, in both the independent and correlated cases;

2) in turn develop algorithms that obtain the best statistical performance; and 3) provide

additional performance analyses, such as cross-statistics prediction, relation to minimum

mean square estimation (MMSE), and computational feasibility analysis for large dimen-

sional data. The multivariate PCM method that we develop overcomes the inadequacies of

analytical uncertainty evaluation methods that do not work for complex infrastructure sys-

tems and Monte Carlo simulation methods that are computationally costly. In addition, our

theoretical development provides a comprehensive understanding of the precise performance

of PCM in multivariate settings and informs its practical use in performance evaluation and

real-time decision making in large-scale infrastructure-type applications.

The remainder of this chapter is organized as follows. In Section 6.2, we describe

and evaluate multivariate PCM when input parameters are independent. In Section 6.3, we

discuss further properties of the independent multivariate PCM, and computational issues.

In Section 6.4, we provide results of the multivariate PCM when parameters are correlated. In

Section 6.5, we discuss the practical use of PCM when data or empirical low-order moments

on low-order parameters, rather than explicit distributions of these parameters, are available.

In Section 6.6, we present two examples to demonstrate the use of multivariate PCM to

evaluate air traffic system performance under weather uncertainties. Section 6.7 concludes

the chapter.

6.2. Independent Multivariate PCM

In this section, we consider a costly-to-simulate system with multiple input parame-

ters subject to independent uncertainties. To effectively evaluate the dependence of system

output on these input parameters and to obtain the statistics of system output under un-
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certainty, we study how to smartly select a limited number of simulations to construct a

low-order polynomial mapping between the inputs and the output with good statistical per-

formance.

6.2.1. A Simple Two-Variable Case

To simplify the development of multivariate PCM, we first focus on the two-variable

case. Specifically, let us consider a system of interest, for which we wish to identify the

mapping between two variable input parameters x and y and an output of interest that is

functionally dependent on the two parameters, say g(x, y). Unfortunately, it is costly to

compute the output for an input pair (e.g., because it requires a time-consuming simulation

or a costly experiment), and hence we can evaluate g(x, y) for only a limited number of

pairs (x, y). With this limited ability to probe the system, we seek to accurately identify the

mapping over a useful range of parameter values. More precisely, we model the two input

parameters, for the evaluation task of interest, as independent random variables with known

probability distribution fX,Y (x, y) = fX(x)fY (y).

We propose a technique for selecting input pairs for simulation and in turn approxi-

mating the mapping of interest, which we call the two-variable PCM. The conceptual basis

for the two-variable PCM (which is analogous to the one-variable case) is the following. A

sparse number of points (pairs) are selected for evaluation, and these evaluations are used to

obtain a low-degree polynomial mapping between the input parameters and the output; the

points are specially selected, in such a way that the obtained low-order polynomial mapping

can predict the mean output correctly even if the mapping in reality is of a much higher

degree (see Figure 6.1 for an illustration).
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Figure 6.1. a) The joint probability density function fX,Y (x, y), b) The origi-

nal mapping g(x, y), c) The reduced-order multivariate PCM mapping g∗(x, y).

The black dots represent PCM points.

6.2.1.1. Main Results

In this subsection, we first illustrate the algorithm of the two-variable PCM in finding

the PCM simulation points, the coefficients of the low-order PCM mapping, and then the

predicted output mean. We then in Theorem 6.1 formalize that the low-degree approxima-

tion achieves the same mean as a higher-degree mapping of a general form, if simulation

points are selected according to the algorithm. A simple example then follows to illustrate

the use of two-variable PCM. The rest of the chapter extends this theorem in multiple di-

rections toward 1) more than two input variables, 2) dependency among the input variables,

3) different general forms of original mappings, 4) further statistical performance analysis,

and 5) input variables whose distributions are not explicitly known but specified by sample

data.

Algorithm:

The following algorithm shown in Table 6.1, based on the distributions of random
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variables X and Y , fX(x) and fY (y), constructs a low-order mapping of the form

(98) g∗(x, y) =
n−1∑
i=0

m−1∑
j=0

Bi,jx
iyj,

with the statistical property suggested by Theorem 6.1, where the coefficients Bi,j ∈

R.

In Theorem 6.1, we prove that a two-variable mapping g(x, y) with the degrees of

x up to 2n − 1 and y up to 2m − 1 can be approximated by a low-order mapping g∗(x, y)

with the degrees of x up to n − 1 and y up to m − 1, with the same expected values. We

note that identifying the low-order PCM mapping g∗(x, y) requires evaluating g(x, y) at the

simulation points (xi, yj), where xi and yj are the roots of the orthonormal polynomials

hn(x) and h′
m(y), respectively. Please refer to Appendix.A for the proof.

Theorem 6.1. Consider a two-variable mapping g(x, y) of the form

(99) g(x, y) =

2n−1∑
i=0

2m−1∑
j=0

Ai,jx
iyj,

where the coefficients Ai,j ∈ R, and n and m are integers greater than 1. With the assumption

that the two variables x and y follow independent distributions fX(x) and fY (y) respectively,

the mapping g(x, y) can be approximated by a low-order mapping g∗(x, y) of the form shown

in Equation 98, such that E[g(x, y)] = E[g∗(x, y)].

6.2.1.2. Discussion and Example

Now let us discuss the efficiency of the independent two-variable PCM. As the original

mapping g(x, y) is a polynomial with x up to the degree of 2n−1 and y up to 2m−1, a total

of (2n)(2m) simulations are required to uniquely identify the mapping. However, identifying

148



g∗(x, y) requires only nm simulations, as there are n roots for hn(x) and m roots for h′
m(y).

As such, the two-variable PCM can reduce the number of simulations by 3nm.

Finally we use a simple example to illustrate the procedure and performance of the

independent two-variable PCM as shown in Figure 6.1. We consider a two-variable mapping

g(x, y) = x5y5 − 2x5y4 + 3x5y3 − 4x5y2 + 5x5y − 6x5 − 2x4y5 + 4x4y4 − 6x4y3 + 8x4y2 − 10x4y +

12x4+3x3y5−6x3y4+9x3y3−12x3y2+15x3y−18x3−4x2y5+8x2y4−12x2y3+16x2y2−20x2y+

24x2 +5xy5− 10xy4+15xy3 − 20xy2+25xy− 30x− 6y5+12y4− 18y3 +24y2− 30y+36 as shown

in Figure 6.1b. Assuming that x is normally distributed with mean 13 and variance 4.6225

and y is uniformly distributed between 5 and 20, we show that the mapping can be well

approximated by a polynomial with the degrees of x and y each up to 2.

To do that, we choose 9 simulation points based on the pdf of x and y, accord-

ing to Step 1 in the algorithm. The locations of the simulation points are (9.2761, 6.6905),

(9.2761, 12.5000), (9.2761, 18.3095), (13, 6.6905), (13, 12.5000), (13, 18.3095), (16.7239, 6.6905),

(16.7239, 12.5000), and (16.7239, 18.3095) as shown in Figure 6.1a. We then evaluate g(x, y)

at these 9 locations according to Step 2, and obtain the coefficients of the lower-oder PCM

mapping according to the Step 3. The resulting PCM mapping up to the order of x2y2 is

shown in Figure 6.1c.

From Figure 6.1a, we see that the 9 simulation points are located at the range of

likely parameter values, in response to the probability distributions of x and y. Comparing

Figures 6.1b and 6.1c shows that the PCM mapping g∗(x, y) approximates g(x, y) very well

over the likely domain of parameter values, despite the significantly reduced mapping orders

and number of simulations required for the construction.
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6.2.2. General Theorem and Procedure on the Independent Multivariate PCM Mapping

Theorem 6.1 can be easily generalized to the multivariate PCM with more than two

variables, as shown in Theorem 6.2. Please refer to Appendix.A for the proof.

Theorem 6.2. Consider a multivariate mapping g(x1, x2, ..., xm) of the form

g(x1, x2, ..., xm) =

2n1−1∑
k1=0

2n2−1∑
k2=0

...

2nm−1∑
km=0

Ak1,...,km

m∏
i=1

xki
i ,(100)

where the coefficients Ak1,...,km ∈ R, and n1, n2, ...nm are integers larger than 1. Assume

that the variables x1, x2, ..., xm follow independent distributions fX1(x1), fX2(x2), ... ,

and fXm(xm) respectively. Then the mapping can be approximated by a low-order mapping

g∗(x1, x2, ..., xm) of the form

g∗(x1, x2, ..., xm) =

n1−1∑
k1=0

n2−1∑
k2=0

...
nm−1∑
km=0

Bk1,...,km

m∏
i=1

xki
i ,(101)

such that E[g(x1, x2, ..., xm)] = E[g∗(x1, x2, ..., xm)], where the coefficients Bk1,...,km ∈

R.

Theorem 6.2 shows that the independent multivariate PCM method can significantly

reduce the number of simulations needed to construct a low-order mapping of the same

mean. Similar to what we have argued in the two-variable case, constructing g(x1, x2, ..., xm)

as shown in Equation 100 requires at least 2mΠm
i=1ni simulations. This is because 2ni simu-

lations are required to uniquely identify each variable up to the degree of 2ni − 1. However,

the reduced-order mapping g∗(x1, x2, ..., xm) as shown in Equation 101 requires only Πm
i=1ni

simulations evaluated at the roots of each hi
ni
(xi). The independent multivariate PCM can

thus save (2m − 1)Πm
i=1ni simulations without introducing any error to the mean prediction.
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To complete the presentation and facilitate the use of the independent multivariate

PCM, we briefly summarize the procedure to find the PCM mapping in its general form (as

shown in Equation 101).

Step 1: Simulation point selection. As a generalization to the two-variable case,

Πm
i=1ni simulation points are required to identify a m-variable PCM mapping shown in Equa-

tion 101. Because of the independence of variables, we only need to identify ni points along

the dimension of each xi, for i ∈ {1, ..., m}. Combinations of the ni points along each dimen-

sion constitute the set of n1...nm simulation points. The ni points associated with random

variable xi are the roots of the orthonormal polynomial hi
ni
(xi), which can be found through

the recursion illustrated in Step 1 in the algorithm in Section 6.2.1.

Step 2: Evaluation of system outputs at selected simulation points. For each simulation

point identified in Step 1, we find the associated output through simulation. In total, Πm
i=1ni

simulations are needed. We stress that in many applications, this is the most time-consuming

step. As the multivariate PCM can significantly reduce the number of simulations required

to produce a mapping with correct mean prediction, this method is of significance to find

high-dimensional mappings that are common to large-scale infrastructure applications.

Step 3: Identification of Mapping Coefficients. Using the simulations in Step 2, we

can explicitly express the low order mapping g∗(x1, ..., xm) by identifying the coefficients in

its orthonormal polynomial form. This result is a simple generalization of Step 3 of the

algorithm in Section 6.2.1 for the two-variable case. In particular, the coefficients ak1,...,km

can be calculated using the matrix operation in Equation 102. The vector a is arranged in a

descending order of the subscripts starting from the last bit to the first bit, and the vector

g is arranged in an increasing order of the root indices (i), again from the rightmost entry
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to the leftmost entry, where 1 ≤ i ≤ nm.

(102) L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an1−1,...,nm−1

...

an1−1,...,0

an1−1,...nm−1−2,nm−1

...

an1−1,...nm−1−2,0

...

a0,...,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1(1), x2(1), ..., xm(1))

...

g(x1(1), x2(1), ..., xm(nm))

g(x1(1), x2(1), ..., xm−1(2), xm(1))

...

g(x1(1), x2(1), ..., xm−1(2), xm(nm))

...

g(x1(n1), x2(n2), ..., xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here L ∈ Rn1n2...nm×n1n2...nm takes the following form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
n1−1(x1(1))...h

m
nm−1(xm(1)) · · · h1

0(x1(1))...h
m
0 (xm(1))

h1
n1−1(x1(1))...h

m
nm−1(xm(2)) · · · h1

0(x1(1))...h
m
0 (xm(2))

...
. . .

...

h1
n1−1(x1(n1))...h

m
nm−1(xm(nm)) · · · h1

0(x1(n1))...h
m
0 (xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In each row, the subscripts of h are arranged in a descending order from n1−1, n2−1, ..., nm−1

to 0, 0, ...0. In each column, the indices of roots are in an increasing order from 1, 1, ..., 1

to n1, n2, ...nm. The coefficients Bk1,...,km shown in Equation 101 can then be easily derived

from ak1,...,km.

6.3. Properties of the Independent Multivariate PCM

As proved in Section 6.2, the independent multivariate PCM can find a low-order

polynomial mapping that correctly predicts the mean of the original higher-order mapping.

In this section, we further characterize the performance of the independent multivariate PCM

mapping. In particular, we show in Section 6.3.1 that the low-order mapping also predicts

the correct cross-statistics. We then compare its performance with that of the MMSE. In
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Section 6.3.2, we briefly discuss the numerical capability of the independent multivariate

PCM in processing high-dimensional data.

6.3.1. Performance of the Independent Multivariate PCM

In Theorem 6.3, we show that the low-order independent multivariate PCM can

precisely predict the cross-statistics up to certain degree. Please refer to Appendix.A for the

proof.

Theorem 6.3. Consider the use of a multi-variable PCM mapping g∗(x1, x2, ..., xm) of

the form
∑n1−1

k1=0

∑n2−1
k2=0 ...

∑nm−1
km=0 Bk1,k2,...,km

∏m
i=1 xi

ki to approximate an original polynomial

mapping g(x1, x2, ..., xm) of the form
∑n1+p1

k1=0

∑n2+p2
k2=0 ...

∑nm+pm
km=0 Ak1,k2,...,km

∏m
i=1 xi

ki, for all

pi ∈ {0, ..., ni − 1}. Assuming that all variables are independent, the low-order PCM can

correctly predict the cross-statistics, i.e.,

E

[(
m∏
i=1

xi
li

)
g∗(x1, x2, ..., xm)

]
= E

[(
m∏
i=1

xi
li

)
g(x1, x2, ..., xm)

]
(103)

for all li ∈ {0, ..., ni − 1− pi}.

In Theorem 6.4, we discuss the relationship between the independent multivariate

PCM mapping and the MMSE estimator. In general, a low-order PCM mapping may not be

the MMSE estimator among all polynomials of the same degree. However, the performance

of PCM is attractive as reflected by the following two additional results: 1) the mean square

error (MSE) performance of a PCM mapping may not be improved by adding any polynomial

up to certain degree, and 2) a PCM mapping up to certain degree is the MMSE estimator

among all polynomials of the same degree. Please refer to the Appendix.A for the proof.

Theorem 6.4. Consider a multivariate mapping
∑n1+p1

k1=0

∑n2+p2
k2=0 ...

∑nm+pm
km=0 Ak1,k2,...,km

∏m
i=1 xi

ki
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for some pi ∈ {0, ..., ni − 1}. If a PCM mapping of the form

g∗(x1, x2, ..., xm) =

n1−1∑
k1=0

n2−1∑
k2=0

...

nm−1∑
km=0

ak1,...,km

m∏
i=1

hi
ki
(xi)

is used to fit the original mapping, the mean square error of the PCM fit cannot be improved

by adding any polynomial with the degree of xi up to ni − 1− pi. Moreover, the lower order

PCM mapping

g∗r(x1, x2, ..., xm) =

n1−1−p1∑
k1=0

...

nm−1−pm∑
km=0

a′k1,...,km

m∏
i=1

hi
ki
(xi)

is the MMSE mapping, among all polynomials with the degree of each xi up to ni − 1− pi.

6.3.2. Discussion on Numerical Issues

We note that the performance of PCM may be affected by numerical issues. As seen

from Equation 102, finding the coefficients an1−1,...,nm−1, and then Bn1−1,...,nm−1 in Equation

101 (according to the procedure discussed in Section 6.2.2) involves solving a large equation

array. Numerical issues (such as the loss of precision and even failure of getting a solution)

may appear especially when the dimension of the array is large. Instead of providing a formal

proof, we discuss the feasibility of this procedure through comparing it with an alternative

procedure. We first describe the alternative procedure and then use the example presented

in Section 6.2.1 to compare the performance of these two.

We note that once PCM points are selected and outputs at those points are simulated,

we can find the mapping coefficients Bn1−1,...,nm−1 directly, instead of using the orthonormal
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bases. In particular,

(104) L′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bn1−1,...,nm−1

...

Bn1−1,...,0

Bn1−1,...nm−1−2,nm−1

...

Bn1−1,...nm−1−2,0

...

B0,...,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1(1), x2(1), ..., xm(1))

...

g(x1(1), x2(1), ..., xm(nm))

g(x1(1), x2(1), ..., xm−1(2), xm(1))

...

g(x1(1), x2(1), ..., xm−1(2), xm(nm))

...

g(x1(n1), x2(n2), ..., xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where L′ ∈ Rn1n2...nm×n1n2...nm takes the following form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn1−1
1 (x1(1))...x

nm−1
m (xm(1)) · · · x0

1(x1(1))...x
0
m(xm(1))

xn1−1
1 (x1(1))...x

nm−1
m (xm(2)) · · · x0

1(x1(1))...x
0
m(xm(2))

...
. . .

...

xn1−1
1 (x1(n1))...x

nm−1
m (xm(nm)) · · · x0

1(x1(n1))...x
0
m(xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the matrix L′, xk
i (xi(j)) represents the k-th power of the variable xi evaluated at the j-th

simulation point of the variable xi. The L′ matrix is arranged as follows. In each row, the

superscripts of x are arranged in a descending order from n1−1, n2−1, ..., nm−1 to 0, 0, ...0.

In each column, the indices of roots are in an increasing order from 1, 1, ..., 1 to n1, n2, ...nm.

The feasibility of finding the coefficients B in Equation 104 or a in Equation 102 is

reflected by condition number, which describes the accuracy of numerical solutions to linear

equation arrays [26]. Condition number is defined as the ratio between the largest and the

smallest eigenvalues. We often consider the logarithm of condition number to be the loss of

accuracy, although this estimation is not always precise. At the extreme, infinite condition

number means that the matrix is singular and the equation array is unsolvable. We note
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that ill-conditioning typically leads to a drastic failure in solving equations rather than small

numerical issues; hence devising means for increasing solution precision rather than possible

impacts of numerical errors may be the key concern. The possibility for ill-conditioning is

dependent on a number of factors, including the number of variables, number of PCM points,

and probability distribution; the possibility for numerical error arising from ill-conditioning

may also depend on the nature of the system mapping, and of course the precision of the

computing device. We here calculate and compare the condition numbers of the two matrices

L′ in Equation 104 and L in Equation 102 respectively, for the example in Section 6.2.1. The

condition number associated with L is 2.53, and associated with L′ is 9.54 × 106 which is

significantly larger. This simple comparison clearly shows the advantage of using orthogonal

bases (Equation 102) over the x and y bases (Equation 104) to calculate PCM coefficients,

especially for high-dimensional mappings.

6.4. Correlated Multivariate PCM

The development in the previous sections is based on the assumption that uncertain

variables are independent. In realistic modern infrastructure applications, system variables

are often correlated. In general correlated settings, the PCM mapping obtained using the

procedure described in Section 6.2.2 does not predict the correct mean. In this section, we

explore conditions on the forms of original mapping and joint distribution to maintain the

correct mean statistics.

6.4.1. Main Results

We first discuss the case when the original mapping does not contain any cross-

terms among variables, and then the general case when cross-terms are present. In the

first case, a low-order multivariate PCM mapping can be obtained in a way very similar to

the independent case. The proof is omitted as it is a simple variation of the independent

156



multivariate PCM [58].

Theorem 6.5. Consider a multivariate mapping gn(x1, x2, ..., xm) of the form

(105) gn(x1, x2, ..., xm) =

m∑
i=1

2ni−1∑
ki=0

A′
i,ki

xki
i ,

where the coefficients A′
i,ki

∈ R and ni is an integer larger than 1, where i ∈ 1, 2, ..., m.

Assume that the variables x1, x2, ..., xm follow a joint distribution fX1X2...Xm(x1, x2, ...xm).

The original mapping can be approximated by a lower-order mapping g∗n(x1, x2, ..., xm) of the

form

(106) g∗n(x1, x2, ..., xm) =
m∑
i=1

ni−1∑
ki=0

B′
i,ki

xki
i ,

such that E[gn(x1, x2, ..., xm)] = E[g∗n(x1, x2, ..., xm)], where the coefficients B′
i,ki

∈ R for

i ∈ 1, 2, ..., m.

We now discuss the case when cross-terms are present. We show that under certain

assumptions on conditional moments, a low-order PCM mapping can correctly predict the

mean of an original mapping up to certain degree. Please refer to Appendix.A for the proof.

Theorem 6.6. Consider a multivariate mapping gc(x1, x2, ..., xm) of the form

gc(x1, x2, ..., xm) =
2n−1∑
k1=0

2n−1−k1∑
k2=0

2n−1−(k1+k2)∑
k3=0

...

2n−1−(k1+k2+...+km−1)∑
km=0

A′
k1,...,km

m∏
i=1

xki
i ,

where the coefficients A′
k1,...,km

∈ R and n is an integer larger than 1. Assume that the vari-

ables x1, x2, ..., xm follow a joint distribution fX1,X2,...,Xm(x1, x2, ..., xm), and the r-th order

conditional moment of xi on xi+1, ..., xm is a polynomial of xi+1, ..., xm with the total de-

gree not greater than r. The original mapping can be approximated by a lower-order mapping

g∗c (x1, x2, ..., xm) with the same mean. The degree of each variable in g∗c (x1, x2, ..., xm) is not

greater than n− 1.
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Theorem 6.6 shows that in the two-variable case, if the r-th conditional moment of

one variable given the other is a r-th order polynomial, the low-order PCM mapping with

each variable up to the degree of n−1 predicts the correct mean when the total degree of the

original mapping does not exceed 2n−1. The procedure to pick PCM points here is different

from that in the independent case, in the sense that the point locations are selected based

on the marginal probability of one variable, and the conditional probability of the other. In

particular, PCM points are selected through: 1) determining the y coordinates (denoted as

y1, ..., yn) of the PCM points according to the marginal probability of y, 2) finding the PCM

points’ x coordinates according to the conditional probability fX|Y (x|yi) for each selected yi.

6.4.2. Discussion on the Reduction of Computation Load

Here, let us also discuss the reduction of computational load. In the correlated case,

the effectiveness of the multivariate PCM is generally not as good as that in the independent

case. The original high-order mapping requires Cm
2n−1+m simulations, where Cq

p denotes the

combination of p elements taken q of them at a time without repetition. However the number

of computations that can be reduced is generally not easy to write in the closed-form, due to

the complicated conditional relationship. We here only discuss the two-variable and three-

variable cases.

In the two-variable case, clearly, identifying the low-order PCM mapping g∗c (x, y)

requires n2 simulations to correctly predict the mean output. However, as the total degree

of the original mapping is 2n−1, 2n2+n simulations are needed to identify all the coefficients

in the original mapping. As such, more than half of the simulation time can be saved. Finally,

we also note that to identify the low-order mapping, we need to directly find B′
i,j, instead

of e′l,k at the orthogonal coordinates, as e′l,k is a varying function of y. In the three-variable

case, the total number of simulations to identify gc(x1, x2, x3) equals to
4
3
n3+n2+2

3
n, because
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gc(x1, x2, x3) has this number of coefficients. Similarly, we can check that the low-order PCM

mapping requires n3 − C3
n simulations. Hence, the number of simulations that can be saved

is 1
3
n3 + n2 + 2

3
n + C3

n = 1
2
n3 + 1

2
n2 + n.

6.4.3. Discussion on the Assumption

We note that the assumption on conditional moments is the key to ensure correct

mean prediction in the correlated case (see Lemma 6.10 and Theorem 6.6). Here we use the

two-variable case to understand the generality of this condition, and then show examples to

illustrate this condition.

In the two-variable case, the r-th conditional moment of x can be written as:

∫ β(y)

α(y)

xrfX|Y f(x|y)dx =

∫ β(y)

α(y)

fX,Y (x, y)∫ β(y)

α(y)
fX,Y (x, y)dx

xrdx =

∫ β(y)

α(y)
fX,Y (x, y)x

rdx∫ β(y)

α(y)
fX,Y (x, y)dx

.(107)

If fX,Y (x, y) does not depend on x (i.e. fX,Y (x, y) is a constant or a function of y), Equation

107 can be further simplified to:

∫ β(y)

α(y)

xrfX|Y (x|y)dx =
1

r+1
[βr+1(y)− αr+1(y)]

β(y)− α(y)
(108)

=
1

r + 1

(
r∑

i=0

βi(y)αr−i(y)

)

for 0 ≤ i ≤ r. Clearly, if β(y) and α(y) are linear functions of y, the conditional moment is

a r-th order polynomial of y.

Some examples are shown in Figure 6.2. Specifically, in Figure 6.2a, random variables

x and y are uniformly distributed in the parallelogram defined by 0 ≤ y ≤ 2 and y ≤ x ≤

y+2. As α(y) = y and β(y) = y+2 are linear functions of y, and moreover fX,Y (x, y) = 0.25,

the conditional moment requirement is clearly satisfied, and hence the low-order multivariate

PCM predicts the correct mean. Similarly, in Figure 6.2b, a uniform distribution in the

trapezium (e.g., specified by the boundaries α(y) = y and β(y) = 0.25y + 2) also satisfies
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Figure 6.2. Two random variables x and y are uniformly distributed in a)

a parallelogram, b) a trapezium, and c) an irregular area. The conditional

moment condition is satisfied for cases a) and b), but not for c).

160



the conditional moment requirement. In Figure 6.2c, the variables x and y are subject to

a uniform distribution in the region 0 ≤ y ≤ 2, y ≤ x ≤ √
20y + 1. As β(y) =

√
20y + 1

is nonlinear, the conditional moment condition fails. Furthermore, we note that the joint

distribution does not have to be uniformly distributed. As shown in Figure 6.3a, fX,Y (x, y)

is 72y
25(8−3y)

in the area defined by 0 ≤ y ≤ 5
3
and y ≤ x ≤ 0.25y + 2. As fX,Y (x, y) is only

related to y, the conditional moment condition holds. Figure 6.3b is another example. In

this case, fX,Y (x, y) is
1
2

1
σ
√
2π
e−(y−μ)2/2σ2

in an infinite area defined by two parallel lines (e.g.,

y ≤ x ≤ y + 2,−∞ ≤ y ≤ ∞). The last example is concerned with three variables x, y, z.

When these three variables are uniformly distributed in a volume (e.g., specified in Figure

6.3c), the conditional moment condition also holds.

6.4.4. A Comparative Example

We use a simple example to illustrate the advantage of the correlated multivariate

PCM approach. In particular, we consider a two-variable mapping with the original form

of g(x, y) = x3 + y3 + xy2 + x2y + xy + y + x2 + y2 + 1 as shown in Figure 6.4a. The two

random variables x and y are uniformly distributed in the parallelogram area bounded by

0 ≤ y ≤ 2 and y ≤ x ≤ y + 2, which is marked by the black dash lines in the Figure 6.4a

with the joint pdf fX,Y (x, y) = 0.25. The independent PCM method does not work, as it

results in two simulation points outside the probability range (see the red spots in 6.4a).

The correlated multivariate PCM method following Theorem 6.6 results in the four PCM

points and the reduced-order mapping 1.33x − 29.67y + 23xy + 7 (shown in Figure 6.4b)

which predicts the correct mean of the original mapping 33.67. For illustration, we have

also used the LHD method [147] to generate 4 simulation points. The produced low-order

mapping 34xy − 47y − 11.96x + 27 and the 4 simulation points are shown in Figure 6.4c,

with a predicted mean of 35.7, different from the original mean.
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Figure 6.3. The first two are examples when the joint distribution is not

uniform. Region a) is a trapezium, and region b) is an infinite area bounded

by parallel lines. In both cases, the conditional moment requirements are

satisfied. In the third example, x, y and z are uniformly distributed in a

three-dimensional volume c). Every surface of this volume is described by a

linear function. The conditional moment requirement is satisfied in this case.
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6.5. Empirical Data Based Multivariate PCM

The full pdf of input parameters may not always be available in real applications.

Instead, it is more common in practice that the distribution of input parameters is described

in one of the following two forms: 1) sample data of input parameters based on historical

records, and 2) low-order moment description of the parameters. For the completeness of

our presentation, we extend the results in [133] and discuss the use of sample-data-based

and empirical low-order moment-based multivariate PCM.

6.5.1. Large Data Set

The procedure to use the sample-data-based multivariate PCM is summarized as

follows: 1) finding from data the moments of xi (and conditional moments in the correlated

case), 2) calculating the (conditional) orthogonal polynomials according to Equation 1 in

[133], 3) finding the roots of the orthogonal polynomials as PCM points, and 4) following

Steps 2 and 3 in Section 6.2.2 to obtain the low-order PCM mapping in the independent

case, or the brief discussion after Theorem 6.6 in the correlated case.

Theorem 6.7. Consider that each tuple in the data sets {(x11, x21, ..., xm1), (x12, x22, ..., xm2), ...,

(x1p, x2p, ..., xmp)} is drawn from a joint distribution fX1,X2,..,Xm(x1, x2, ..., xm). With the as-

sumption that x1, x2, ... and xm have finite moments, the sample-data-based PCM mapping

approaches to the pdf-based PCM mapping with probability 1 as p → ∞.

Proof. To prove that the sample-data-based PCM matches with the pdf-based PCM with

probability 1, we only need to show that the PCM points obtained directly using sample data

converge to those obtained using the pdf, as p → ∞. As PCM points are the roots of orthog-

onal polynomials or conditional orthogonal polynomials as shown in the proofs of Theorems

6.1-6.6, it suffices to show that the coefficients of the (conditional) orthogonal polynomials

obtained using sample data converge to those obtained using the pdf. This problem is thus
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reduced to the convergence of sample (conditional) moments to real (conditional) moments

with increasing size of data. The result follows naturally. Please refer to Theorem 4 in [133]

for the details of the proof in a single-variable case. �

6.5.2. Small Data Set and Low-Order Moments

In the case that neither the full pdf nor large sample data sets is available, we may find

PCM mapping based on very limited information such as small data sets, or low moments

such as the mean and variance. Please refer to [133] for a detailed treatment of PCM with

sparse data or low moments. We summarize the key procedure for the complete presentation

here.

The best approach to find PCM mappings in these cases is to fit these low mo-

ments/small sample data sets with typical probability distributions (i,e., those are mathe-

matically determined by very small number of parameters, such as the Gaussian, uniform,

Gamma, and Beta distributions). Then, we can follow the same procedure as that of the

pdf-based PCM to find low-order PCM mappings. Please refer to standard estimation ap-

proaches such as the maximum-likelihood estimation [97].

The probability distribution to choose is generally not easy due to the sparsity of in-

formation. Here we briefly discuss the guidelines to select distribution functions. Firstly, the

selection should be application-dependent (see [97]). For instance, noise is typically captured

by the Gaussian distribution, whereas waiting time is captured by the Gamma distribution.

Secondly, hypothesis testing techniques can help to determine the best distribution. It also

helps to understand the impact of choosing different distribution functions. One example

suggests that choosing the Gaussian distribution instead of the uniform distribution will re-

sult in more-spread-out PCM points that better account for parameter values further away

from the mean, but at a cost of worse estimation close to the mean. Rigorous analysis on
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the impact of higher moments on the movement of PCM points have been studied in [133].

6.6. Applications to Air Traffic Flow Management

The development of multivariate PCM in this chapter was motivated by practical

needs in the field of air traffic flow management (ATFM), which is typically concerned

with managing traffic flows at a long lookahead time frame (e.g., 2-15 hours). As traffic

flow management plans are decided hours in advance, a wide range of weather possibilities

exist. Therefore, it is important to effectively evaluate the performance of the air traffic

system under uncertainty, so as to design the best management strategies that are robust to

such uncertainty in real time. Here we first provide a brief review of the literature on the

evaluation and design of ATFM strategies at the long lookahead time, so as to make clear

the contribution of our proposed approach.

Simple models of uncertainty as scenario trees and disturbances have been used to

model uncertainty in ATFM; stochastic programming and model predictive control tech-

niques have been applied on these models for decision-making [5–7, 28, 29]. More compli-

cated stochastic models such as Bayesian networks and Markov chains have also been used

(e.g., [98, 151]). As pointed out in these papers, these methods become less effective when the

scale and complexity of the traffic system increase. Because air traffic systems have complex

nonlinear and intertwined dynamics [135], predicting their performance may require system-

wide simulations. The Monte Carlo method has thus been studied [30, 103, 139]. The Monte

Carlo approach does not enable real-time analysis under weather uncertainty, as the evalua-

tion of system performance under multiple (and even spatiotemporally-correlated) weather

uncertainties requires time-consuming simulations for a large number of weather ensembles

to obtain converging performance statistics. The multivariate PCM approach provides an

alternative effective way for such simulations.
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In this section, we demonstrate the use of multivariate PCM to evaluate the per-

formance of air traffic systems under weather uncertainties using two examples. As seen

from these examples, an important preliminary step for applying the multivariate PCM is

to capture the range of weather uncertainties using a number of random variables. Next,

the PCM points are selected along the dimension of each variable/parameter and then these

selected points are simulated to provide a fast evaluation of traffic system performance. In

the first simple example, we assume that the basic properties of an uncertain weather zone

are captured by two independent variables (intensity and duration) with simple distribu-

tions, and then the total number of delayed aircraft (called backlog) for the flow entering

this single zone is evaluated. The purpose of this example is not to precisely model uncertain

weather, but to 1) provide some background on air traffic flow management, including the

performance metric and the simulation model, and 2) show the practical use of PCM in the

independent case. The second more realistic example is concerned with the evaluation of

backlogs in two spatiotemporally-correlated weather zones.

6.6.1. A Simple Single Region Example

In this simple example, we consider a single region (e.g., a sector) in the airspace

subject to severe weather prediction. We aim to evaluate the impact of uncertain weather

on the congestion in the region. Let us first describe the simple queuing model for our study.

We note that realistic air traffic system is much more complicated. However, the abstracted

model is justified based on the uncertainty present in the data at this time frame and the

computational requirements of real-time systems [130, 135, 151].

In particular, severe weather events reduce the capacity N [k] (i.e., the maximum

number of aircraft allowed to enter at time k) of the region. The aircraft that are not

allowed to pass due to the reduced capacity can be modeled as waiting in the queue at the
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boundary of the region [130, 135, 151]. The length of the queue, named backlog B[k], is a

natural performance metric to capture the congestion of the region. The dynamics of the

queuing simulation model is shown below (see more details at [151]):

(109) B[k] = max(B[k − 1] + x[k]−N [k], 0)

where x[k] is the incoming flow. The equation suggests that at each time step, a maximum

number of N [k] aircraft can enter the region; the remaining flow will wait to enter at the

next time step, together with the new incoming flow. We note that the capacity N [k] varies

with time k; in particular, the presence of convective weather at time k reduces the capacity

N [k].

As weather duration and intensity may not be precisely predicted at a long lookahead

time, weather-induced capacity reduction and the accumulated transient backlog become

uncertain. It is of practical value to predict the backlog statistics under uncertain weather

duration and intensity.

Assuming that no information about the two uncertain random variables is available

other than the ranges, we model both variables as uniformly distributed for simplicity. In

particular, we assume that the severe weather starts at the current time, but with uncertain

intensity and end time. When the severe weather is present, it reduces the number of aircraft

to cross the region in a unit time (20 minutes) N [k] from 6 to a, where a is captured by a

random variable uniformly distributed between 1 and 2.67. Moreover, we assume that the

duration of severe weather is a random variable uniformly distributed between 2 and 6 hours.

When the severe weather completes, the capacity raises back to 6. For simplicity, we assume

that the incoming flow (demand) x[k] to the region is a deterministic sequence sampled from

a Poisson process with the mean arrival rate of 3 per 20 minutes.
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It is worthwhile to notice that the actual relationship between the output (total back-

log for a span of 30 hours from the current time) and inputs (weather intensity and duration)

is nonlinear [130, 151]. We show here that based on the distributions of weather intensity

and duration, we can smartly choose only a limited number of simulations to construct a

low-order multivariate PCM mapping that matches well with the original nonlinear mapping

obtained using Monte Carlo simulations. Figure 6.5a and 6.5b show the original mapping

and the 2×2-order PCM mapping using the algorithm in Section 6.2.1.1. The two mappings

match very well with a mean square error of 2.4 within the probability range. The mean

total backlog obtained using the two mappings are 163.91 and 163.42, respectively. It is also

interesting to notice that the performance of mean predictor improves significantly when

the order of the PCM mapping increases from 1 × 1 (with the mean backlog of 165.52) to

2× 2, but not much when the order is further increased to 3× 3 (with the mean backlog of

163.64). Finally, Figure 6.5c demonstrates the computational load that can be saved using

the low-order 2×2 PCM. Monte Carlo simulation typically requires a large number of runs to

converge (in this case 676 runs to estimate with an error less than 2%), while the 2×2-order

PCM mapping only needs 9 simulations to achieve a similar performance.

6.6.2. A Spatiotemporally Correlated Two-Region Example

In the second example, we apply empirical data-based multivariate PCM to effec-

tively evaluate the impact of spatiotemporally correlated uncertain weather events on tran-

sient traffic backlogs. In particular, we consider two scheduled streams of flows entering

two neighboring regions A and B. Furthermore, a cold front (indicating of weather front

associated with convective weather) passes Region A and then Region B, producing capacity

reductions (see Figure 6.6a and 6.6b). Predicting transient backlog statistics caused by the

uncertain progress of cold front is critical to design effective flow-management initiatives to
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reduce traffic delay.

Here we used six random parameters to capture the stochastic weather propagation:

SA, NA, DA, SB, NB, and DB. In particular, the cold front hits Region A from time SA

with a reduced capacity NA. We assume that the capacity reduction remains constant for

a span of DA before the weather leaves the region. After that, its capacity returns to its

regular value NRA. Similarly, Region B undergoes weather-induced capacity reduction from

time SB, with capacity reduced from the normal value NRB to NB, for a span of DB.

Different from the previous example, the full pdf of the aforementioned weather pa-

rameters is not directly available. We utilized the weather simulator [112] to generate a

large set of weather ensembles covering the range of weather uncertainty. In particular, the

simulated airspace is decomposed into small grids, with white color representing normal ca-

pacity and black color denoting capacity reduction caused by convective weather (see Figure

6.6). The stochastic propagation of convective weather is governed by the influence model

[8], with parameters estimated from hourly probabilistic weather forecasts1. The estimated

weather simulator runs at a finer resolution of 15 minutes[112].

For each generated weather ensemble, we then found the six weather parameters

(SA, NA, DA, SB, NB, and DB). Here, weather start times SA and SB are marked by

the first time the region has at least two black grids. Durations DA and DB are similarly

defined by the differences between the first time the region has at most two black grids

afterwards and SA and SB. Average capacities NA and NB during the span of weather are

calculated as the normal capacity scaled by the average fraction of white grids during this

span. Because of spatiotemporal correlation of weather propagation, these parameters are

subject to interdependency. In particular, as the weather front passes Region A and then

1A majority of weather forecasts are deterministic. The Very Short Range Ensemble Forecast System (VS-
REF) provides hourly probabilistic weather forecasts [148].
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region B, due to the spatial weather propagation delay, we expect the start time SB is closely

related to the end time of region A (which is expressed as SA+DA), and therefore both SA and

DA. Similarly, due to the correlation of propagation speeds for weather in these two regions,

we expect that the duration DB is dependent on DA. Moreover, due to the correlation of

weather intensities across time, we assume that the capacity NB is dependent upon NA. In

this example, the normal capacity NRA and NRB of the two regions are both 10 per unit

time (defined as Δt = 15mins). The simulator generates a large number of ensembles (one

million in this case to guarantee the convergence of probability distributions).

We then applied the empirical data-based multivariate PCM approach to find the

PCM points. To do that, we first found the sample moments of DA, SA, and NA, as they

serve as the parameters thatDB, SB, NB are conditioned upon. From these sample moments,

the PCM points along each of the dimensions DA, SA, and NA were obtained. We note that

SA plays a more important role in the uncertainty evaluation and needs to be sampled with

more number of points for the following reasons: 1) due to the growth of uncertainty over

time (which can be seen from the distributions plotted in Figure 6.7), the information closest

to the initial simulation time is the most trustworthy, 2) this trustworthy early information

is important to be estimated correctly as its error will affect the estimation performance of

other parameters capturing later time characteristics. We therefore chose 5 points along SA

as 0.75hour, 1hour, 1.25hour, 1.75hour, and 2.5hour. We also selected 2 PCM points along

the dimension of DA as 1hour and 1.75hour, and 2 points for NA as 4.0602, and 5.6358

respectively. Next, we identified PCM points along the dimensions of DB, SB and NB.

Because of the spatiotemporal correlation of weather parameters in Region A and Region

B, each 3-tuple PCM point (DA, SA, and NA) resulted in different conditional distributions

of weather parameters for Region B (see examples shown in Figure 6.8), and thus different

set of PCM points. Specifically, the PCM points along the dimensions of DB, SB were then
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selected based on the conditional sample moments of DB and SB for each combination of

the PCM points for DA and SA. Similarly, the PCM points along the dimension of NB were

selected from the conditional sample moments of NB on each of the PCM points for NA. A

total of 25 × 5 = 160 PCM points were selected.

We next evaluated the total backlog
∑

B[k] during a span of 24 hours at each of the

6-tuple PCM points. We assumed that two streams of deterministic flows sampled from a

Poisson process (with mean 5 per 15 minutes) enter the two regions. Using Equation 109, the

total backlogs at all PCM points were then used to obtain the low-order polynomial PCM

mapping f(DA, SA, NA, DB, SB, NB) (with 160 terms) between weather parameters and the

total backlog, from which the mean backlog can be obtained. Furthermore, we noted that

as the total backlog of the two regions is the summation of backlogs at each region, the

mapping f(DA, SA, NA, DB, SB, NB) can be expressed as fA(DA, SA, NA)+fB(DB, SB, NB),

where fA and fB are functions of weather parameters in individual regions. This expression

significantly reduced the coefficients/terms in the polynomial mapping function from 160 to

5×22+23 = 28, by ignoring the cross terms that involve weather parameters of both regions.

Least Square Mean Estimation was then used to identify the 28 coefficients in the reduced

order mapping.

We compared the performance of the PCM mappings with that of the Monte Carlo

simulation. As shown in Table 6.2, both PCM mappings predicted the total mean backlogs

well with errors less than 2%. We also evaluated the efficiency of the PCM approaches. As

seen in Figure 6.9, the Monte Carlo method requires 11716 simulations (marked as the black

spot) for the mean prediction to fall within a threshold marked by the black dashed lines.

However, the PCM method only needs 160 simulations (marked as the red spot) to reach

the same threshold. We also note that selecting PCM points based on conditional distribu-

tions improves the performance of the mean prediction. To display the results intuitively, we
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demonstrate the mappings generated by the aforementioned empirical data-based multivari-

ate PCM approaches, when four out of the six weather parameters are fixed: SA = 1.25hour,

DA = 1hour, DB = 1.75hour and NA = 5.6358. As shown in Figure 6.10, the 160-term PCM

mapping and the 28-term PCM mapping generated by selecting 4 PCM points along the di-

mensions of SB and NB match well with the mapping generated by the Monte Carlo method.

6.7. Concluding Remarks and Future Work

Motivated by effective uncertainty evaluation needs in large-scale infrastructure sys-

tems, we develop in this chapter the multivariate PCM approach which allows using a few

smartly selected simulation points to construct a low-order mapping between multiple un-

certain input parameters and system output, which predicts the correct mean output of the

original system of a higher-order. Besides describing the algorithm of the multivariate PCM,

we develop mathematical conditions to permit correct mean output prediction in terms of

the probability distributions of the input parameters and forms of original system mappings.

Both independent and correlated cases are discussed. We also provide additional perfor-

mance analysis of the multivariate PCM in terms of predicting other important statistics,

and the practical use of the method when data or low-order moments are available instead

of probability distribution. In terms of numerical issues, we note that in the independent

PCM case, using orthonormal bases to calculate PCM mapping coefficients reduces the ill-

conditioning of the calculation; this advantage does not exist for the correlated PCM. The

final example at the end of this chapter demonstrates the use of this method to evaluate the

impact of multiple dependent weather uncertain parameters on the statistics of air traffic

system performance. Future works include applying this method for large-scale traffic exam-

ples, exploring capabilities of the reduced-order mapping such as optimization and sensitivity

analysis, and selecting a subset of the PCM points when further knowledge of the original
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system mapping is available.

6.8. Appendix

Proof of Theorem 6.1:

Proof. In order to prove E[g(x, y)] = E[g∗(x, y)], we start with computing E[g(x, y)], then

construct g∗(x, y) along this process, and finally show that the means of both g(x, y) and

g∗(x, y) can be reduced to the same value.

Because x and y are independent random variables, we find

E[g(x, y)] =

∫∫ 2n−1∑
i=0

2m−1∑
j=0

Ai,jx
iyjfX(x)fY (y)dxdy(110)

=

∫ 2m−1∑
j=0

yjfY (y)

∫ 2n−1∑
i=0

Ai,jx
ifX(x)dxdy.

The terms inside the internal integral
∑2n−1

i=0 Ai,jx
i (for any j) can be expressed in

terms of the series of orthonormal polynomials hn(x), ..., h0(x) of degrees n, ..., 0 [58]:

2n−1∑
i=0

Ai,jx
i = hn(x)

(
n−1∑
i=0

ai+n,jhi(x)

)
+

n−1∑
i=0

ai,jhi(x),(111)

where the coefficients a ∈ R, the first subscript of a represents the degree of x, and the

second subscript stands for the degree of y. The orthonormal polynomials hi(x) satisfy

〈
hi (x) , hj (x)

〉
=

∫
hi(x)hj(x)fX(x) dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if i = j

0, if i �= j

(112)

h0(x) = 1.

A particular note is that the above definition leads to
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(113)

∫
hi(x)h0(x)fX(x)dx =

∫
hi(x)fX(x)dx = 0

for all i ≥ 1, which we will frequently use later. We denote the roots of hn(x) as x1, x2, ..., xn.

In a single-variable PCM, these roots are the PCM points selected for computationally

intensive simulations [133].

Due to the orthonormal properties of the variable x (Equation 112),
∫ ∑2n−1

i=0 Ai,jx
ifX(x)dx

shown in the form of Equation 111 can be reduced to
∫ ∑n−1

i=0 ai,jhi(x)fX(x)dx. As such,

Equation 110 becomes

E[g(x, y)] =

∫ 2m−1∑
j=0

yjfY (y)

∫ (n−1∑
i=0

ai,jhi(x)

)
fX(x)dxdy.(114)

We now follow the same procedure to reduce the order of y. By rearranging the terms

in Equation 114 in a descending degree of hi(x) for all i ∈ {0, ..., n− 1}, we obtain

(115) E[g(x, y)] =

∫ n−1∑
i=0

hi(x)fX(x)

∫ (2m−1∑
j=0

ai,jy
j

)
fY (y)dydx.

Introducing the jth-degree orthonormal polynomials h′
j(y) with respect to the probability

distribution fY (y), and denoting the roots of h′
m(y) as y1, y2, ..., ym, we can express any

polynomial of y up to the order of 2m− 1 in terms of h′
0(y), ..., h

′
m(y). In particular,

2m−1∑
j=0

ai,jy
j = h′

m(y)

(
m−1∑
j=0

bi,j+mh
′
j(y)

)
+

m−1∑
j=0

bi,jh
′
j(y),(116)

where b ∈ R are the coefficients. Again, the first subscript of b represents the degree of x,

and the second stands for the total degree of y. Applying orthonormal properties again,

Equation 115 is further reduced to
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E[g(x, y)] =

∫ ∫ n−1∑
i=0

m−1∑
j=0

bi,jhi(x)h
′
j(y)fX(x)fY (y)dxdy.(117)

Note that the expression inside the above double integrals is g∗(x, y). As hi(x) is an ith-order

polynomial and h′
j(y) is a jth-order polynomial, we can easily find the parameters Bi,j from

bi,j and express Equation 117 in terms of x and y as

g∗(x, y) =
n−1∑
i=0

m−1∑
j=0

bi,jhi(x)h
′
j(y) =

n−1∑
i=0

m−1∑
j=0

Bi,jx
iyj.(118)

Observation of Equations 111 and 116 clearly suggests that g(x, y) and g∗(x, y) pass

through the same set of points defined by (xi, yj) for all i ∈ {1, ..., n} and j ∈ {1, ..., m}, as

hn(xi) = 0 and h′
m(yi) = 0. Finally, we also notice that both E[g(x, y)] and E[g∗(x, y)] can

be reduced to b0,0 through applying Equation 113 to variable x first and then variable y. �

Proof of Theorem 6.2:

Proof. As this theorem is a straightforward generalization of the two-variable case, we only

sketch the outline of the proof.

Through recursively expressing x1, x2,... xm in terms of orthonormal polynomials, and

applying the orthonormal properties (Equation 112), we obtain the reduced-order mapping

g∗(x1, x2, ..., xm) of the form

g∗(x1, x2..., xm) =

n1−1∑
k1=0

n2−1∑
k2=0

...

nm−1∑
km=0

ak1,...,km

m∏
i=1

hi
ki
(xi),(119)

where the function hi
ki
(xi) denotes the kith degree orthonormal polynomial with re-

spect to the parameter xi, and ak1,...,km are the coefficients. Furthermore,
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(120) E [g(x1, x2, ..., xm)] = E [g∗(x1, x2, ..., xm)] = a0,...,0.

Rearranging the terms in Equation 119 in terms of x1, x2, ..., xm, we can easily find the

coefficients Bk1,...,km such that g∗(x1, x2, ..., xm) is in the form of Equation 101. �

Proof of Theorem 6.3:

We prove the two-variable case for the clarity of presentation. In this case, the

theorem is reduced to the following Lemma. The general case follows naturally.

Lemma 6.8. Consider the use of a two-variable PCM mapping g∗(x, y) of the form
∑n−1

i=0

∑m−1
j=0

Bi,jx
iyj to approximate an original polynomial mapping g(x, y) of the form

∑n+n1

i=0

∑m+m1

j=0

Ai,jx
iyj, for some n1 ∈ {0, ..., n−1} and m1 ∈ {0, ..., m−1}. Assuming that the two variables

are independent, the low-order PCM can correctly predict the cross-statistics up to certain

degree. In particular,

(121) E
[
xlykg∗(x, y)

]
= E

[
xlykg(x, y)

]

for all l ∈ {0, ..., n− 1− n1} and k ∈ {0, ..., m− 1−m1}.

Proof. The cross-statistics can be expressed in the following due to the independence of

variables:

E
[
xlykg(x, y)

]
=
∫∫

xlyk
∑n+n1

i=0

∑m+m1

j=0 Ai,jx
iyjfX(x)fY (y)dxdy(122)

=
∫
yk
∑m+m1

j=0 yjfY (y)
∫
xl
∑n+n1

i=0 Ai,jx
ifX(x)dxdy.
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For any fixed j,
∑n+n1

i=0 Ai,jx
i can be represented in terms of orthonormal polynomials

(similar to Equation 111)

(123)
n+n1∑
i=0

Ai,jx
i = hn(x)

(
n1∑

i1=0

an+i1,jhi1(x)

)
+

n−1∑
i=0

ai,jhi(x),

where the first subscript in the coefficient a represents the total degree of this term with

respect to x, and the second represents the degree with respect to y inside the summation

operator in Equation 122. As xl
(∑n1

i1=0 an+i1,jhi1(x)
)
is a polynomial with the degree of x

less than or equal to n− 1, where j ∈ {0, ..., m+m1}, the orthogonality naturally leads to

E
[
xlykg(x, y)

]
=
∫
yk
∑m+m1

j=0 yjfY (y)
∫
xl
∑n−1

i=0 ai,jhi(x)fX(x)dxdy(124)

=
∫
xl
∑n−1

i=0 hi(x)fX(x)
∫
ykai,j

∑m+m1

j=0 yjfY (y)dydx.

Next, we reduce the order of y to m − 1 similar to the above process. It is then not

difficult to obtain

E
[
xlykg(x, y)

]
=

∫
xl

n−1∑
i=0

hi(x)fX(x)

∫
ykbi,j

m−1∑
j=0

h′
j(y)fY (y)dydx(125)

=

∫∫
xlyk

n−1∑
i=0

m−1∑
j=0

bi,jhi(x)h
′
j(y)fX(x)fY (y)dxdy

= E
[
xlykg∗(x, y)

]
.

�

Proof of Theorem 6.4:

Again, we prove the two-variable case shown in the following lemma. The proof of

the general case follows naturally.

177



Lemma 6.9. Consider a mapping g(x, y) =
∑n+n1

i=0

∑m+m1

j=0 Ai,jx
iyj for some n1 ∈ {0, ..., n−

1} and m1 ∈ {0, ..., m−1}. If a PCM mapping of the form g∗(x, y) =
∑n−1

i=0

∑m−1
j=0 bi,jhi(x)h

′
j(y)

is used to fit the original mapping, the MSE of the PCM fit cannot be improved by adding

any polynomial with the degree of x up to n− 1− n1, and the degree of y up to m− 1−m1.

Moreover, the lower order mapping g∗r(x, y) =
∑n−1−n1

i=0

∑m−1−m1

j=0 b′i,jhi(x)h
′
j(y) is the MMSE

mapping, among all polynomials with the degree of x up to n− 1− n1 and the degree of y up

to m− 1−m1.

Proof. To prove the first part of the theorem, we construct ḡ(x, y) = g∗(x, y)+
∑n−1−n1

i=0

∑m−1−m1

j=0

Ci,jx
iyj, and show that E

[(
g(x, y)− g∗(x, y)

)2] ≤ E
[(
g(x, y)− ḡ(x, y)

)2]
. Here, the co-

efficients Ci,j ∈ R. The mean square error between g(x, y) and ḡ(x, y) can be expressed

as:

E
[(
g(x, y)− ḡ(x, y)

)2]
= E

[(
g(x, y)− g∗(x, y)

)2]
(126)

+2E
[(
g(x, y)− g∗(x, y)

)(
g∗(x, y)− ḡ(x, y)

)]

+E
[(
g∗(x, y)− ḡ(x, y)

)2]
.

We note that E
[(
g∗(x, y)− ḡ(x, y)

)2]
is always nonnegative. Therefore, it is sufficient to

show

E
[(
g(x, y)− g∗(x, y)

)(
g∗(x, y)− ḡ(x, y)

)]
= 0. To do that, we first notice

g∗(x, y)− ḡ(x, y) = −
(

n−1−n1∑
i=0

m−1−m1∑
j=0

Ci,jx
iyj

)
.(127)

Moreover, g(x, y)−g∗(x, y) is the sum of three terms:
∑n1

i=0

∑m1

j=0 bn+i,m+jhn(x)hi(x)h
′
m(y)h

′
j(y),∑n1

i=0

∑m−1
j=0 bn+i,jhn(x)hi(x)h

′
j(y), and

∑n−1
i=0

∑m1

j=0 bi,m+jhi(x)h
′
m(y)h

′
j(y). As each hi(x) in
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the first two terms is a polynomial of degree at most n1, −hi(x)
(∑n−1−n1

i=0

∑m−1−m1

j=0 Ci,jx
iyj
)

is a polynomial of degree at most n−1 of variable x. Applying orthogonality with respect to

the variable x, it is straightforward to find E
[(
g(x, y)− g∗(x, y)

)(
g∗(x, y)− ḡ(x, y)

)]
equals

to zero for the first two terms of g(x, y)−g∗(x, y). Using the same argument for the third term

and apply orthogonality to the variable y, we can find thatE
[(
g(x, y)− g∗(x, y)

)(
g∗(x, y)− ḡ(x, y)

)]
also equals to 0 for the third term.

We next prove the second part of the theorem. This is sufficient to show that

E
[
xlyk(g(x, y)− g∗r(x, y))

]
equals to zero, for l ∈ {0, ..., n−1−n1} and k ∈ {0, ..., m−1−m1}.

Notice that

E
[
xlyk

(
g(x, y)− g∗r(x, y)

)]
= E

[
xlyk

(
g(x, y)− g∗(x, y)

)]
(128)

+E
[
xlyk

(
g∗(x, y)− g∗r(x, y)

)]
.

The first term is zero according to Theorem 6.3. The second term is also zero accord-

ing to a proof similar to that of the first part of this theorem. In particular, each term in

g∗(x, y)−g∗r(x, y) contains hi(x)h
′
j(y) with degrees either i ≥ n−n1 or j ≥ m−m1. Invoking

orthogonality, the second part is proved as well. �

Proof of Theorem 6.6:

To ease understanding, we first investigate the correlated two-variable PCM in Lemma

6.10.

Lemma 6.10. Consider a two-variable mapping gc(x, y) of the form

(129) gc(x, y) =

2n−1∑
j=0

2n−1−j∑
i=0

A′
i,jx

iyj,
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where the coefficients A′
i,j ∈ R, and n is an integer greater than 1. Assume that the

two variables x and y follow a joint distribution fX,Y (x, y) and the r-th conditional moment

of one variable given the other is at most a r-th degree polynomial of the other variable.

Then the mapping gc(x, y) can be approximated by a lower-order PCM mapping g∗c (x, y) of

the form

(130) g∗c (x, y) =
n−1∑
j=0

n−1∑
i=0

B′
i,jx

iyj,

such that E [gc(x, y)] = E [g∗c (x, y)], where the coefficients B′
i,j ∈ R.

Proof. Without loss of generality, we assume that
∫
xrfX|Y (x|y)dx is a r-th degree poly-

nomial of y. We first construct the expression of g∗c (x, y) from gc(x, y) without changing its

mean. We then verify that gc(x, y) and the constructed g∗c (x, y) have the same values at the

set of PCM points selected from the marginal and conditional probabilities. We can thus

use these PCM points to uniquely identify g∗c (x, y).

To calculate the mean of the original mapping gc(x, y), we note that because E [gc(x, y)]

can be expressed as
∑2n−1

j=0

∑2n−1−j
i=0 E

[
A′

i,jx
iyj
]
, we can focus on the calculation of each term

E
[
A′

i,jx
iyj
]
first. To simplify E

[
A′

i,jx
iyj
]
, we consider three cases with different ranges of i

and j: Case 1 (0 ≤ i < n, n − 1 < j ≤ 2n − 1), Case 2 (n − 1 < i ≤ 2n − 1, 0 ≤ j < n),

and Case 3 (0 ≤ i < n, 0 ≤ j < n). As in Case 3, the polynomial is already in the form

of g∗c (x, y), we only focus on the first two cases. We show the calculation of E
[
A′

i,jx
iyj
]
for

Case 1 only, as Case 2 follows a similar procedure.

In Case 1, when n−1 < j ≤ 2n−1, we can express yj using the orthogonal polynomials

of y. In particular, yj = hn(y)
(∑j−n

k=0 b
′
j,k+nhk(y)

)
+
∑n−1

k=0 b
′
j,khk(y), where the coefficients

b′ ∈ R, the first subscript of b′ stands for the total degree of y, and the second represents

the degree of y in each term. Moreover, as 0 ≤ i < n, for each particular y, we can write xi
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in terms of the conditional orthogonal polynomials of x given y, denoted as h′
k(x|y), where

k ∈ {0, ..., i} represents the degree of the orthogonal polynomial. In particular, A′
i,jx

i =∑i
l=0(a

′
i,l|y)h′

l(x|y), where (a′i,l|y) is a parameter dependent upon y, and the format of the

subscripts is the same as that of b′, but for the variable x. The conditional orthogonal

polynomial h′
l(x|y) is associated with the conditional pdf fX|Y (x|y). As such, at different y,

h′
l(x|y) may have different expressions. Now, we are ready to calculate E

[
A′

i,jx
iyj
]
as

E
[
A′

i,jx
iyj
]

(131)

=

∫∫
A′

i,jx
iyjfX|Y (x|y)fY (y)dxdy =

∫∫ i∑
l=0

(a′i,l|y)h′
l(x|y)

(
hn(y)

( j−n∑
k=0

b′j,k+nhk(y)
)
+

n−1∑
k=0

b′j,khk(y)

)
fX|Y (x|y)fY (y)dxdy

=

∫∫ i∑
l=0

(a′i,l|y)h′
l(x|y)

(
hn(y)

( j−n∑
k=0

b′j,k+nhk(y)
))

fX|Y (x|y)fY (y)dxdy +
∫∫ i∑

l=0

(a′i,l|y)h′
l(x|y)

(
n−1∑
k=0

b′j,khk(y)

)

fX|Y (x|y)fY (y)dxdy =

∫
hn(y)

(
j−n∑
k=0

b′j,k+nhk(y)

)

(∫ i∑
l=0

(a′i,l|y)h′
l(x|y)fX|Y (x|y)dx

)
fY (y)dy

+

∫∫ i∑
l=0

(a′i,l|y)h′
l(x|y)

(
n−1∑
k=0

b′j,khk(y)

)
fX|Y (x|y)fY (y)dxdy.

Now let us show that the first double integration in the last equation equals 0. Note

that for each y,
∑i

l=0(a
′
i,l|y)h′

l(x|y) is a polynomial of x with the degree up to i. Furthermore,

according to the assumption that
∫
xifX|Y (x|y)dx is at most an i-th degree polynomial of y,

we find that
(∑j−n

k=0 b
′
j,k+nhk(y)

)
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( ∫ ∑i
l=0(a

′
i,l|y)h′

l(x|y)fX|Y (x|y)dx
)
is a polynomial of y with the degree up to i + j − n ≤

2n − 1 − n = n − 1. Applying orthogonality with respect to variable y, we can simplify

Equation 131 to

E[A′
i,jx

iyj] =

∫∫ i∑
l=0

(a′i,l|y)h′
l(x|y)

(
n−1∑
k=0

b′j,khk(y)

)
fX|Y (x|y)fY (y)dxdy(132)

=

∫∫ i∑
l=0

n−1∑
k=0

(c′l,k|y)h′
l(x|y)hk(y)fX,Y (x, y)dxdy

for 0 ≤ i < n, n− 1 < j ≤ 2n− 1. Here (c′l,k|y) is some parameter dependent upon y.

Following a similar procedure, we can show that in Case 2,

E[A′
i,jx

iyj] =

∫∫ (
h′
n(x|y)

( i−n∑
l=0

(a′i,l+n|y)h′
l(x|y)

)
+

n−1∑
l=0

(a′i,l|y)h′
l(x|y)

)
(133)

( j∑
k=0

b′j,khk(y)
)
fX,Y (x, y)dxdy

=

∫∫ n−1∑
l=0

j∑
k=0

(d′l,k|y)h′
l(x|y)hk(y)fX,Y (x, y)dxdy,

where (d′l,k|y) is some parameter dependent upon y. As for both cases, E[A′
i,jx

iyj]

can be expressed using orthogonal and conditional orthogonal polynomials with the degree

up to n− 1, we can write

E[gc(x, y)] =

2n−1∑
j=0

2n−1−j∑
i=0

E[A′
i,jx

iyj](134)

=

∫∫ n−1∑
l=0

n−1∑
k=0

(e′l,k|y)h′
l(x|y)hk(y)fX,Y (x, y)dxdy,

where (e′l,k|y) is some parameter dependent upon y. Noticing that
∑n−1

l=0

∑n−1
k=0(e

′
l,k|y)h′

l(x|y)

hk(y) is a polynomial with the degree of each variable up to n− 1, we can write
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(135) E[gc(x, y)] =

∫∫ n−1∑
i=0

n−1∑
j=0

B′
i,jx

iyjfX,Y (x, y)dxdy = E[g∗c (x, y)].

It is clear that g∗c (x, y) and gc(x, y) have the same mean.

Finally, let us verify that both g∗c (x, y) and gc(x, y) pass through the same set of

selected PCM points. Let us denote the roots of hn(y) as y1, y2 , ... , yn and the roots of

h′
n(x|yj) as xij for 1 ≤ i ≤ n, 1 ≤ j ≤ n. The n2 pairs of inputs (xij , yj) are the selected

PCM points. By expressing gc(x, y) and g∗c (x, y) in orthogonal forms, and from observing

Equations 131, 132 and 134, it is clear to see that gc(x, y) and g∗c (x, y) are identical at each

pair of the PCM points. The proof is now complete. �

We now generalize to more than two variables, and sketch the key steps to prove

Theorem 6.6.

Proof. First of all, note that there is only one variable in the original mapping with degree

greater than n− 1, as the total degree of A′
k1,k2,...,km

∏m
i=1 x

ki
i is at most 2n− 1. Without loss

of generality, let us denote this variable as xt, where 1 ≤ t ≤ m. As such, we only need to

find a low-order mapping with the degree of this variable xt reduced to n− 1.

To do that, we express xt in terms of orthogonal polynomials defined upon the condi-

tional pdf fXt|Xt+1,Xt+2,...,Xm(xt|xt+1, xt+2, ..., xm). Let us denote these orthonormal polyno-

mials as

ht
i(xt|xt+1, ..., xm), where i is the degree of this polynomial. It is then easy to see that

any term in gc(x1, x2, ..., xm) that includes xt, denoted as A′
k1,k2,...,kt,...,km

∏m
i=1 x

ki
i , can be

expressed as

A′
k1,k2,...,kt,...,km

m∏
i=1

xki
i =

(
t−1∏
i=1

xki
i

)(
ht
n(xt|xt+1, ..., xm)

( kt−n∑
l=0

(
a′tkt,l+n|xt+1, ..., xm

)
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ht
l(xt|xt+1, ..., xm)

)
+

n−1∑
l=0

(
a′tkt,l|xt+1, ..., xm

)
ht
l(xt|xt+1, ..., xm)

)(
m∏

i=t+1

xki
i

)
,(136)

where a′t ∈ R are the corresponding coefficients. Again, the first subscript of a′t

stands for the total degree of xt, and the second represents the degree of xt in each term.

In order to show that the degree of xt can be reduced to a value smaller than n, we

only need to show that in E[gc(x1, x2, ..., xm)], any term involved with ht
l(xt|xt+1, ..., xm) and

with total degree greater than n equals 0. It is sufficient to show that

∫∫
...

∫ (t−1∏
i=1

xki
i

)
ht
n(xt|xt+1, ..., xm)(137)

(
kt−n∑
l=0

(
a′tkt,l+n|xt+1, ..., xm

)
ht
l(xt|xt+1, ..., xm)

)
(

t∏
i=1

fXi|Xi+1,...,Xm(xi|xi+1, ..., xm)

)
dx1dx2...dxt = 0.

Recall the assumption that each conditional moment of xi (i.e.
∫
xki
i fXi|Xi+1,Xi+2,...,Xm(

xi|xi+1, xi+2, ..., xm

)
dxi) is a polynomial of xi+1, xi+2, ..., xm with total degree ki, 1 ≤ i ≤

t− 1. We could then find that the conditional moment of
∏t−1

i=1 x
ki
i expressed as

∫∫
...

∫ (t−1∏
i=1

xki
i

)(
t−1∏
i=1

fXi|Xi+1,...,Xm(xi|xi+1, ..., xm)

)
dx1...dxt−1

is a polynomial of xt, xt+1, ..., xm with the total degree not exceeding
∑t−1

i=1 ki. When mul-

tiplying this polynomial with
∑kt−n

l=0

(
a′tkt,l+n|xt+1, ..., xm

)
ht
l(xt|xt+1, ..., xm), we find that the

maximum degree of xt is
∑t−1

i=1 ki + kt − n =
∑t

i=1 ki − n ≤ n − 1. Equation 137 is proved

according to the orthogonality.

The rest of the proof on selecting PCM points and constructing g∗c (x1, x2, ..., xm)

follows directly from the proof of Theorem 6.6, and is thus omitted here. �
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Table 6.1. Algorithm for the Independent Two-Variable PCM

Step 1: Simulation point selection

1.1 Compute the orthonormal polynomials of degree i for the random variable X , hi(x), for i = 1, ..., n

according to the following:

a) Initialize H−1(x) = h−1(x) = 0 and H0(x) = h0(x) = 1

b) For i = 1 to n

Hi(x) = xhi−1(x)− 〈xhi−1(x), hi−1(x)〉 hi−1(x) − 〈Hi−1(x), Hi−1(x)〉
1
2 hi−2(x),

hi(x) = Hi(x)/ 〈Hi(x), Hi(x)〉
1
2 .

End

Note that Hi(x) represents the orthogonal polynomial of degree i for the random variable X .

The second equation in the FOR loop normalizes Hi(x). 〈p(x), q(x)〉 denotes the integration

operation
∫
p(x)q(x)fX(x)dx.

1.2 Find the roots of hn(x) = 0 as the n PCM simulation points for X , denoted as x1, x2,, ..., xn.

1.3 Repeat 1.1 and 1.2 for the random variable Y and obtain the orthonormal polynomials hj(y),

for j = 1, ...m, and the m PCM simulation points for Y , denoted as y1, y2, ..., ym.

Step 2: Evaluation of system outputs at selected simulation points

2.1 For each simulation points (xi, yj) where i ∈ {1, ...n} and j ∈ {1...m}, run simulation and

find the associated output g(xi, yj).

Step 3: Identification of Mapping Coefficients

3.1 Find the coefficients bi,j in the low-order PCM mapping: g∗(x, y) =
∑n−1

i=0

∑m−1
j=0 bi,jhi(x)h

′
j(y) following:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−1,m−1

.

..

bn−1,0

..

.

b0,m−1

...

b0,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= K−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1, y1)

.

..

g(x1, ym)

..

.

g(xn, y1)

...

g(xn, ym)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hn−1(x1)h′
m−1(y1) · · · hn−1(x1)h′

0(y1) · · · h0(x1)h′
0(y1)

.

..
. . .

.

..
. . .

.

..

hn−1(x1)h′
m−1(ym) · · · hn−1(x1)h′

0(ym) · · · h0(x1)h′
0(ym)

..

.
. . .

..

.
. . .

..

.

hn−1(xn)h′
m−1(y1) · · · hn−1(xn)h′

0(y1) · · · h0(xn)h′
0(y1)

...
. . .

...
. . .

...

hn−1(xn)h′
m−1(ym) · · · hn−1(xn)h′

0(ym) · · · h0(xn)h′
0(ym)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3.2 The predicted output mean is b0,0.

3.3 Reorganize terms in the low-order PCM mapping, and obtain coefficients Bi,j in the

low-order PCM mapping: g∗(x, y) =
∑n−1

i=0

∑m−1
j=0 Bi,jx

iyj .
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Figure 6.4. a) The original mapping and the four PCM points generated

using the independent PCM method; b) the four PCM points and low-order

mapping generated using the correlated PCM approach; and c) the four sim-

ulation points and mapping generated by the LHD approach.
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Figure 6.5. a) The original mapping between the input set including weather

duration and weather intensity, and the output (30-hour total backlog) ob-

tained using the Monte Carlo simulation. b) The reduced-order multivariate

PCM mapping is based on the 9 sample points marked as red spots on the plot.

c) Comparison of the number of simulation runs needed to predict the correct

mean total backlog over a 30-hour span. The blue curve shows the means

predicted by the accumulative Monte Carlo runs with the number specified on

the x axis. The red thin line shows the true mean estimated by the value that

the Monte Carlo simulation (of two random variables) converges to. The red

spot corresponds to the 9 simulation runs required for the PCM method to

predict the true mean.
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a)

b)

Figure 6.6. a) Illustration of a spatiotemporal correlated two-region exam-

ple; b) the development of cold font causes capacity reduction.
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Figure 6.7. Probability density functions of six weather parameters.

189



0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Hour

P
ro

ba
bi

lit
y

 

 
D

A1

D
A2

a)

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Intensity

P
ro

ba
bi

lit
y

 

 
N

A1

N
A2

b)

Figure 6.8. a) Distribution of DB conditioned upon 2 selected PCM co-

ordinates of DA. b) Distribution of NB conditioned upon 2 selected PCM

coordinates of NA.
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Table 6.2. Performance Comparison among the Monte Carlo and PCM Ap-

proaches with Two Different Expressions

Backlog of Backlog of Total Backlog

Region A Region B

Monte Carlo Simulation 40.7 72.09 112.8

PCM with 160 terms 40.5 74.2 114.7

PCM with 28 terms 40.5 74 114.5
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Figure 6.9. Comparison of simulation time between the Monte Carlo and

PCM approaches. The mean backlog estimated by the Monte Carlo method

is shown in blue. The mean backlog estimated using the PCM approach is

marked as the red spot. The dashed lines show a neighborhood around the

true mean defined by the estimated mean using the PCM approach, marked

by the red spot. The black spot denotes the number of simulations for the

Monte Carlo method to reach and stay within the neighborhood.
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Figure 6.10. Mappings with fixed SA, DA, DB and NA generated by a)

Monte Carlo Simulation, b) PCM mapping with 160 terms, and c) PCM map-

ping with 28 terms.
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CHAPTER 7

A PROBABILISTIC COLLOCATION METHOD-BASED APPROACH FOR OPTIMAL

STRATEGIC AIR TRAFFIC FLOW MANAGEMENT UNDER WEATHER

UNCERTAINTIES

7.1. Introduction

Convective weather events reduce region capacities in the National Airspace System

(NAS), and account for the majority of traffic delays in the United States. Strategic Air

Traffic Flow Management (TFM) is concerned with re-allocating limited resources 2-15 hours

in advance to resolve the discrepancy between demand and reduced capacity. A major

challenge facing strategic TFM is the existence of weather uncertainties at this long look-

ahead time and the need to design traffic management plans that work well under a range

of weather possibilities.

In order to design effective approaches for optimal management strategies under

weather uncertainties, we have put forth efforts along two parallel directions. First is

the modeling of stochastic weather propagation dynamics. A stochastic automation-based

weather simulator has been developed to track the spatiotemporal propagation of convec-

tive weather [112, 149, 150]. Second is the modeling of traffic management strategies, fol-

lowed by the evaluation and parameter optimization of these strategies under uncertainty

[136, 151, 154, 155]. In [136], five typical flow management strategies, including routing,

Miles-in-trail/minutes-in-trail (MIT/MINIT), Time-based metering (TBM), Airspace Flow

Program (AFP) and Ground Delay Program (GDP) are captured as queuing-type flow re-

strictions. In [151, 155], effective methods are developed to evaluate the impact of these

management strategies on the performance of traffic systems. Along the direction of optimal

strategy design, we studied in [155] a simple optimal management strategy design problem:
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the design of MINIT restriction on a flow entering a single stochastic weather zone. The

optimal restriction design is based upon an effective simulation method, called Probabilistic

Collocation Method (PCM) [58, 133].In particular, PCM permits the use of a few smartly

selected weather samples to define a reduced-order polynomial representation of the design

space under uncertainty, from which the optimal restriction can be easily derived.

Despite these advances, we note the above analysis does not easily generalize to

the design of multiple flow restrictions for multiple regions (or even NAS-wide). This is

because multiple-region design problems cannot be simply decomposed into single-region

design problems, due to the correlation of weather propagation at these regions. To achieve

optimal flow restriction design for multiple correlated regions, we conducted fundamental

studies on the PCM method when multiple correlated parameters are involved. In particular,

we developed the multivariate PCM approach, which permits the selection of simulation

points on correlated multi-dimensional uncertain parameter space to produce reduced-order

mappings with zero-error mean prediction [154].

In this chapter, we demonstrate the capability of the multivariate PCM in design-

ing optimal management strategies for multiple regions subject to spatiotemporal correlated

weather events. In particular, we consider the scenario of multiple flows entering neighboring

weather zones, and provide solutions to address the following two typical management design

problems: 1) the design of optimal MINIT management initiatives for these regions, and 2)

the design of rerouting management initiative (flow fraction assignment) for these multiple

flows. To permit the PCM approach for optimal management design, we also study how a

few key statistical parameters (such as weather starting time, duration, and intensity) can

be used to capture the key characteristics of correlated weather events. The organization

of the chapter is arranged as follows. Section 7.2 includes the modeling framework and the

problem formulation. Section 7.3 contains a brief review of the PCM method. In Section 7.4,
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the empirical data-based multivariate PCM approach is applied to design multiple MINIT

restrictions in correlated weather zones. In Section 7.5, a similar approach is applied to op-

timal rerouting design. The difference resides in the additional effort to find the distribution

of routing parameters. Discussions and conclusions are provided in Section 7.6.

7.2. Model Description and Problem Formulation

In this section, we first describe the integrated weather and flow restriction models

that permit our analysis, and then mathematically formulate the two optimal air traffic flow

management design problems: MINIT restriction design and rerouting design. In order to

better illustrate our modeling and optimal design approaches, we use a specific two-region

example throughout this chapter as shown in Figure 7.1. Despite the simplicity of the

example, the same design procedure applies to larger-scale problems. We also note that

both the weather and flow restriction models are highly abstract models, ignoring a variety

of operational issues. However, such abstractions are reasonable considering the following

two facts: 1) there is large uncertainty in the strategic time-frame, and 2) the goal is strategic

management of traffic flows instead of tactical control of flight trajectories.

7.2.1. Weather Model

The weather model that we use in this chapter adopts the stochastic weather simulator

developed in [112]. In particular, the simulated airspace is decomposed into small grids, with

white color representing normal capacity and black color denoting capacity reduction caused

by convective weather (see Figure 7.1. The stochastic propagation of convective weather is

governed by the influence model [8], with parameters estimated from hourly probabilistic

weather forecasts. Running the simulator can produce a rich number of weather ensembles

covering the range of weather possibilities. From analyzing the weather ensembles or directly

the stochastic weather model, we can obtain the statistics of weather propagation, which is
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a)

b)

Figure 7.1. The development of a cold font causes correlated capacity reduc-

tion in the two neighboring regions A and B: a) at the beginning of simulation;

b): after the cold front leaves region A.

the core information needed for our optimal strategy design under uncertainty.

In this chapter, we consider two scheduled streams of flows entering two neighboring

regions A and B with the same capacities. A cold front (indicating a weather front associated

with convective weather) passes through these two regions sequentially, producing capacity

reductions as shown in Figure 7.1b. The percentage of capacity reduction in each region

is defined as the fraction of black grids in the region at each moment. For instance, the
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capacity reduction in region B is 7/8 according to Figure 7.1b.

Here we use six random parameters to capture the stochastic weather propagation:

S1, N1, D1, S2, N2, and D2. In particular, the cold front hits region A from time S1 with a

reduced capacity N1. We assume that the capacity remains constant (i.e. average capacity

reduction) for a span of D1 before the weather leaves the region. After that, its capacity re-

turns to its original value. Similarly, region B undergoes weather-induced capacity reduction

from time S2, with capacity reduced from the normal value Nrb(= Nra) to N2, for a span of

D2. As the same cold font passes through the neighboring two regions, there is interdepen-

dency between the sets of random weather parameters associated with the two regions. For

instance, the start time S2 is dependent upon the duration D1 and start time S1 of region A

due to spatial weather propagation delay; the duration D2 is dependent upon the duration

D1 due to the correlation of propagation speed; and the capacity N2 is dependent upon N1

due to the correlation of weather intensity across time.

7.2.2. Flow Restriction Model

For each region, we use the discrete-time queuing model (or saturation model) de-

veloped in [130, 136, 151]to capture the impact of weather and management restrictions on

flows (as shown in Figure 7.2). Assume that at each time step k, a total of x[k] aircraft come

into the region. Because of the reduced capacity N [k] (caused by both the management

restriction and the weather constraint), not all aircraft can enter the region. In particular,

the crossing flow e[k] (number of aircraft passing the region) cannot exceed the capacity con-

straint. The delayed aircraft are assumed to be accumulated in the buffer at the boundary

of the region, waiting to pass in the next time step k + 1. The number of aircraft in the

buffer B[k] is called the backlog at time k. Backlog is an intuitive measurement to abstract

region congestion.
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Figure 7.2. Illustration of saturation model

Management-induced backlog is usually associated with lower cost compared with the

backlog directly caused by unexpected weather. This is because well-planned management

reduces the cost for pilots and human controllers to deal with the emergent encountering

of bad weather. In order to capture this realistic consideration, we differentiate weather-

induced backlog Bw[k] and management-induced backlog Bm[k]. In our model, when both

weather-induced capacity constraint Nw[k] and management restriction Nm[k] are acting

on a flow, we assume that the flow first passes the management restriction and then the

weather-induced capacity constraint. The dynamic of the saturation model is captured by

Equations 138–141 in [151]:

(138) Bw[k] = max(Bm[k − 1] +Bw[k − 1] + x[k]−Nm[k], 0)

(139) em[k] = min(Bm[k − 1] +Bw[k − 1] + x[k], Nm[k])

(140) Bw[k] = max(em[k]−Nm[k], 0)

(141) ew[k] = min(em[k], Nm[k])
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When there is no management restriction, backlog is only caused by the weather-induced

capacity constraint Nw[k]. In this case, the dynamic of the model can be simplified to:

(142) ew[k] = min(Bw[k − 1] + x[k], Nw[k])

(143) Bw[k] = max(ew[k]−Nw[k], 0)

We integrate the above stochastic weather model and the flow restriction model to

simulate the impact of stochastic weather and management restriction on flows. In particular,

each weather ensemble generated by the stochastic weather simulator produces a reduced

capacity sample Nw[k] for each k. The capacity sample and the sequence of deterministic

management restrictions (which are subject to design), feed to the above dynamics to obtain

the associated total cost over a time span.

7.2.3. Problem Formulation

In this section, we mathematically formulate the design of two types of flow manage-

ment initiatives: 1) MINIT restriction design for these two regions, and 2) rerouting of flows

to these two regions. As convective weather events are random at the strategic time-frame,

the resulting backlogs are also uncertain. As such, we define the performance metric using

backlog statistics, and in particular the mean backlog under a range of weather possibilities.

Let us detail the formulation of each optimal management design problem.

Problem 1: Optimal MINIT restriction design under weather uncertainty.

The aim of this management is to transfer weather-induced backlogs (associated with

high unit cost) to management-induced backlogs (associated with low unit cost), through

the design of start, duration, and strength of MINIT initiatives.

This problem is formulated as designing a set of management design variables to

minimize a cost function as shown below:

199



• Management design variables: the start time SA, duration DA, and strength NmA

of the MINIT restriction for region A. A similar set of design variables are defined

for region B, denoted as SB, DB, and NmB.

• Cost function: total mean cost of weather- and management- induced backlogs over

a time span [0, kp], defined as
∑kp

k=0(C1E(Bm[k]) + C2E(Bw[k])). C1 and C2 are

scaling factors representing the unit costs associated with each type of backlogs.

Problem 2: Optimal Rerouting design under weather uncertainty.

The aim of this management action is to route flows to regions less affected by con-

vective weather. In particular, when bad weather is not present in region A or region B,

total inflows are equally distributed to the two regions. When the cold front comes to region

A, the region has less capacity than region B, and as such more flow should be routed to

region B. At this stage, we use PA1 to denote fraction of the total flow assigned to region A,

and in consequence (1− PA1) of the total flow is assigned to region B. Later when the cold

front propagates to region B, more fraction of flow should be assigned to region A instead.

We then denote a fraction PA2 of the total flow distributed to region A, and (1 − PA2) to

region B.

This problem is then formulated as designing a set of management design variables

to minimize a cost function as shown below:

• Management design variables: the flow redistribution start time SA and flow fraction

PA1 when region A is affected by convective weather; flow redistribution switching

time Swand the corresponding flow fraction PA2 when weather is affecting regions

B; and time SEwhen both flows restore their original fractions 0.5.

• Cost function: total mean cost of weather-induced backlogs over a time span [0, kp],,

defined as C2

∑kp
k=0E(Bw[k]). C2 is the scaling factor representing the unit cost
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associated with weather-induced backlog. Since no management restriction acts on

flows, the cost is determined only by weather-induced backlog.

7.3. Review of the Probabilistic Collocation Method

The probability collocation method is an effective method to evaluate the uncertainty

of computationally expensive systems. For a system with an uncertain input parameter, the

typical method to evaluate the output performance of the system is to enumerate a large

number of samples for this input parameter, and then simulate the system output at each

of these input samples. The above so-called Monte Carlo method is time-consuming due to

the large number of computationally expensive simulations. The PCM approach can signifi-

cantly save computation, through smartly choosing a few parameter samples and simulating

the system output at these selected parameter samples. PCM works because the limited

parameter samples (PCM points) are selected based upon the probabilistic distribution of

the parameter, and thus cover the likely range of parameter values. It was shown that an

nth-order polynomial PCM mapping constructed from the selected PCM points and their

corresponding simulated outputs can predict the same mean of the original system mapping

of order not greater than 2n-1 [132]. We have shown in [132] that the PCM mapping does

not only produce the correct mean statistics but also other interesting statistics such as

cross-correlation, and is the minimum mean-square estimator among polynomials of certain

order. This statistical analysis fundamentally suggests that the PCM mapping is a good

approximation of the original mapping over the likely range of parameter values.

Another relevant work we have developed on PCM theory is the use of PCM when

multiple uncertain parameters are involved. A two-variable example is shown in Figure

7.3. In general, the single-variable PCM approach cannot be directly generalized to the

multivariate case. We studied the general form of original mappings and conditions on
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parameter distributions that permit the multivariate PCM mapping to produce the same

mean of the original mapping in [154]. Here is a brief summary of the main results. If the

multiple uncertain parameters are independent, or the original mapping does not include

cross-terms (e.g., terms with the multiplication of multiple uncertain parameters), we can

select PCM points based upon the marginal distribution of each parameter independently.

The mapping constructed from the evaluation of these PCM points estimates the correct

mean. If any of the above two conditions are violated, choosing PCM points based upon

marginal distributions in general cannot produce the correct mean. In this case, we show

that a PCM point selection procedure based upon marginal distributions can lead to a

mapping with the correct mean under certain conditions. The multivariate PCM approach

is widely applicable to applications that involve computationally-expensive simulation of

multiple uncertain parameters.
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Figure 7.3. a) The joint probability distribution; b) The original mapping;

and c) The reduced-order multivariate PCM mapping. The black dots repre-

sent PCM points.

As in many applications parameter distributions are not directly available, we devel-

oped an empirical data-based PCM approach to obtain PCM points directly from parameter
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data set [132]. The procedures of the empirical-date-based PCM points selection are briefly

summarized here. We first find the moments or conditional moments of each input parameter

from the sample data set. Then, orthogonal polynomial or conditional orthogonal polynomial

[34] for each parameter can be constructed accordingly. Their roots are the PCM points used

for simulation and uncertainty evaluation. In this chapter, we take one step further in the

sense of using the PCM mapping to find optimal decision-making solutions. We will use the

empirical data-based multivariate PCM approach to design optimal air traffic management

initiatives robust to a range of weather possibilities.

7.4. Optimal MINIT Design under Weather Uncertainty

In this section, we first elaborate upon the procedures to use the multivariate PCM-

based approach for optimal MINIT restriction design. We then show the optimal design

results and the advantages of the proposed approach.

7.4.1. Procedures of the Multivariate PCM-based Approach for MINIT Design

Step 1: Weather data generation.

We utilize the weather simulator [112] to generate a large set of weather ensembles,

and then find the six weather parameter values (S1, N1, D1, S2, N2, and D2) associated with

each weather ensemble. Because of spatiotemporal correlation of weather propagation, these

parameters are subject to interdependency. In particular, the start time S2 is dependent

upon D1 and S1; the duration D2 is dependent upon the duration D1; and the reduced

capacity N2 is dependent upon N1. Here, weather start time S is marked by the first time

the region has at least two black grids. The difference between the last time the region has at

least two black grids and S is defined as duration D. The average reduced capacity during

the span of weather is calculated as the normal capacity scaled by the average fraction of

white grids during this span.
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Step 2: Selection of multi-dimensional weather PCM points.

Based upon the set of weather parameters obtained in Step 1, the empirical data-

based multivariate PCM is used to find the critical PCM points [58]. To do that, we first find

the sample moments of D1, S1 and N1, as they serve as the parameters that D2, S2, N2 are

conditioned upon. From these sample moments, the PCM points along each of the dimensions

D1, S1 and N1 are obtained. The PCM points along the dimension of D2 and S2 are then

selected based upon the conditional sample moments of D2 and S2 for each combination of

the PCM points for D1 and S1. Similarly, the PCM points along the dimension of N2 are

selected from the conditional sample moment of N2 on each of the PCM points for N1.

Step 3: Identification of PCM management mapping.

Our previous work [155] suggests that for each deterministic weather data ensemble,

the best MINIT design concurs with the set of deterministic weather parameters, i.e. SA =

S1, SB = S2, DA = D1, DB = D2, NmA = N1, and NmB = N2. As such, the weather

PCM points selected from Step 2 can directly be used as the PCM points for management

evaluation. For each 6-tuple management PCM point denoting a specific design, all weather

PCM points are used to find the associated total mean cost defined as
∑kp

k=0(C1E(Bm[k]) +

C2E(Bw[k])) in section 7.2.3. The low-order PCM mapping f(SA, DA, NmA, SB, DB, NmB) is

then uniquely defined based upon the 6-tuple management design points and their associated

total mean costs.

Step 4: Derivation of optimal management solution.

As the management mapping is a multi-dimensional polynomial function defined in

a feasible space of the six management design variables, we can find the optimal solution,

though, for example, making the partial derivatives of the total mean cost with respect to

each of the variables zero when the function is convex in the feasible space. The solution

associated with the minimum total mean cost in the feasible management space represents
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the optimal management design.

7.4.2. Optimal Management Design Results

In this two-region example, the normal capacity and of the two regions are both 10

per unit time (defined as Δt = 15min). The simulator generates 138611 weather ensembles

to cover the range of weather possibilities. The distribution of each of the six weather

parameters is shown in Figure 7.4.

We construct a PCM mapping f(SA, DA, NmA, SB, DB, NmB) with the degree of each

variable not greater than 2 to approximate the true mapping between management design

variables and the total mean cost. To come up with this mapping, we apply empirical data-

based multivariate PCM approach to identify 3 PCM points along each dimension of weather

parameters according to the explanation in Step 3. In particular, we first choose 3 PCM

points along D1 as 0.75hour, 1.25hour, 1.75hour, along S1 as 0.75hour, 1.5hour, 2hour, and

along N1 as 3.5561, 4.8602, 6.1310 based on their sample moments respectively. Next, we

identify PCM points along the dimensions of D2, S2 and N2. Because of spatiotemporal cor-

relation of weather parameters in region A and region B, each 3-tuple PCM point (D1, S1, N1)

results in different conditional distribution of weather parameters associated with region B

(see examples shown in Figure 7.5), and thus different set of PCM points. Specifically, as

D2 and N2 are conditional upon D1 and N1 respectively, 3 selected PCM points for each of

D1 and N1 will result in 9 selected PCM points each for D2 and N2; Similarly, since S2 is

dependent upon both S1 and D1, 3 × 3 = 9 combinations of the PCM points of S1 and D1

identify 9× 3 = 27 PCM points for S2. Therefore, a total of 36 = 729 weather PCM points

are selected.

We assume that two streams of deterministic flows sampled from a Poisson pro-

cess with mean 5 per 15 minutes enter the two regions. As weather PCM points con-
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Figure 7.4. a) Distribution of weather parameters in region A. b) Distribu-

tion of weather parameters in region B.
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Figure 7.5. a) Distribution of DB conditioned upon 3 selected PCM co-

ordinates of DA. b) Distribution of NB conditioned upon 3 selected PCM

coordinates of NA.

cur with management PCM points, we utilize this property to identify the management

mapping. In particular, for each management PCM point, we simulate and evaluate the

total cost at each of the selected 729 weather PCM point based on the cost function∑kp
k=0(C1E(Bm[k]) + C2E(Bw[k])), where kp = 24 hours, C1 = 1 and C2 = 4. Then, all

of the 729 management PCM points and associated total mean costs are used to identify
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the coefficients in the reduced-order PCM mapping between management variables and to-

tal mean cost. In the derived polynomial mapping, the degree of each variable is less than

3. Furthermore, we notice that the total mean cost of the two regions is the summation

of that of each region. In particular, the mapping f(SA, DA, NmA, SB, DB, NmB) can be

decomposed as fA(SA, DA, NmA) + fB(SB, DB, NmB), where fA and fB are the functions

subject to management variables in each region. This expression can significantly reduce the

terms/coefficients of the polynomial mapping function from 729 to 33+33 = 54, by eliminat-

ing the cross terms involving management variables of both regions. Least Square Estimation

(LSE) is then applied to identify the 54 coefficients of this further reduced-order mapping.

Optimal management solution can be found as SA = 1.23hour,SB = 2.86hour,NmA = 3.24,

NmB = 4.59,DA = 1.36hour, and DB = 1.245hour, through taking partial derivatives of this

PCM mapping function with respect to each of the design variables. We expect that a good

MINIT management planning should be able to reduce the total mean cost of air traffic

congestion under weather uncertainty, because of its objective to transform high unit cost

(C2) weather-induced backlog into low unit cost (C1) management-induced backlog. In our

example, the total mean cost under optimal MINIT management for region A is 61.47, and

region B is 152.39. If without management strategies, the total mean cost of two regions is

413.96, with 152.312 in region A and 259.65 in region B.

We also apply the Monte Carlo simulation to find the optimal solution: SA =

1hour,SB = 2.5hour, NmA = 3.3 and NmB = 5,DA = 1.5hour, DB = 1.5hour. The results

match well with those obtained using the PCM approach. The small difference is mainly

due to the 15-minute simulation resolution. Comparison suggests that the PCM approach is

capable of identifying the near-optimal solution with significantly fewer simulations. Specifi-

cally, PCM approach needs only 729×729 simulations. This first 729 stands for the number

of selected management PCM points and the second 729 denotes the number of selected
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weather PCM points to simulate. However, the Monte Carlo approach takes a tremendously

larger number of simulations (105×138611) to cover the 6-variable design space. This study

suggests the main advantage of PCM-based approach is in terms of computational efficiency,

making this approach promising for real time management.

As it is difficult to visualize our 7-dimentional management design mapping (including

6 input management variables and one output), we fix four parameters SA, SB, DA, and

NmAat their optimal values, and only vary DB and NmB .The three-dimensional mapping

is demonstrated in Figure 7.6a. We also apply the Monte Carlo simulation to construct a

mapping as shown in Figure 7.6b. The optimal solutions suggested by the 3-dimentional

mappings are marked as red spots in those two figures. We notice that the shapes of the

two mappings are slightly different because we use a polynomial function to approximate

a complex non-linear air traffic system. However, the optimal solutions generated by those

two methods are close to each other, which verify the capability of the PCM-based approach

to identify a good mapping and to obtain the best management design.

7.5. Optimal Rerouting Design under Weather Uncertainty

Re-routing is another effective method to reduce region congestion. In the two-region

example, because of the sequential influence of the cold front to the two regions, it is unlikely

that the two regions will be subject to capacity reduction at the same time. As such,

redistributing flows into the two regions at different times can also lead to significant cost

reduction. In this section, we first illustrate the procedures of multivariate PCM-based

optimal rerouting design. We then present the results using the two-region example, and

discuss the attractive performance of the PCM-based approach, in terms of accuracy and

efficiency.
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Figure 7.6. Mapping between two design variables and the total mean cost,

generated by a) the PCM-based approach and b) the Monte Carlo simulation

approach.

7.5.1. Procedures of the Multivariate PCM-based Approach for Optimal Rerouting Design

The first two steps regarding weather data generation and weather PCM point selec-

tion are the same as those in the MINIT design, and thus are skipped here. Please refer to

Section 7.4.1 for the details.

Step 3: Identification of the rerouting management mapping.

In order to achieve the mapping between rerouting management parameters and the
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associated mean total costs, we first need to identify the distributions of routing design

variables. This step is significantly different from that in the MINIT restriction design.

In particular, in the MINIT restriction design, the distributions of design parameters are

precisely same as those of the weather parameters; however in rerouting there does not

exist such equivalence. In order to obtain the distributions of routing variables, we use the

following approach.

For each selected 6-tuple weather PCM point, we find the associated optimal rerouting

design (SA, PA1, Sw, PA2, SE) using a simple search algorithm. This step does not need large

computational time, as the initial optimal management parameter values to be used as the

seeds in the search algorithm are very easy to guess, and in fact these initial guesses are likely

to be very close to the optimal values. For instance, a good guess of the switching time Sw

is the start time S2 of weather in region B. Searching around S2 can quickly lead to the

optimal Sw. The distributions for these optimal solutions are the same as the distributions

of the associated weather. Next, based upon the distributions of optimal solutions, we

apply the multivariate PCM approach again to find the 5-tuple rerouting PCM points. To

find the associated cost for each of these rerouting PCM points, the 6-tuple weather PCM

points selected in step 2 are used to obtain the total mean cost defined asC2

∑kp
k=0E(Bw[k])

in section 7.2.3 A low-order mapping f(SA, PA1, Sw, PA2, SE) between the rerouting PCM

points and the associated costs can then be easily constructed.

Step 4: Derivation of the optimal management solution. The optimal management

solution can then be found from the mapping f(SA, PA1, Sw, PA2, SE). If the function is not

convex, we can use search algorithms such as the trust-region-reflective algorithm to obtain

the optimal routing solution in the feasible management space.
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7.5.2. Optimal Rerouting Design Results

To illustrate the procedure and understand the performance of the multivariate PCM-

based rerouting design approach, we consider the same weather ensemble data used in the

MINIT design. In particular, the same 729 6-tuple representative weather samples are se-

lected as the weather PCM points. In good weather conditions, the two streams of inflows

entering the two regions are the same as those in MINIT example (i.e. each flow is a sampled

Poisson process with mean 5 per 15 minutes). The rerouting plan works as follows: during

the time span [SA, SW ), less flow (PA1 of the sum of the two inflows) is assigned to region A

because of its associated weather-induced capacity reduction. Similarly, more flow (PA2 of

the total inflows) is distributed to region A from SW to SEas the weather has passed region

A and is affecting region B.

To obtain the multivariate PCMmapping associated with design variables SA, PA1, Sw,

PA2, andSE, we must identify critical management PCM points first. However, the 6-tuple

weather PCM points cannot directly related to the 5-tuple management PCM points. Addi-

tional effort is needed to derive the distributions of the management variables, from which

the management PCM points can be found. Our idea is to use the 729 representative weather

PCM samples (with their associated probabilities) to obtain the distribution of management

variables. To do that, for each deterministic PCM weather sample, we use a simple search

algorithm to find the set of best rerouting parameter values associated with the minimum

cost C2

∑kp
k=0E(Bw[k]), where kp = 24 hour and C2 = 4, to be consistent with the settings

of the MINIT design. This process leads to 729 typical optimal rerouting management of

the form of SA, PA1, Sw, PA2, SE. Each of the 729 5-tuple optimal management designs is

associated with the same probability of the corresponding weather scenario.

Then, we assume that the mapping between routing parameters and total mean cost
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can be well captured by a polynomial with degree of each variable less than 3. This is the

minimum-degree mapping to find potential optimal solutions. Using the empirical data-

based PCM approach, 3 management points for each routing variable are selected as SA :

0.75hour, 1.25hour, 1.75hour , PA1 : 0.1575, 0.2390, 0.3077, Sw : 1.75hour, 2.5hour, 3hour,

PA2 : 0.8982, 0.7353, 0.5956 and SE : 3hour, 4.25hour, 5.5hour, from their distributions re-

spectively. We mentioned that our selection of PCM management points is essentially based

upon the 729 typical weather scenarios instead of the entire 138611 weather ensembles to save

computation. To justify the correctness of our selected management PCM points based upon

the reduced weather ensemble set, we compare them with the selections obtained through

Monte Carlo methods (see Figure 7.7). The PCM points for each rerouting management pa-

rameter obtained using the two methods are very close. This step results in a total 35 = 243

management PCM points.

Next, we evaluate the total mean costs at these selected management PCM points

to obtain the management PCM mapping. Again, for each management PCM point, we

estimate the total mean cost based on the 729 weather PCM points instead of the large

set of original Monte Carlo weather samples. To verify the accuracy of this estimation, we

also compare the total mean backlogs associated with each of the management PCM points,

obtained using the two methods. As shown in Figure 7.8, it is clear that the use of weather

PCM points can estimate the total mean backlog very well despite the significant reduced

simulations. Now, we are able to construct a 6-dimentional polynomial management mapping

function f(SA, PA1, Sw, PA2, SE) with degree of each management variable not greater than

two, based upon the 243 PCM management points and the total mean cost associated with

each of them.

We notice that this routing management mapping is not convex within the fea-

sible management domain by checking its second partial derivative. Instead, we apply
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trust-region-reflective searching algorithm to find the best rerouting management as SA =

0.75hour, PA1 = 0.21, Sw = 2.59hour, PA2 = 0.75 and SE = 5hour. The corresponding total

mean cost is 37.1420, which is much better than the one without management 413.96, and

in fact is also better than that of the MINIT design. The results show that the delay can be

effectively reduced by the rerouting initiative.

We also verify our results through a comparison with the Monte Carlo method. In

particular, the Monte Carlo method finds the optimal solution to be: SA = 1hour, PA1 =

0.18, Sw = 2.5hour, PA2 = 0.72 and SE = 5.25hour. The total mean cost is 58. The compar-

ison suggests that the PCM approach is able to find the near-optimal for rerouting design

under weather uncertainty. The differences are again mainly caused by the simulation res-

olution (15mins). The PCM-based re-routing design needs much fewer simulation times

(243 × 729) than that of Monte Carlo approach (50000 × 138611) due to the use of rep-

resentative management PCM points and weather PCM points instead of the huge Monte

Carlo ensemble space. The significant improvement of computational efficiency makes PCM

a promising approach for real time management design.

As five management variables are involved in the rerouting design, it is hard to

visualize the shape of 5-dimentional management design space. To demonstrate the mapping

and the optimal solution in an intuitive way, we fix SA, Sw,andSE at their optimal values and

only vary PA1 and PA2. The resulting three dimensional mapping and the optimal solution

are shown in Figure 7.9a. We similarly show the 3-dimentioanl mapping using the Monte

Carlo approach in Figure 7.9b. As we use a polynomial function to approximate the real

design mapping, it is generally different in shape from the true mapping; however the two

mappings are similar in the likely range of parameter values. Moreover, the PCM-based

approach can find the near optimal solution well.
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7.6. Concluding Remarks and Future Work

This chapter introduces a novel multivariate-PCM-based approach to effectively de-

sign optimal strategic management strategies under spatiotemporally-correlated weather un-

certainty. The key idea of this approach is to select representative weather scenarios based

upon the understanding of spatiotemporally-correlated weather distributions; and then select

representative management points to construct a low-order approximated multi-dimensional

mapping between the management parameters and system performance, from which the

near-optimal solutions can be achieved. In order to better illustrate this approach, we use

an example with two correlated weather zones and develop in detail the design procedures

for two widely-used management initiatives: MINIT and Rerouting. The performance of

the PCM-based optimal management design approach is verified through a comparison with

that of the Monte Carlo method. The advantages of the PCM approach are summarized

below. First, compared to the Monte Carlo method to obtain optimal solutions, the multi-

variate PCM approach is more computationally effective, and thus more suitable for real-time

applications. Second, the multivariate PCM approach produces an explicit polynomial ap-

proximation of the original system. Besides producing the optimal solution, the mapping can

produce other useful insights, such as the sensitivities of design variables, the visualization

of design space, etc. Despite the advantage of this approach for optimal decision-making,

potential problems may arise especially when the number of uncertain parameters and design

variables are large. We envision that the PCM approach can be combined with Model Pre-

dictive Control for a better design of optimal decision-making strategies under uncertainty.

We will leave this direction to the future work.

215



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hour

P
ro

b
a
b
ili

ty

Distribut ion of SA

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

Fraction

P
ro

b
a
b
ili

ty

Distribut ion of PA1

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Hour

P
ro

ba
bi

lit
y

Distribut ion of Sw

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Fraction

P
ro

b
a
b
ili

ty

Distribut ion of PA2

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Hour

P
ro

ba
bi

lit
y

Distribut ion of SE

Figure 7.7. Comparison of 3 selected PCM points for each routing manage-

ment parameter. The distribution of each management parameter is shown in

blue. The red spots stand for the PCM management points obtained using

729 representative weather scenarios. The management PCM points derived

using the Monte Carlo weather scenarios are marked in black circles.
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Figure 7.9. Mapping between two design variables and the total mean cost,

generated by a) the PCM approach and b) the Monte Carlo simulation ap-

proach. The red spots are the best routing fractions whenSA, Sw, and SE are

fixed at their optima.
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CHAPTER 8

EFFECTIVE AND SCALABLE UNCERTAINTY EVALUATION FOR LARGE-SCALE

COMPLEX SYSTEM APPLICATIONS

8.1. Introduction

Modern large-scale complex systems typically involve a large number of uncertain

parameters, which modulate the systems’ dynamics and pose significant challenges for real-

time system evaluation and decision-support. For instance, the management of complex

information systems requires methodologies to achieve high throughput and low latency un-

der demand uncertainties. Similarly, strategic air traffic flow management is concerned with

designing management initiatives that are robust to a wide range of weather uncertainties

at a long look-ahead time. As a step toward real-time management, it is critical to develop

a systematic procedure to evaluate statistical system performance in the presence of un-

certain parameters. This problem can be formulated as the prediction of output statistics

subject to a set of uncertain input parameters. The problem has been typically addressed

using the Monte Carlo simulation method, which simulates at a very large set of randomly

selected simulation points, and then calculates the output statistics using the simulated out-

puts. In large-scale complex system applications, each simulation consumes considerable

computational time; as the Monte Carlo simulation method requires a very large number of

simulations to converge, the method does not meet the requirement for real-time manage-

ment. The uncertainty evaluation procedure needs to be efficient in time and also scalable

with the number of uncertain parameters.

The Multivariate Probabilistic Collocation Method (M-PCM) was developed to effec-

tively evaluate the output statistics of a system subject to multiple uncertain input parame-

ters, which may or may not be correlated ([152]). Compared to the Monte Carlo method, the
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M-PCM permits using a significantly reduced number of simulations to predict the correct

mean of the original system output. Specifically, the method suggests a procedure to smartly

select a few values for each uncertain input parameter as simulation points. Simulations eval-

uated at these points can identify a reduced-order mapping between input parameters and

the output, from which the output statistics are readily obtained. The selection procedure is

based on statistical knowledge of uncertain input parameters, such as joint probabilistic dis-

tribution functions (pdfs), historical data sets, or as simple as low-order moments, e.g., the

mean and the variance. The correct predictions of mean output as well as several other impor-

tant statistics suggest that the reduced-order polynomial mapping approximates the original

mapping well over likely ranges of parameter values. The reduced-order mapping then fa-

cilitates further studies, including parameter sensitivity analysis, optimal decision-support

under uncertainties, and the application to strategic air traffic management [79, 155, 156].

Although the M-PCM significantly reduces the number of simulations required to

predict the correct mean output, it is not scalable to large-scale system applications that

typically involve a large number of uncertain parameters. In particular, the number of

simulations increases exponentially with the increase of the number of uncertain parameters,

and thus leads to potential computational load issues for real-time applications. In this

chapter, we study further reducing the number of simulations from the M-PCM designs.

Conceptually, this further reduction is possible, as the M-PCM assumes the existence

of all cross-multiplication terms in system mappings. As many of these cross-terms do

not exist in realistic applications, the number of mapping coefficients can be significantly

reduced and thus requires a lower number of simulations to estimate. In this chapter, we

investigate the selection of a subset of M-PCM points to predict the correct mean output. In

addition, we note a practical numerical issue on the success of M-PCM. In particular, many

system simulations have constraints on the resolutions of input parameters, and thus require
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numerical truncation of selected points for simulation. Such truncation may unfortunately

fail the mean output prediction. As such, we also require the selected subset to be robust to

such numerical errors.

In this chapter, we explore the use of an experimental design method, called the

Orthogonal Fractional Factorial Design (OFFD) [36, 46, 102, 105] to further reduce the

number of simulations from the M-PCM. Main contributions of this chapter are summarized

in the following.

• An integrated design to enhance the scalability and applicability of the M-PCM for

uncertainty evaluation. By integrating M-PCM with OFFDs, the number of sim-

ulations is significantly further reduced. We focus on the case that each param-

eter in the original system mapping has a degree of up to 3. We show that for

an m-parameter system, the integration of M-PCM and OFFDs is able to reduce

the number of simulations from 22m to the range of
[
2�log2(m+1)�, 2m−1

]
, where �x�

denotes the nearest integer above the number x. We prove that the integrated M-

PCM-OFFD predicts the correct mean of the original system mapping, and is the

most robust to numerical errors among all designs of same the size. This study

enhances M-PCM for practical uncertainty evaluation for large-scale systems.

• A novel statistical measure and the optimality study of OFFDs. We explore the

performance of OFFDs in terms of the robustness to numerical errors for output

statistics prediction, which has never been studied in the literature per knowledge

of the authors. We adopt a quantitative robustness metric in the matrix theory [33],

and show that the subset of simulations selected by OFFDs is optimal under this

metric. This study provides new quantitative insights into the attributes of OFFDs,

and broadens their application domains.
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The remainder of this chapter is organized as follows. In Section 8.2, fundamentals

of the M-PCM and OFFDs are introduced. In Section 8.3, the algorithm of the integrated

M-PCM-OFFD is presented, and the main results on its performance are presented from two

aspects: mean output prediction and robustness to numerical errors. Section 8.4 includes

simulation studies on an illustrative example. Finally, a brief conclusion and a discussion of

future works are included in Section 8.5.

8.2. Preliminaries

We first review fundamentals of the M-PCM and motivate our approach to further

reduce the number of simulations. We then review basics of the OFFDs and discuss the

feasibility of integrating the two methods.

8.2.1. M-PCM

The M-PCM was developed to effectively evaluate uncertainty for systems with mul-

tiple uncertain input parameters. In this chapter, we consider the case when these input

parameters are independent; however we note that the correlated M-PCM was developed in

[152]. As Theorem 1 in [152] generally shows, for a system mapping (called response surface

in the experiment design literature) of m uncertain parameters with the degree ki of each

parameter xi up to 2ni− 1, a total number of 2m
∏m

i=1 ni simulations are needed to uniquely

determine its mapping g(x1, x2, ..., xm) =
∑2n1−1

k1=0

∑2n2−1
k2=0 ...

∑2nm−1
km=0 Ψk1,...,km

∏m
i=1 x

ki
i , where

Ψk1,...,km ∈ R are the coefficients. The M-PCM suggests a procedure to choose ni sim-

ulation points for each parameter, and produces a reduced mapping g∗(x1, x2, ..., xm) =∑n1−1
k1=0

∑n2−1
k2=0 ...

∑nm−1
km=0 Ωk1,...,km

∏m
i=1 x

ki
i with the degree of each parameter up to ni − 1,

where Ωk1,...,km ∈ R are the coefficients. The reduced-order mapping predicts the correct

mean output of the original mapping.
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8.2.1.1. Design Procedures

The three major steps of the M-PCM method are briefly summarized below. Please

refer to [152] for the details.

Step 1: Choose simulation points. For each input parameter xi, i = 1, 2, · · · , m, find

its orthonormal polynomial hni
i (xi) of degree ni based on the statistics of xi, such as the pdf,

historical data, or low-order moments. The roots of hni
i (xi) are the ni M-PCM simulation

points for xi, denoted as xi(1), ..., xi(ni).

Step 2: Run simulations at selected simulation points. For each simulation point

identified in Step 1, run simulation and find the associated output.

Step 3: Produce the low-order mapping. Calculate the coefficients Ωk1,...,km in the

low-order mapping g∗(x1, x2, ..., xm) by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω0,...,0

...

Ω0,...,nm−1

...

Ωn1−1,...,nm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= L−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1(1), ..., xm(1))

g(x1(1), ..., xm(2))

...

g(x1(n1), ..., xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
1(x1(1))...x

0
m(xm(1)) · · · x0

1(x1(1))...x
nm−1
m (xm(1)) · · · xn1−1

1 (x1(1))...x
nm−1
m (xm(1))

x0
1(x1(1))...x

0
m(xm(2)) · · · x0

1(x1(1))...x
nm−1
m (xm(2)) · · · xn1−1

1 (x1(1))...x
nm−1
m (xm(2))

...
. . .

...
. . .

...

x0
1(x1(n1))...x

0
m(xm(nm)) · · · x0

1(x1(n1))...x
nm−1
m (xm(nm)) · · · xn1−1

1 (x1(n1))...x
nm−1
m (xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(144)

and xki
i (xi(j)) represents the ki-th power of xi evaluated at the simulation point xi(j).

Despite the significant computational load reduction enabled by the M-PCM, the

method does not scale with the number of uncertain parameters m. In particular,
∏m

i=1 ni
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runs are still needed to predict the correct mean output. We note that if all coefficients in the

low-order mapping g∗(x1, x2, ..., xm) are nonzero, the full set of M-PCM points is required

to uniquely determine the mapping, and in turn the mean output. In realistic applications,

however, many cross-terms in the mapping do not exist or have negligible effects on the

output [46]. Under such assumptions, only a subset of the M-PCM points is required. In

this chapter, we study using only a subset of the
∏m

i=1 ni simulations to predict the mean

output. Next, we review the OFFDs, which we will use to achieve this further reduction.

8.2.2. OFFDs

Orthogonal fractional factorial designs (OFFDs) provide an approach to select a sub-

set of experimental combinations that best estimate the main effects of single factors (or

parameters) and low-order interaction effects of multiple factors on the output. Please refer

to [36, 41, 46, 86, 102, 105] for the details of OFFDs.

8.2.2.1. Design Procedures

Consider an m-factor experiment, with each factor evaluated at P levels (or values).

A specific OFFD is described by Pm−γ
R . The fractionation constant, γ ∈ Z+, indicates

that a fraction of P−γ runs is selected from the full set of Pm runs [52, 102]. γ is in the range

of 1 ≤ γ ≤ m−�logP (m+1)� [46], with the upper bound determined by the minimum number

of runs to estimate m main effects and the mean. γ also determines the minimum number

of generators, which decides the effects (main effects or interactions) that are confounded

together [52, 102]. The length of the shortest generator is defined as the resolution R, which

is usually represented by Roman numerical subscript [102]. The procedures to generate the

Pm−γ
R OFFD are summarized in the following. We note that in statistical experiment design,

the selections of γ and R need to balance the degree of tolerable confounding and OFFD

sample sizes.

224



Step 1: Generate the Pm−γ full factorial design for m − γ factors. List all Pm−γ

combinations for m− γ factors.

Step 2: Specify γ generators. The selection of generators is somewhat flexible. In

principle, given γ and m, the highest resolution R is usually adopted to achieve the mini-

mal aliasing for effect estimation [46]. We can also refer to standard designs [38] to select

generators.

Step 3: Determine the levels of all other γ factors for each experimental run. The

generators selected in Step 2 are used to generate the levels for all other factors.

If we view all PCM points selected from the M-PCM as a full factorial design, the

OFFDs provide systematic procedures to select a subset of simulation points that breaks the

curse of dimensionality. In the next section, we present the integrated algorithm, and show

that it produces a low-order mapping that predicts the correct mean output of the original

mapping, and is the most robust to numerical errors.

8.3. Integrated M-PCM and OFFDs

In this section, we investigate the integrated M-PCM and OFFDs that together break

the curse of dimensionality for effective mean output prediction. For most of the analyses

here, we assume that each of the parameters in the original system mapping g(x1, x2, ..., xm)

is up to the degree of 3. This assumption is placed to facilitate the use of 2-level OFFDs,

which have mature design procedures (and in particular the formulation of generators). In

addition, we assume that uncertain input parameters are independent. We note that the

correlation among parameters, if known, can be exploited to further reduce the number

of simulations [72]. We leave these generalizations to the future work. We first present

the integrated algorithm, and then analyze its optimality using two metrics: 1) mean output
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estimation, and 2) robustness to numerical errors. We note that the specific OFFD to choose

is dependent on the knowledge that cross-terms have up to a certain number of parameters.

8.3.1. Algorithm Description

Consider an original system mapping of m input parameters, each with a degree up

to 3. Mathematically,

(145) g(x1, x2, ...xm) =

3∑
k1=0

3∑
k2=0

...

3∑
km=0

Ψk1,...,km

m∏
i=1

xki
i ,

where the coefficients Ψk1,...,km ∈ R. Assume that the random parameters x1, x2, ..., xm

follow independent distributions fX1(x1), fX2(x2), ... , and fXm(xm) respectively. In addition,

assume that cross-terms involve at most τ parameters, where τ is an integer in the range of

1 ≤ τ ≤ m. In other words, Ψk1,...,km = 0 if more than τ of k1, ..., km are non-zero.

The following integrated algorithm constructs a low-order mapping

g∗(x1, x2, ..., xm) =
1∑

k1=0

1∑
k2=0

...
1∑

km=0

Ωk1,...,km

m∏
i=1

xki
i ,(146)

where the coefficients Ωk1,...,km ∈ R, and Ωk1,...,km = 0 if more than τ of k1, ..., km are non-zero.

Algorithm:

Step 1: Choose 2m M-PCM simulation points. Follow Step 1 of the M-PCM algorithm

in Section 8.2.1.1 to select 2m PCM points. Here ni = 2 for all i. Check if 1 ≤ τ ≤ �m
2
� − 1.

If yes, move to Step 2; otherwise follow Steps 2 and 3 of the M-PCM algorithm as no

simulations can be further reduced by OFFDs.

Step 2: Calculate γmax to save 2−γmax simulations. Select γmax = m−�log2(
∑τ

i=0

(
i
m

)
)�

to save the maximum number of simulations. Here l =
∑τ

i=0

(
i
m

)
is the number of coefficients

in Equation 146.
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Step 3: Select simulation subsets using the OFFD. Follow the three steps of the

2m−γmax OFFD algorithm in Section 8.2.2.1 to select loffd = 2m−γmax simulation points from

the full set of 2m simulations obtained in Step 1. These points constitute the M-PCM-OFFD

simulation set.

Step 4: Run simulations. Run simulation at each of the 2m−γmax M-PCM-OFFD

simulation points generated in Step 3.

Step 5: Produce the low-order mapping. If the number of coefficients, l, equals the

number of simulation points selected using the OFFD, loffd, find the coefficients in Equation

146 similar to Step 3 of the M-PCM algorithm, but with a reduced-size L matrix, denoted

as the input matrix L′ ∈ Rl×l, which excludes those entries with rows representing points

not selected in the reduced M-PCM-OFFD simulation set, and those columns with more

than τ of k1, k2, ...km being nonzero. If l < loffd, the input matrix L′ ∈ Rloffd×l is not a

square matrix. In this case, the coefficients can be instead found by replacing L′−1 with

(L′TL′)−1L′T , according to the least square estimation [87].

We note that the ordering of entries in the L′ matrix does not need to strictly follow

that in Equation 144. They only need to match with the orderings of simulation points and

the simulated outputs.

8.3.2. Performance of Algorithm on the Estimation of Mean Output

In this section, we show that the reduced M-PCM-OFFD simulation set in Section

8.3.1 estimates the correct mean output of the original system mapping with the degree of

each parameter up to 3. We first present three lemmas. In Lemma 8.1, we show that the

reduced-order mapping does not introduce additional cross-terms.

Lemma 8.1. Consider an original system mapping g(x1, x2, ..., xm) that contains cross-terms
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of at most τ parameters (Equation 145). The low-order mapping g∗(x1, x2, ..., xm) estimated

using the M-PCM also contains cross-terms of at most τ parameters.

Proof. According to the proofs for Theorems 1 and 2 in [152], the M-PCM recursively

reduces the degree of each input parameter to produce a low-order mapping of the same

mean output. As this procedure does not introduce new parameters to each cross-term, the

numbers of parameters in all cross-terms in the low-order mapping do not increase. �

In Lemma 8.2, we study the maximum number of simulations that can be further

reduced using OFFDs, given the maximum number of parameters, τ , in cross-terms of

g(x1, x2, ..., xm), or equivalently g∗(x1, x2, ..., xm) according to Lemma 8.1.

Lemma 8.2. Consider the low-order mapping g∗(x1, x2, ..., xm) (Equation 146) estimated

using the M-PCM, which contains cross-terms of at most τ parameters. An OFFD design

can further reduce the number of simulations if 1 ≤ τ ≤ �m
2
� − 1. The maximum fraction

of simulations that can be reduced is 2−γmax using the 2m−γmax OFFD, where γmax = m −

�log2(
∑τ

i=0

(
i
m

)
)�.

Proof. The M-PCM produces 2m simulation points. Let us first prove that an OFFD

design can further reduce the number of simulations if 1 ≤ τ ≤ �m
2
� − 1. As OFFDs reduce

the number of simulations at least by half, the number of non-zero parameters
∑τ

i=0

(
i
m

)
in

g∗(x1, x2, ..., xm) must be less than or equal to 2m−1 to produce the same low-order mapping

g∗(x1, x2, ..., xm). Note that 2m−1 =
∑m−1

2
i=0

(
i
m

)
when m is odd and

∑m
2
−1

i=0

(
i
m

)
< 2m−1 <∑m

2
i=0

(
i
m

)
when m is even. The maximum of τ thus satisfies

max(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m−1
2

if m mod 2 ≡ 1

m
2
− 1 if m mod 2 ≡ 0

= �m
2
� − 1.(147)
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As τ is an integer greater than or equal to 1, it needs to be in the range of 1 ≤ τ ≤ �m
2
�− 1,

such that an OFFD can further reduce simulation points without altering the low-order

mapping g∗(x1, x2, ..., xm).

Now we prove that the maximum fraction of simulations that can be reduced is

achieved using the 2m−γmax OFFD, where γmax = m − �log2(
∑τ

i=0

(
i
m

)
)�. As the number of

simulations must be larger than or equal to the number of parameters,

(148) γmax = max{γ | 2m−γ ≥
τ∑

i=0

(
i
m

)} = m− �log2(
τ∑

i=0

(
i
m

)
)�.

�

In the next lemma, we prove that the matrix L′ is full column rank. In this process,

we show the general QR decomposition expression of L′. This lemma is central to the rest of

the development in this chapter, as it establishes the direct relationship between the OFFD

design table (captured by Q) and the input matrix L′ which is used for our study of mapping

construction and mean output prediction.

Lemma 8.3. The input matrix L′ ∈ Rloffd×l, loffd ≥ l constructed by the integrated M-PCM

and OFFD is full column rank, and can be represented using the QR decomposition [56]

(149) L′ = QU,

where Q ∈ Rloffd×l is an orthogonal matrix (i.e. QTQ = I) of the form:

(150) Q =

[
q1 q2 q3 · · · ql

]
=

1√
loffd

[
v1 v2 v3 · · · vl

]
.

Here qi ∈ Rloffd×1 is the orthogonal basis with qTi qj = 0 if i �= j and ‖qi‖2 = 1, where

i, j ∈ {1, 2, · · · , l}. Assume that xk(2) > xk(1) WLOG. vi =
1√
loffd

qi contains entries of ±1,

and is obtained by replacing each entry xk(1) in the i-th column of L′ with −1 and xk(2) with

1, where k is the index of input parameters. Alternatively, it is obtained by replacing ‘-’ and
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‘+’ in the OFFD design table by ‘-1’ and ‘+1’ respectively, and adding an all ’1’ vector to

the left. U ∈ Rl×l is an upper triangular matrix, with the i-th diagonal entry Uii expressed

as

(151) Uii =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
√
loffd if i = 1

√
loffd

2ξi

∏
k∈Si

Δxk if i �= 1

where Δxk = xk(2) − xk(1), Si ⊆ {1, 2, · · · , m} includes all the indices of input parameters in

the i-th column of L′, and ξi is the size of Si.

Proof. The QR decomposition follows the recursive Gram-Schmidt procedure [56]. It is

omitted due to the limited space. It is clear from the expressions of Q and R that L′ is full

column rank, as Q is invertible (Q−1 = QT ) and the determinant of U is
∏

i Uii �= 0. �

Lemmas 8.1, 8.2 and 8.3 and Theorem 1 and 2 in [152] directly lead to the theorem on

the performance of the integrated M-PCM-OFFD in terms of the correctness of predicting

the mean output of the original mapping.

Theorem 8.4. The low-order mapping g∗(x1, x2, ..., xm) (Equation 146) using the integrated

M-PCM and 2m−γmax OFFD predicts the correct mean output of the original mapping, i.e.,

E[g(x1, x2, ..., xm)] = E[g∗(x1, x2, ..., xm)].(152)

The number of simulations reduces from 22m to 2m−γmax, where γmax = m−�log2(
∑τ

i=0

(
i
m

)
)�.

The maximum reduction is 22m − 2�log2(m+1)�, and is achieved when τ = 1.

Proof. Theorem 1 and 2 in [152] suggests that the reduced-order mapping g∗(x1, x2, ..., xm)

produced by the M-PCM predicts the correct mean output of g(x1, x2, ..., xm). Lemmas 8.1,

8.2 and 8.3 guarantee that the reduced M-PCM-OFFD simulation set produces the same

mapping g∗(x1, x2, ..., xm). The result is then straightforward. �
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8.3.3. Performance of the Algorithm on the Robustness to Numerical Errors

In this section, we study the robustness of the integrated design to numerical errors.

We first introduce the robustness metric and formulate the problem in Section 8.3.3.1. We

then show the optimality of the integrated design using this metric in Section 8.3.3.2.

8.3.3.1. Metric and Problem Formulation

Recall that the integrated algorithm involves the calculation of L′−1 or (L′TL′)−1L′T .

This inversion is only feasible when L′ is full column rank. In Lemma 8.3, we have shown

that an OFFD guarantees that L′ is full column rank. In this section, we further explore

the computational feasibility by noticing that parameter resolutions of simulation software

[152] and computational limitations of computing devices [64, 67] may unfortunately fail

this calculation. In particular, when L′ is close to losing column rank, a small disturbance

introduced by the aforementioned numerical errors may easily push L′ to lose rank. In

addition, even if such L′ under a disturbance does not directly lose rank, the correctness of

L′−1 becomes sensitive to small perturbations [35]. In order to facilitate the inversion and

minimize the impact of numerical errors, L′ needs to have a large margin to rank loss.

Multiple metrics exist in the literature to measure the margin to invertibility, in-

cluding the widely used condition number (the ratio between the largest eigenvalue to the

smallest eigenvalue) [22]. Here we use a metric based on the perturbation theory ([67], [64]).

Specially, the full-column-rank margin for the matrix L′ to rank loss, D(L′), is measured

by the norm of the smallest perturbation matrix to make L′ lose rank. Here we use the

Frobenius norm (“|| ||F”), calculated by summing the squares of all its elements, and then

taking a square root of the sum [69]:

(153) D(L′) = min{‖e‖F | rank(L′ + e) < l}
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where e ∈ Rloffd×l is a perturbation matrix.

Lemma 8.2 suggests that all simulation subsets of size 2m−γmax can predict the correct

mean output, provided that the input matrix of the design, L′, is full column rank. We show

in the next section that when τ = 1, the L′ matrix of the OFFD design, denoted as L′
offd

thereafter, has the largest margin to rank loss among all designs of the size 2m−γmax . The

results can be extended to the general case (τ ≥ 1) through a more complicated analysis and

hence is ignored here for clarity.

8.3.3.2. Optimal Robustness of the Integrated M-PCM-OFFD

In this section, we study the robustness of the integrated M-PCM-OFFD to numerical

errors for system mappings of m uncertain parameters and τ = 1. Lemma 8.5 calculates

the full-column-rank margin of the integrated M-PCM-OFFD. Theorem 8.6 shows that the

OFFD produces the largest margin among all subsets of the same size.

Lemma 8.5. Consider an original system mapping g(x1, x2, ...xm) (Equation 145) with τ = 1.

The integrated M-PCM and 2m−γmax OFFD has the following full-column-rank margin:

(154) D(L′
offd) =

√
loffd

2
min{Δx1,Δx2, · · · ,Δxm}

where γmax = m− �log2(
∑τ

i=0

(
i
m

)
)�.

Proof. According to Lemma 8.3, L′
offd is full column rank and can be expressed as a

multiplication of an orthogonal matrix Q and an upper triangular matrix U . As Q is full

column rank, the rank of L′
offd is solely determined by U . Furthermore, as U is upper

triangular, its determinant is the multiplication of all diagonal entries as shown below:

(155) det(U) =
√

loffd ·
l∏

i=2

(

√
loffd

2ξi

∏
j∈Si

Δxj) �= 0.
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Now we find the minimum ‖e‖F to make L′ + e lose rank, according to the definition of

full-column-rank margin in Equation 153. We use exi(j)
to represent the perturbation to

xi(j) and x̂i(j) = xi(j) + exi(j)
to represent the corrupted parameter value. Similar to L′

offd,

L′
offd+e can also perform a QR decomposition, and the determinant of the upper triangular

matrix is det(Û) =
√

loffd · ∏l
i=2(

√
loffd

2ξi

∏
j∈Si

Δx̂j), where Δx̂j = x̂j(2) − x̂j(1). Clearly,

L′
offd + e loses rank if and only if at least one of Δx̂i = 0, i ∈ {1, 2, · · · , m}. In the case of

Δx̂1 = 0, we have Δx̂1 = x̂1(2) − x̂1(1) = (x1(2) + ex1(2)
) − (x1(1) + ex1(1)

) = 0 and therefore

ex1(1)
= ex1(2)

+ x1(2) − x1(1) = ex1(2)
+Δx1. As a consequence,

‖e‖F =

√
(
loffd
2

e2x1(1)
+

loffd
2

e2x1(2)
) + (

loffd
2

e2x2(1)
+

loffd
2

e2x2(2)
) + · · ·+ (

loffd
2

e2xm(1)
+

loffd
2

e2xm(2)
)(156)

≥
√

(
loffd
2

e2x1(1)
+

loffd
2

e2x1(2)
) =

√
loffd
2

[(ex1(2)
+Δx1)2 + e2x1(2)

] =

√
loffd(ex1(2)

+
Δx1

2
)2 +

loffd
4

Δx2
1

≥
√

loffd
4

Δx2
1 =

√
loffd

2
Δx1

The equality holds when ex1(1)
= 1

2
Δx1, ex1(2)

= −1
2
Δx1, and exj(1)

= exj(2)
= 0 for all

j �= 1. Similarly, we obtain ‖e‖F ≥
√

loffd

2
Δx2, · · · ,

√
loffd

2
Δxm. As such, D(L′

offd) =
√

loffd

2
min{Δx1,Δx2, · · · ,Δxm}, and the minimum

√
loffd

2
Δxi is achieved when Δxi ≤ Δxj

for all j �= i, exi(1)
= 1

2
Δxi, exi(2)

= −1
2
Δxi, and exj(1)

= exj(2)
= 0 for all j �= i. �

Theorem 8.6. Consider an original system mapping g(x1, x2, ...xm) (Equation 145) with

τ = 1. From the 2m M-PCM simulation points, the simulation subset selected by the M-PCM-

OFFD has the largest full-column-rank margin among all subsets of 2m−γmax simulations

points, where γmax = m− �log2(
∑τ

i=0

(
i
m

)
)�. Mathematically,

(157) max(D(L′)) = D(L′
offd).

Proof. We first construct the input matrix, L′, from any subset of 2m−γmax simulation

points selected from the 2m M-PCM simulation points, and then show that the input matrix

of the OFFD, L′
offd, has the largest full-column-rank margin.
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Through simple row operations, the L′ matrix constructed using any 2m−γmax M-PCM

points can be transformed to an upper triangular matrix, where the first diagonal entry is

1, and the (k+1)-th diagonal entry is a multiple of Δxk, i.e., λ(k+1)(k+1)Δxk, where λkk ∈ Z

and k ∈ {1, 2, · · · , m}. As Δxk �= 0, any λkk = 0 will lead to D(L′) = 0.

Now let us find the minimum ||e||F to make L′ + e lose rank. The case that L′ is not

full rank is trivial, as e is the null matrix and D(L′) = 0. When L′ is full rank, the same

procedures to calculate D(L′
offd) in the proof of Lemma 8.5 leads to

D(L′) = min{
√

[c1e2x1(1)
+ (loffd − c1)e2x1(2)

] + · · · + [cme2xm(1)
+ (loffd − cm)e2xm(2)

]}(158)

= min{
√

c1(loffd − c1)

loffd
Δx1, · · · ,

√
cm(loffd − cm)

loffd
Δxm}

where ci is the number of xi(1) in the (i+1)-th column of L′. The minimum at
√

ci(loffd−ci)

loffd
Δxi

is achieved, when exi(1)
=

(loffd−ci)Δxi

loffd
, exi(2)

= − ciΔxi

loffd
, and for all j �= i, j ∈ {1, 2, · · · , m}, we

have
√

ci(loffd−ci)

loffd
Δxi ≤

√
cj(loffd−cj)

loffd
Δxj , and exj(1)

= exj(2)
= 0.

Since
√

ci(loffd−ci)

loffd
=
√
− 1

loffd
(ci − loffd

2
)2 +

loffd
4

≤
√

loffd

2
, we have

√
ci(loffd−ci)

loffd
Δxi ≤√

loffd

2
Δxi. Equation 158 can then be further simplified to

(159) D(L′) ≤
√
loffd

2
min{Δx1,Δx2, · · · ,Δxm} = D(L′

offd)

The equality is achieved by an OFFD. �

The robustness optimality of the integrated algorithm is brought by the balance and

orthogonality of OFFDs. The orthogonality (i.e., the symbolic multiplication of each pair

of columns in the design table sums up to 0) guarantees the full rank of Q (as shown in

in Equation 150) and thus the invertability of L′
offd. Moreover, the balance property (i.e.,

each level is evaluated the same number of times for each factor) guarantees the maximal

perturbation to spoil the invertability of L′
offd (as shown in Equation 159).
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8.4. An Illustrative Simulation Study

In this section, we use a simulation study to illustrate the procedures and properties

of the integrated design presented in this chapter.

Consider an original mapping of the form g(x1, x2, x3) = x3
1 + x2

1 + x1 + x3
2 + x2

2 +

x2 + x3
3 + x2

3 + x3 + 1, where x1, x2, x3 are the three uncertain input parameters fol-

lowing independent distributions. In particular, x1 follows an exponential distribution of

fX1(x1) = 2e−2x1 ; x2 follows a uniform distribution of fX2(x2) = 1
15
, 5 ≤ x2 ≤ 20; and

x3 also follows a uniform distribution of fX3(x3) = 1
5
, 5 ≤ x3 ≤ 10. The output mean is

E[g(x1, x2, x3)] =
∫∫∫

g(x1, x2, x3)fX1(x1)fX2(x2)fX3(x3)dx1dx2dx3 = 3381.1. Identifying all

coefficients requires 43 = 64 simulations.

Now let us choose only 4 simulations, using the integrated M-PCM-OFFD. We first

choose 8 M-PCM points based upon the pdf of each parameter. The 8 simulation points are

p1 = (0.2929, 8.1699, 6.0566), p2 = (1.7071, 8.1699, 6.0566), p3 = (0.2929, 16.8301, 6.0566),

p4 = (1.7071, 16.8301, 6.0566), p5 = (0.2929, 8.1699, 8.9434), p6 = (1.7071, 8.1699, 8.9434),

p7 = (0.2929, 16.8301, 8.9434), and p8 = (1.7071, 16.8301,

8.9434). We then use 23−1
III OFFD (as the design table and 3-D cube show in Figure 8.1a,b)

to select 4 M-PCM points, which are {p2, p3, p5, p8} or {p1, p4, p6, p7}. The input matrix

for the first design is L′
offd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1(1) x2(1) x3(2)

1 x1(2) x2(1) x3(1)

1 x1(1) x2(2) x3(1)

1 x1(2) x2(2) x3(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. After that, we run simulations to

evaluate g(x1, x2, x3) at these 4 simulation points and estimate the coefficients of the low-

order mapping g∗(x1, x2, x3) = −4442.2+6.5x1+513.5x2+186.8x3. For illustration purpose,
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Figure 8.1. a) 23−1
III OFFD design table. b) 23−1

III OFFD with each point

represented at the vertex of a 3-D cuboid. c) Comparison of the number of

simulations needed to predict the correct output mean.
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U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 ∗ ∗ ∗

0 1.4142 ∗ ∗

0 0 8.6602 ∗

0 0 0 2.8868

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Q = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which can be directly

obtained from the OFFD design table.

The output mean of g∗(x1, x2, x3) is E[g∗(x1, x2, x3)] =
∫∫∫

g∗(x1, x2, x3)fX1(x1)fX2(x2)

fX3(x3)dx1dx2dx3 = 3381.1, precisely the same as the original output mean. For comparison,

we also use the Monte Carlo simulation to find the mean output. The number of simulations

and associated mean output using these three methods are compared and shown in Figure

8.1c.

To check the robustness of the integrated design to numerical errors, we calculate

the full-column-rank margin of the input matrix L′ ∈ R4×4, and compare it with those of

other designs. According to Lemma 8.5, we find D(L′
offd) = min{Δx1,Δx2,Δx3} = 1.4142,

where Δx1 = 1.4142, Δx2 = 8.6602 and Δx3 = 2.8868.

For all simulation subsets of the same size, the margin D(L′) takes one of the following three

values {0, 0.8660, 1.4142}. Therefore, the OFFD design is the most robust to numerical

errors.

8.5. Concluding Remarks and Future Work

We developed an effective uncertainty evaluation method for large-scale complex sys-

tems with a large number of uncertain input parameters. The integrated M-PCM and OFFDs

significantly reduces the number of simulations, whereas maintaining the statistical predic-

tion performance of the M-PCM. Specially, for an original system mapping of m parameters

with each parameter up to the degree of 3, the reduced-order mapping produced using the

integrated method precisely predicts the mean output of the original system mapping, and

237



reduces the number of mappings from 22m to at most 2�log2(m+1)�. We also showed that

the integrated design is the most robust to numerical errors, making it of practical use for

simulations with constraints on parameter resolutions. The development in this chapter also

provided new interpretations of the optimality of OFFDs, and gave rise to broad new usage

of OFFDs for system mapping estimation and uncertainty evaluation. In the future work, we

will generalize the degree of uncertain input parameters by exploring multiple-factor OFFDs

and also exploit parameter dependency to further reduce the number of simulations required.
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CHAPTER 9

A JUMP LINEAR APPROACH BASED SENSITIVITY STUDY FOR OPTIMAL AIR

TRAFFIC FLOW MANAGEMENT UNDER WEATHER UNCERTAINTY

9.1. Introduction

Strategic air traffic management is concerned with coordinating traffic flow at strate-

gic time frame. Management at this time scale is challenging due to the existence of un-

certain convective weather. When convective weather is likely to occur, mild alteration of

either traffic demand or airspace resource may have significant impact on the performance

of the Nation Airspace System (NAS). Thus, it is necessary for us to study the sensitivity

of air traffic congestion subject to those disturbances. From this study, not only can we un-

derstand the sources of disturbances that have significant impact on the traffic congestion,

but also we are able to design appropriate management planning such as demand allocation

or airspace reconfiguration.

There are several previous efforts relevant to our investigation in this chapter. A

sensitivity study of the NAS performance subject to various disturbances shows that it can

aid to design appropriate management planning [131]. However, this work does not take

the weather impact on the air traffic into consideration. In our previous work, we develop

a systematical jump linear approach to efficiently evaluate the number of aircraft delayed

due to uncertain weather events [151]. In this chapter, we utilize this approach as a tool to

identify the relationship between the sensitivity of total number of aircraft delayed during

a time span of interest to the demand variations. Moreover, we want to show that well-

designed inflows entering a region under weather uncertainty satisfy a special sensitivity

structure. We envision that this study can be generalized to the NAS-level so that it can

improve the airspace resource utility.
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The main contributions of this chapter can be summarized as follows. 1) We use

jump linear approach to derive total number of aircraft delayed in the weather-impacted

region across time. The sensitivity of the performance with respect to its local disturbance

is also discussed. 2) From the analysis, we are able to aid optimal flow distribution subject

to unexpected weather events. In a weather-impacted region, we consider the total incoming

flow with a fixed rate is apportioned into multiple flows to efficiently utilize the airspace.

Our purpose is to determine the best flow rate separation such that the total number of

aircraft delayed across time will be minimized. We show that the best distribution planning

can be verified from the perspective of sensitivity analysis of the congestion associated with

each of the separated incoming flows.

The content of this chapter is organized as follows. In section 9.2, we introduce the

jump linear model and formulate our problem based on it. In section 9.3, we investigate

the optimally distributed inflow rate design problem from sensitivity analysis perspective.

Section 9.4 is the conclusion and work in progress.

9.2. The Jump Linear Model and Problem Formulation

In this section, we first introduce the air traffic system modeled as a jump linear sys-

tem. We then continue with the derivation of the transient traffic congestion over a time span

based upon our proposed modeling framework. The sensitivity of the total traffic congestion

with respect to system parameter is also derived afterwards. Finally, we mathematically for-

mulate our design problem: optimal flow distribution problem under weather uncertainties.

We want to point out that our model is an abstract model but it is reasonable due to the

huge uncertainty during strategic planning timeframe.
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9.2.1. Jump Linear Model: A Merged Model of Air Traffic and Weather Impact

In order to introduce the jump linear representation of our air traffic system clearly,

we first begin with the discrete queuing model (saturation model [130]) as the jump linear

model is a further abstraction of that model. To reduce the dimensions of the complex air

traffic system, we consider the traffic in the flow level instead of individual aircraft.

Figure 9.1. Illustration of saturation model

In particular, we assume a stream of flow x[k] entering a region subject to capacity

constraint N[k] at each time step k. As the distance between each two aircraft cannot be

less than a safety distance, we use N[k] to define the maximum number of aircrafts can

be processed in that region at time k. The cross flow e[k] cannot exceed that constraint.

The number of aircraft do not allow to pass the region are assumed to be accumulated

at the boundary of the region. We define them as the backlog (B[k]) to measure the traffic

congestion. The dynamic of the saturation model can be expressed in the following equations:

e[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b[k − 1], (b[k − 1] ≤ Nc))

Nc, (b[k − 1] ≥ Nc))

(160)

b[k] = b[k − 1] + x[k]− e[k](161)

B[k] = b[k − 1]− e[k](162)
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Here, the buffer length b[k] is the number of aircraft waiting to cross the region, the

capacity constraint N[k] is driven by weather condition. Because when bad weather present,

the safety distance between two aircrafts will increase such that the capacity in that region

will decrease accordingly. A simple illustration of the saturation model is shown in Figure

9.1. We notice that the performance of cross flow represented by a green solid line and a red

solid line is piecewise linear as demonstrated in Figure 9.1. As such, we approximate e[k] as

a linear function of b[k-1] as shown below:

(163) e[k] = ab[k − 1] + c

a and c is a pair of parameters relevant to x[k] and N[k].

In another aspect, we model the duration of capacity reduction caused by weather

event as finite state Markov Chain [112, 149, 150]. Each state is associated with x[k]and

N[k]. As such, the parameters a and c of Equation 163 are changing according to the states

of the weather Markov Chain. Thus, the dynamic of the model can then be expressed as a

jump linear system below:

e[k] = a(q[k])b[k − 1] + c(q[k])(164)

b[k] = b[k − 1] + x[k]− e[k](165)

B[k] = b[k − 1]− e[k](166)

Here, we introduce an indicator vector q[k] ∈ Rn has all the entries equal to 0 except one

entry equals to 1, indicating the state of the weather Markov Chain at time step k. a(q[k])

and c(q[k]) represent the values of the parameters a and c associated with that state. For
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example, a jump linear model corresponding to the saturation model introduced in Figure

9.1 can be shown in Figure 9.2.

Buffer Length b[k-1]  
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Figure 9.2. A jump linear approximation of the saturation model in Figure

1. The parameters a1 and c1 are associated with the states when the capacities

are greater than the buffer length. The parameters a2 and c2 are associated

with the states when the capacities are less or equal to the butter length.

9.2.2. Sensitivity of Total Mean Backlog

Based upon the jump linear representation of our model, the backlog at each time

step kis easy to track. Our focus is on the sensitivity of the total mean backlog during a time

span with respect to possible variation of the inflow rate of x[k]. Let us show the details of

deriving the total mean backlog at first and then, the its sensitivity can naturally obtained.

First, the dynamic of the transient backlog can be derived in an explicit recursion

form by applying a little bit algebra on Equations 164-166. In particular,

(167) B[k + 1] = (1− a(q[k]))(B[k] + x[k])− c(q[k])

We then directly use the result in our previous work [130] to compute the total mean backlog

243



over a time span. To be more specific, we first introduce a vector σ[k] = q[0] ⊗

⎡
⎢⎣B[k]

1

⎤
⎥⎦ to

capture the information of both the weather condition and backlog. The dynamic of E[σ[k]]

can be obtained as follows:

(168) E[σ[k + 1]] = Pw
′ ⊗

⎡
⎢⎣(1− a[q[k]]) (1− a[q[k]])u[k]− c[q[k]]

0 1

⎤
⎥⎦E[σ[k]]

Here, Pw is the transpose of transition matrix of weather Markov chain and u[k] is

the mean of x[k]. Thus, with the given initial condition q[0] and B[0], the mean backlog

E[B[k]] equals 11×lE[σ[k]] − 1. 11×l is a1 × l vector with all entries equal to one. l is the

length of σ[k]. Now, we are ready to express our total mean backlog during a time span

[0, kp]. As Equation 168 can be rewritten into the following form:

(169) E[σ[k]] =

⎛
⎜⎝Pw

′ ⊗

⎡
⎢⎣(1− a[q[k]]) (1− a[q[k]])u[k]− c[q[k]]

0 1

⎤
⎥⎦
⎞
⎟⎠

k⎛
⎜⎝q[0]⊗

⎡
⎢⎣B[0]

1

⎤
⎥⎦
⎞
⎟⎠

Then, the total mean backlog TE(B) from time 0 to kp can be computed as:

(170)

TE(B) =

kp∑
i=0

11×l

⎛
⎜⎜⎝
⎛
⎜⎝Pw

′ ⊗

⎡
⎢⎣(1− a[q[k]]) (1− a[q[k]])u[k]− c[q[k]]

0 1

⎤
⎥⎦
⎞
⎟⎠

i⎛
⎜⎝q[0]⊗

⎡
⎢⎣B[0]

1

⎤
⎥⎦
⎞
⎟⎠
⎞
⎟⎟⎠− (Kp + 1)

To facilitate our analysis, in this chapter, we assume the inflow rate u[k] is a time

invariant constant u. Without loss of generality, we use a md-state Markov chain to represent

the variation of weather condition. The subscript d is associated with weather intensity,

which leads to capacity reduction. In the first m1 states, the capacity reduction level 1 is
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determined by the system parameters a1 and c1. The dynamic of the transient backlog can

be written as:

(171) B[k + 1] = (1− a1)(B[k] + x[k])− c1

Likewise, the transient backlog starts from state mi−1 + 1 to mi can be represented as:

(172) B[k + 1] = (1− ai)(B[k] + x[k])− ci

where the capacity reduction level i ∈ [2, d] are associated with the parameters ai and ci. As

we use Markov Chain to model the weather evolution from bad condition to good condition,

the dth capacity reduction level is the normal capacity. ad and cd are the corresponding

parameters. To facilitated our analysis, we define (1−ai)
(1−ad)

= fi and
ci
cd

= hi for i ∈ [1, d], where

fi and hi are well-known ratios to scale different capacity reduction levels. The dynamic of

the backlog can be rewritten as:

(173) B[k + 1] = fi(1− ad)(B[k] + x[k])− hicd,

Then, we apply Theorem 51 and Corollary 52 in [23] to simplify the first term of

Equation 169. In particular,

⎛
⎜⎝Pw

′ ⊗

⎡
⎢⎣(1− a[q[k]]) (1− a[q[k]])u[k]− c[q[k]]

0 1

⎤
⎥⎦
⎞
⎟⎠

k

(174)

=

⎛
⎜⎝Per(2, md)

−1

⎛
⎜⎝
⎡
⎢⎣(1− a[q[k]]) (1− a[q[k]])u[k]− c[q[k]]

0 1

⎤
⎥⎦⊗ Pw

′

⎞
⎟⎠Per(2, md)

⎞
⎟⎠

k

= Per(2, md)
−1

⎛
⎜⎝
⎡
⎢⎣(1− a[q[k]]) (1− a[q[k]])u[k]− c[q[k]]

0 1

⎤
⎥⎦⊗ Pw

′

⎞
⎟⎠

k

Per(2, md)
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= Per(2, md)
−1

⎡
⎢⎣A C

0 Pw
′

⎤
⎥⎦
k

Per(2, md).

In this equation, Per(2, md) is a 2md×2md permutation matrix calculated as
∑2

i=1

∑md

j=1

Oij ⊗ OT
ij, where Oij is a 2 ×md matrix with only the ith row, jth column entry equals to

one and the others are zero. A is defined as (1− ad)F , where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1p1,1 · · · f1pm1,1 f2pm1+1,1 · · · f2pm2,1 · · · pmd−1+1,1 · · · pmd,1

f1p1,2 · · · f1pm1,2 f2pm1+1,2 · · · f2pm2,2 · · · pmd−1+1,2 · · · pmd,2

...
. . .

...
...

. . .
...

. . .
...

. . .
...

f1p1,md
· · · f1pm1,md

f2pm1+1,md
· · · f2pm2,md

· · · pmd−1+1,md
· · · pmd,md

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C is defined as [(1− ad)u]F − cdH , where

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1p1,1 · · · h1pm1,1 h2pm1+1,1 · · · h2pm2,1 · · · pmd−1+1,1 · · · pmd,1

h1p1,2 · · · h1pm1,2 h2pm1+1,2 · · · h2pm2,2 · · · pmd−1+1,2 · · · pmd,2

...
. . .

...
...

. . .
...

. . .
...

. . .
...

h1p1,md
· · · h1pm1,md

h2pm1+1,md
· · · h2pm2,md

· · · pmd−1+1,md
· · · pmd,md

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The element pi,j in matrices F and H is the transition probability from state i to state j,

for 1 ≤ i, j ≤ md. We let M(k) :=

⎡
⎢⎣A C

0 Pw
′

⎤
⎥⎦

k

=

⎡
⎢⎣Ak U(k)

0 Pw
′

⎤
⎥⎦, It is easy to derive M(k +

1) :=

⎡
⎢⎣A C

0 Pw
′

⎤
⎥⎦
k+1

=

⎡
⎢⎣Ak+1 U(k + 1)

0 Pw
′k+1

⎤
⎥⎦ =

⎡
⎢⎣A C

0 Pw
′

⎤
⎥⎦
⎡
⎢⎣Ak U(k)

0 Pw
′k

⎤
⎥⎦. Then, we naturally

obtain U(k + 1) = AU(k) + CP k
w. Noticing that U(0) = 0, the general solution is U(k) =∑k−1

i=0 AiCP k−1−i
w . From observing Equation 170 and applying the last equality of Equation
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174, the total mean backlog TE(B) can be rewritten as:

TE(B) = 11×2md

kp∑
i=0

⎛
⎜⎜⎝
⎛
⎜⎝Pw

′ ⊗

⎡
⎢⎣(1− a[q[k]]) (1− a[q[k]])u[k] − c[q[k]]

0 1

⎤
⎥⎦
⎞
⎟⎠

i ⎛
⎜⎝q[0]⊗

⎡
⎢⎣B[0]

1

⎤
⎥⎦
⎞
⎟⎠
⎞
⎟⎟⎠− (Kp + 1)

= 11×2md

⎛
⎜⎜⎝

kp∑
i=0

Per(2,md)
−1

⎡
⎢⎣A C

0 Pw
′

⎤
⎥⎦

i

Per(2,md)

⎞
⎟⎟⎠

⎛
⎜⎝q[0]⊗

⎡
⎢⎣B[0]

1

⎤
⎥⎦
⎞
⎟⎠− (Kp + 1)

= 11×2mdPer(2,md)
−1

⎛
⎜⎜⎝

kp∑
i=0

⎡
⎢⎣A C

0 Pw
′

⎤
⎥⎦

i⎞
⎟⎟⎠Per(2,md)

⎛
⎜⎝q[0]⊗

⎡
⎢⎣B[0]

1

⎤
⎥⎦
⎞
⎟⎠− (Kp + 1)

= 11×2mdPer(2,md)
−1

⎛
⎜⎝
⎡
⎢⎣
∑kp

i=0 A
i ∑kp

j=1

∑j−1
i=0 AiCPw

′j−1−i

0
∑

i=0 kpPw
′i

⎤
⎥⎦
⎞
⎟⎠Per(2,md)

⎛
⎜⎝q[0]⊗

⎡
⎢⎣B[0]

1

⎤
⎥⎦
⎞
⎟⎠− (Kp + 1)

We assume the initial condition is q[0] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
md×1

, so the total mean backlog TE(B) can be

further simplified as:

(175) TE(B) = 11×2md

⎡
⎢⎣
∑kp

i=0A
i
∑kp

j=1

∑j−1
i=0 A

iCPw
′j−1−i

0
∑

i=0 kpPw
′i

⎤
⎥⎦G− (Kp + 1)

Where G is a 2md × 1 vector with the (md + 1)th entry equals to one and the others

equal to zero. We notice that TE(B) is a function with respect to ad, cd, and u. As such, the

sensitivity S of the total mean backlog can be simply obtained by taking the derivative with

respect to each of those parameters. Since our interest is to study the performance of the

total mean backlog with respect to the variations of the incoming flow, the sensitivity of the

flow rate S(u) can be derived as follows.

S(u) =
d(TE(B))

du
(176)
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= 11×md

d(
∑kp

j=1

∑j−1
i=0 A

iCPw
′j−1−i)

du

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

md×1

= 11×md

( kp∑
j=1

j−1∑
i=0

[−(i+ 1)(1− ad)
id(ad)

du
u+ (1− ad)

i+1]F i+1Pw
′j−1−i −

kp∑
j=2

j−1∑
i=1

[i(1 − ad)
i−1d(ad)

du
cd + (1− ad)

id(cd)

du
]F iHPw

′j−1−i −
kp∑
j=1

d(cd)

du
HPw

′j−1
)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

md×1

We notice that for the jump linear system, the parameters ad and cd will vary with

u, so the derivatives d(ad)
du

and d(cd)
du

are involved in Equation 176.

9.2.3. Problem Formulation

In this section, we will mathematically formulate our flow apportion problem under

weather uncertainty. As convective weather event is random during strategic timeframe, the

backlog is also uncertain. We use the total mean backlog to measure the system performance.

Now, let us describe the details of the design problem.

PROBLEM: OPTIMAL FLOW DISTRIBUTION UNDER WEATHER UNCERTAINTY

Consider n streams of flow entering a weather zone, the total rate of the those flows is

u. The capacity assigned to each flow is well known. For example, the ith flow is associated

with di different levels of capacity reduction from Ni1 to Nidi .

We assign the ith flow with rate ui for 1 ≤ i ≤ n, such that the total mean backlog

(i.e.
∑n

i=1 TE(Bi)) will be minimized, subject to the following constraints:

• ∑n
i=1 ui = u, where the total inflow rate u is positive.
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• ui ≥ 0

We denote the optimal rate for flow i as u∗
i . The illustration of our first design problem can

be demonstrated in Figure 9.3.

Weather Zone 
μ*1 

μ*2 

μ*3 

μ*n 

Nndn 

N1d1 

N2d2 

N3d3 

Figure 9.3. Illustration of optimal flow distribution problem. The capacity

assignment Nidi to each flow i is known. u∗
i is the optimal design parameter

resulting in the minimum total mean backlog.

9.3. Optimal Flow Distribution Based upon Sensitivity Study

The goal of this work is to design an appropriate management planning built upon

the sensitivity information of the total mean backlog mentioned in the previous section.

Therefore, in this section, we will show the relationship between the result of the sensitivity

study and the optimal inflow rate assignment. The backlog dynamic of the each flow can
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be captured by a jump linear model of its own as we discussed in section 9.2. For the

flow distribution design problem, the capacity assignment Nidi to each flow i is well known

beforehand. We define the backlog of flow i at time step k as Bi[k]. Hence, the total mean

backlog TE(Bi) during time span [0, kp] for flow i can be derived according to Equation 175

and the sensitivity S(ui) can be obtained similar as Equation 175. In the next theorem, we

show that the sensitivity of each flows total mean backlog has a simple relationship with

the optimal inflow rate distribution strategy. The proof of the theorem is similar to that of

Theorem 1 in reference [131].

Theorem 9.1. Consider design problem mentioned in section 9.2.3. The optimal inflow

rates u∗
i satisfy the following condition: there exist a constant D such that S(ui) = D for all

i.

Proof. It is obvious that our design problem is an optimization problem with constraints.

We directly apply Lagrange multiplier to find the solution. In particular, the Lagrangian as-

sociated with the objective function and constraints is L =
∑n

i=1 TE(Bi) +D(u−∑n
i=1 ui) +

αiui, where the constants D and αi are non-negative. Taking the derivatives of the La-

grangian with respect ui and D for all i, we obtain

(177) S(ui)D + αi = 0 ∀i

(178)
n∑

i=1

u∗
i = u

(179) αiu
∗
i = 0 ∀i

As u∗
i �= 0 for any i , αi = 0. We are able to obtain S(ui) = D for all i. �
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The proof shows that for optimal inflow rate allocation, the sensitivity of each flow

is equal. Thus, we can utilize this information to come up with the best design. The goal

of this design is to minimize the total backlog of all flows during a time span. Noticing that

S(ui) is associated with parameters aidi , cidi and ui, and the values of aidi , cidi will change

with ui, therefore, in the practical operation, with the flow distribution rate ui and capacity

assignment Nidi , we are able to identify the corresponding jump linear parameters aidicidi ,

and their derivatives at given ui. Then, the sensitivity S(ui) of each flow can be checked.

As such, we can decide whether the performance is close to the optimal. In other words, if

the sensitivities of several flows are too high or too low, then, it is necessary to adjust the

inflows rates to improve the performance. Essentially, this theorem allows us to compute

the optimal flow rate u∗
i when aidi and cidi are explicit functions relevant to ui. Noticing

that Equation 177 and Equation 178 involve n+1 equalities associated with n+ 1 unknown

variables (i.e. ui for 1 ≤ i ≤ n and D). As such, u∗
i can be directly obtained by solving those

equalities.

9.4. Concluding Remarks and Future Work

This chapter discusses the sensitivity study of performance of the NAS with respect to

inflow variations under weather uncertainties. We first utilize a jump linear approach to ex-

plicitly express one important performance metric (total mean backlog) during a time span.

Then, from its sensitivity analysis, we gain some insight of designing optimal inflow rates

with certain constraints. We have completed the theoretical part of this chapter, such as

problem formulation, derivation of sensitivity regarding incoming flow and the usage of this

information to aid optimal inflow distribution. In the future, a concrete real management

situation will be taken into consideration and we will show how to distribute the incoming

flow appropriately based on the theorem derived in Section 9.3. We will also test the per-
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formance of all possible flow apportion plans to verify that our approach ends up with the

optimal planning.
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