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Mobile phones are one of the essential parts of modern life. Making a phone call is not 

the main purpose of a smart phone anymore, but merely one of many other features. Online 

social networking, chatting, short messaging, web browsing, navigating, and photography are 

some of the other features users enjoy in modern smartphones, most of which are provided by 

mobile apps. However, with this advancement, many security vulnerabilities have opened up in 

these devices. Malicious apps are a major threat for modern smartphones. According to 

Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It 

is a complex issue to protect everyday users of mobile devices from the attacks of 

technologically competent hackers, illegitimate users, trolls, and eavesdroppers. 

This dissertation emphasizes the concept of intention identification. Then it looks into 

ways to utilize this intention identification concept to enforce security in a mobile phone 

platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious 

intention as battery monitoring usually does not need SMS permissions. Intention could be either 

the user's intention or the intention of an app. These intentions can be identified using their 

behavior or by using their source code. Regardless of the intention type, identifying it, evaluating 

it, and taking actions by using it to prevent any malicious intentions are the main goals of this 

research.  

The following four different security vulnerabilities are identified in this research: 

Malicious apps, spammers and lurkers in social networks, eavesdroppers in phone conversations, 



and compromised authentication. These four vulnerabilities are solved by detecting malware 

applications, identifying malicious users in a social network, enhancing the encryption system of 

a phone communication, and identifying user activities using electroencephalogram (EEG) for 

authentication. Each of these solutions are constructed using the idea of intention identification. 

Furthermore, many of these approaches have utilized different machine learning models. 

The malware detection approach performed with an 89% accuracy in detecting the given 

malware dataset. In addition, the social network user identification model's accuracy was above 

90%. The encryption enhancement reduced the mobile CPU usage time by 40%. Finally, the 

EEG based user activities were identified with an 85% accuracy.  Identifying intention and using 

it to improve mobile phone security are the main contributions of this dissertation. 
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CHAPTER 1

INTRODUCTION

1.1. Introduction and Background

Would you ever give a briefcase which contained all your health records, address, social

security number, all your contacts, your bank information, a transcript of every conversation you

have ever written or said, personal photos and videos, and a list of every place you have ever

been. . . to a complete stranger wearing a hoodie and sunglasses?

No?

Well, any smartphone contains all the information that was in that briefcase, and more. In

essence, a breach of any smartphone is damaging to the owner, and even worse, it is an especially

rewarding ”lock” to pick for people who want to use that information to gain an unfair advantage.

Based on the available attacks and malware nowadays, phones are also a relatively easy thing to

attack. Therefore, protecting a phone is of utmost importance for any individual.

The goal of this dissertation is to address some of the many security vulnerabilities on the

mobile platform with the idea of Intention of the agent. These vulnerabilities come in different

forms (see Figure 1.1), including:

• Malware on any open app market/store

• Malicious users called trolls

• Eavesdropping

• Illegitimate authentication

1.2. Motivation

As of April 2014, there are 143 million smartphones being used in the U.S. [79]. That is,

by January 2014, 90% of American adults owned a cell phone, 58% owned a smartphone. With

The content in this chapter is reproduced from Mohamed Fazeen and Ram Dantu, “Another free app: Does it have the
right intentions?”, Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on, July 2014,
pp. 282289, with permission from IEEE.
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FIGURE 1.1. Mobile phone security vulnerabilities that are discussed in this dissertation.

these phone usage statistics, 68% of the phone users witnessed unwanted sales or marketing calls

at least once in their usage. Text messaging wasn’t second to the mobile phone calls. Among 79%

of cell phone owners used text messaging services and 69% of them claimed that they received

an unwanted spam or a text message [82]. With the innovation of smartphones, mobile phone

applications, or apps became one of the most popular elements in smartphones. As of June 2014,

there were about 1.3 million Android apps enlisted in the Google Play market, 300000 apps were

found in the Windows phone store, and 75 billion apps were found in the Apple store. Further,

there are about 102,062 million mobile apps downloaded worldwide by the year 2014 [81]. Users

are spending more and more time in using their smartphones. From March 2013 to March 2014,

smartphone users spent 2 hours and 42 minutes per day on the phone. This is a four minute increase

compared to that of previous year [76]. With these ever increasing trend on mobile phone usage,

recent years witnessed an explosive 250% growth in the use of Android devices as well. In the

first quarter of 2013, for the first time the smartphone shipment outpaced the feature phones [93].

Out of the above, Samsung took a lead over Nokia and Apple, by pumping more Android devices

into the market. Consequently, the number of app downloads from the Google Play reached to

about 11 billion downloads [59]. During this time consumers have seen a remarkable growth in

the Android malware. According to a Mobile Threat Report published by F-Secure [34], Android
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was the most heavily targeted mobile operating system in second quarter of 2012, with a 64%

increase in Android malware from Q1 to Q2 in 2012. A report published in the NakedSecurity

web site by Graham Cluley on June 2012, described that the top five malware app types in the

Android platform are Andr/PJApps-C of 63.4%, Andr/BBridge-A of 8.8%, Andr/Generic-S of

6.1%, Andr/BatteryD-A of 4.0%, Andr/DrSheep-A of 2.6%, and other of 15.1% of the malware

[23]. The most common malware type is the Andr/PJApps-C, which is a repackaged app [111, 37].

Traditional malware identification is mainly rooted on signature based identification, and

these detections can be evaded easily by adopting a transformation or a polymorphic attack. [85][40].

This malware can change its signature slightly such that it is different from the known signature.

Then the signature based anti-malware tools cannot detect the new signature, though it is the same

old malware that it used to identify. However, if the anti-malware tool is capable of identifying its

behavior, no matter how much its signature changes, the tool will be able to filter the apps with

malicious intention. Therefore, I believe, identifying the intention of any activity is crucial in de-

termining its maliciousness. This motivated me to find a solution for the malware problem as a

contribution to the mobile phone security.

Mobile phones and an online social network are like bread and butter. . . They are closely

attached to each other. Recent statistics indicate that 60% of the time spent on social media are

from smart phones [4]. Therefore, security threat in social networks directly affect smart phones.

Thus, identifying threat models in social media will be helpful in providing mobile phone security.

”Average users may receive up to 17 ’dangerous’ Tweets per day” as of 2011. Which means,

”3.5billion nasty Tweets are sent every day” by someone or from something [92]. I believe that

identifying the intention of such users plays a major role in identifying and defending such behavior

in social networks. This motivated me to find a solution for the mis-behaving user identification

based on intentions as a contribution to the mobile phone security.

Voice over IP (Voip) conversations (like Skype, Viber) are very popular among mobile

users these days. However, many vulnerabilities can be identified in these systems that are affect-

ing the integrity of the mobile phone security. A survey by A. Keromytis discuss about security

vulnerabilities in Voip with 245 publications [50]. This survey pointed out 30 different citations on
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voip eavesdropping, interception and modification. This implies that eavesdropping is not only a

serious threat in such communications, but also that many attack methods exist to breach the com-

munication by hackers. Most of these vulnerabilities are addressed in security research. However,

many restrictions apply when enforcing some of the obvious solutions (like encrypting a voice

conversation in mobile platform) due to its resource limitations. Having said that, user intention

can be used to improve these existing solutions in mobile platform. This motivated me to improve

the currently existing phone conversation encryption methods using user intention as a contribution

to the mobile phone security.

Generally people don’t put secure passwords on their mobile phones. A report published

in June 2013, pointed out that, from a sample of 1,656 adult smart phone users, 39% did not take

at least the smallest measure to protect their data. “Many failing to implement a simple password

protection on their devices. “Of those surveyed, only 31 percent regularly backed up data [46].

Further, people tend to lose their phones. A survey by McAfee studied 439 sample organizations

to see how many of their employees lose their smartphones. In a year, 142,706 smartphones were

reported lost by these company employees. Out of these missing phones, only 9,298 (7%) were

recovered. “13% of the missing smartphones were lost in the workplace, 29% were lost while

traveling, and 47% were lost while employees were working away from the office, either at home

or hotel rooms [99]. The lost phone may get into another persons hand, and next thing you notice

is all your data and belongings compromised. A good user authentication system can save the

day at least by protecting the data and other valuable information. Intention of the user can be

used to produce a strong authentication system by using owners biometrics like brain waves. This

motivated me to find a solution for the user authentication by using intention with brain waves

(EEG) as a contribution to mobile phone security.

Intention can be of many forms. This dissertation takes a look into the importance of iden-

tifying the intention of an agent and use it to provide security for a mobile system. As mentioned

earlier, I discuss four mobile security applications under this intention identification; a mobile

app malware identification, a user role identification, context-aware encryption system, and finally

EEG based authentication.
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1.3. Definition of Intention

Intention, by definition, is a course of actions that a user or an agent plans to follow. Thus,

identifying the intention of an agent is critical in determining the purpose of the agent. In the

domain of security, identifying the intention will lead to identifying the maliciousness of the agent.

This can be utilized to refine the potential threats to a system. Intention identification is modeled

in several ways and current theories deal with several questions such as ’What are the knowledge

requirements for the identification of the maliciousness of an intention’ [94, 18].

Unintentional Activities: Similar to intention, unintentional activities can be defines as the actions

that are did not planned to follow or accidental actions. For instance, one can mistakenly

pronounce something as a bad word thought it was unintentional. Unintentional activities

are also a vulnerability for a system and need to be evaluated and planned properly to

provide better security system.

The novelty of this work is to find the intention of an agent and using it to provide mobile

security solutions. For instance, the devised algorithm for malware identification finds the intention

of an app and uses it to identify its potential risk factor. Since I use a static code analysis approach,

this potential malware identification can be performed even before the app is installed on a device.

Intuitively, if an app requests to access a certain set of system resources which are unrelated to its

intended task, it portrays a malicious intention. For instance, if a calculator app has an intention

to perform numerical calculations, but it also requests the permission to access short message

service sending (SEND SMS), this illustrates that it is probably a potential permission misuse or

a suspicious malicious activity. Thus, based on these analyses, I try to determine whether an app

goes beyond its actual intention to perform any unintended activities.

Following are several different types of intentions defined in this dissertation.

(1) User-intention

(2) Developer-intention

(3) Application-intention (or App-intention)

(4) Task-intention

(5) Alternate-intention
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(6) Malicious-intention

(7) Benign-intention

Intentions are addressed in detail in the next chapter.

1.4. Thesis Statement

How do you protect every day users of mobile devices from the attacks of technologically

competent hackers, trolls, eavesdroppers, and illegitimate users? My approach to this issue is to

protect mobile device users from hackers, trolls, eavesdroppers, and illegitimate users by modeling

behavioral patterns and optimizing encryption using the idea of intention of an agent.

1.5. Problem Definition

It is a complex issue to protect every day users of mobile devices from the attacks of

technologically competent hackers, illegitimate users, trolls, and eavesdroppers. I observed that

there were a lot of attacks on phones via malware and I thought it would be an important topic to

address.

Intention identification is very important in determining safety and security of a system.

As explained above intention can be of different forms. Different type of intention can aid in

providing different kinds of security solutions. For instance, identifying user-intention can be used

to determine different types of users in a system and filter out malicious users. On the other hand

app-intention can be used to identify malicious applications or malware apps and defend the system

against them. The main goal of this dissertation is to introduce the concept of intention, identify

the intention and use it in different applications to provide secure solutions on a mobile platform.

1.6. Contributions

For malware detection: I collected statistical information about permission requests of phone ap-

plications. I applied machine learning to identify the task-intention of the phone apps. Then

I applied probability models to find; what the most probable set of permission requests for

each task-intention category is. Then I compared the unknown app’s permission requests
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with its task-intention group’s permission request distribution. My method was able to de-

tect new malware with 89% accuracy, even if it was not known to the system, such as Zero

day malware.

For detecting trolls in social network: In one approach, I determined how strong of a friendship

bond social network users had on Twitter using their user-intentions such as replying a

friend, how soon you reply the friend, etc. Since social network users have various bonds

with other users in their network, ranging from acquaintance to close friend, I used fuzzy

logic (which means approximate reasoning rather than exact number values). My method

successfully used this information to determine different types of users, but especially

spammers and lurkers.

In another approach, when above networking information are lacking, I took the time

stamps of the posts and graphed their frequency for different time periods. Then I used

machine learning models to detect the differences between bots, news broadcasters, and

friends. This way the user-intention of bursting tweet messages, send it as a regular user

reveled their role in the network. Both of these methods detected trolls with an average of

more than 90% accuracy.

When optimizing the encryption of a secure phone conversation: I used real time speech recogni-

tion on mobile phones to determine the user-intention of the conversation. If the intention

is to convey a sensitive word it will be encrypted. This way, I create a model which en-

crypted only sensitive words. This method reduced CPU usage time for encryption by

40%. Since the existing data (VOIP) communication model for secure phone conversations

(Secure Real-time Transport Protocol, SRTP) does not support my proposed optimization,

I implemented a custom protocol within a phone application. Further, this model can be

easily remodeled as a system to protect speech conversation from uttering inappropriate

words or sensitive information that user not supposed to reveal. It can be achieved by sim-

ply identifying a set of predefined restricted words list and block them in realtime when the

user has spoken them unintentionally. This unintentional modeling can be useful in protect-

ing the user from embarrassments, as well as some security breaches, such as passwords
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mistakenly being pronounced.

To profile user behavior in regard phone authentication: I used EEG (brainwave activity patterns)

to identify repeated activities a user performs when using a phone, such as swiping, pinch-

ing, tapping. I extracted these features from the EEG experiment and used a machine

learning model to distinguish between these activities, with 85% accuracy. This way user

intention can be revealed and can be used in mobile phone security such as authentication.

One advantage of using EEG in authentication is that it can provide a biometric using EEG

for authentication [20]. However, in this work I took the first step towards solving the

authentication problem and I present this as future work.

1.7. Dissertation Outline

Chapter 1: This chapter provide an introduction to the concept of this dissertation. Further, it

summarizes the problem definition and the rest of the document.

Chapter 2: Intention is a key term in this dissertation. In this chapter, different types of intentions

are identified and its importance are discussed.

Chapter 3: This chapter briefly describes the usage of intention identification. Four different prob-

lems are explained in this chapter related to two different types of intentions (user-intention

and app-intention). These four applications are 1. Malware identification, 2. User role iden-

tification, 3. Context-aware encryption, and 4. EEG based behavior identification. Each

of these problems are solved using different type of intention identification. The following

chapters describe how each problem is solved using the introduced intention identification

concepts.

Chapter 4: Task-intention is part of the app-intention. Identifying the task-intention is the first

step of malware identification in my approach. This chapter describes on how to deter-

mine the task-intention of an android app by using machine learning models. This task-

intention identification should not be confused with the malicious-intention identification.

Task-intention simply says the main functionality of the application. On the other hand,

malicious-intention identification reveals whether the app is malicious or not. However,

the task-intention is used to determine if an app is malicious or not.
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Chapter 5: Permission requests of Android applications are studied in this chapter. I-shapes are

constructed from these permission requests. Constructing the I-shape is crucial in malware

detection. This chapter addressed the description of I-shape construction using permission

requests.

Chapter 6: As mentioned earlier, app-intention could be used to determine the maliciousness of

an application. This chapter explains, how to utilize the app-intention and its sub types to

identify malware app samples in an Android mobile system.

Chapter 7: In contrast to app-intention, user-intention is useful in identifying the malicious be-

havior of a user in a system. It can be utilized in user based systems like, online social

networks, to identify different types of users and protect against malicious users. Since,

modern smart phones are closely attached to online social networking systems as a direct

user terminal, it is important to protect such social network systems, so that not to prop-

agate malicious activities to other mobile users. For instance, spamming in social media

directly affect mobile users. This chapter demonstrate how to identifying different types of

user roles such as leaders, lurkers, spammers etc. by identifying their user-intentions in a

popular online social network (Twitter). These intention are modeled using the behavioral

footprint and clues of a user in the social network.

Chapter 8: Security in a mobile-phone-communication is a big challenge in the field. Eavesdrop-

ping is one of the major privacy breaches. In June 2013, Edward Snowdens massive clas-

sified information leak ignited a huge debate about the privacy in phone communication.

Encrypting the communication is one of the solutions. However, providing encryption

with existing solutions such as Secure Real-Time Protocol (SRTP) in a mobile phone is

expensive as it consumes a lot of mobile resources. However, it is intuitive that unsensitive

information does not need to be encrypted with high strength algorithms. Thus, determin-

ing the user-intention can retrieve the sensitivity of the spoken information. Based on this

intention, the algorithm determines whether to encrypt the portion of that spoken segment

or not. This way it can spare many resources while provide a similar strength of security in

the conversation. This idea is explained in detail in this chapter.
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Chapter 9: User-intention identification its usages can be extended beyond the methods discussed

in the previous chapters. In the recent years, wearable sensors drawn a great attention

in many disciplines [72, 86]. It is even appealing for many developers to use these de-

vices with smart phones (Ex: Samsung Galaxy Gear with Samsung Phones, Apple watch

with iPhone). In this future work section, I predict that Electroencephalogram (EEG) sig-

nal monitoring in a smart phone will become a more common practice. Especially, it is

more natural to combine EEG with devices like Oculus Rift virtual reality system [68] and

Google Glass [56] to produce useful applications. This chapter describes the preliminary

experiments I did for identifying different activities of a user on a phone by utilizing EEG,

including methodology and results. In this chapter, I discuss on how to utilize EEG in

mobile environment to obtain behavioral user-intention and its feasibility.

Chapter 10: The discussion and conclusion of the dissertation is presented in this chapter.
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CHAPTER 2

INTENTION AND MOBILE PLATFORM

2.1. Intention and Its Types

As mentioned in the introduction chapter, intention is a course of actions a user or an agent

plans to follow. In the context of the mobile platform, an intention can be of many forms. See figure

2.1 for a hierarchical view of these different intention types. Type of the intention as well as the

agent is important in addressing many mobile security vulnerabilities addressed in this dissertation.

Intention

User-Intention Developer-Intention

Application-Intention
(App-Intention)

Task-Intention
(Primary-Intention)

Malicious-
Intention

Benign-
Intention

Alternate-Intention
(Secondary-Intention)

Malicious-
Intention

Benign-
Intention

FIGURE 2.1. Different types of intentions and hierarchical view of those intention types.

2.1.1. User-intention

The user intention can be defined as the intention of the user who is using the software. In

this context, a user can be any agent, either a human entity or another software or machine. A user’s

intention can directly affect the behavior of the application. For instance, consider the scenario of

someone named Adam using a text messaging app. If Adam uses it with the intention of sending

a message to Bob, the app will behave as a regular message sender. However, if Adam used it to
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send random messages to millions of people everyday with the intention of selling his products

or spreading illegal information, the behavior of the app becomes a spammer. Thus, even with a

benign app, user-intention can change the benign behavior of the app. Further, user-intention also

can reveal the type of the user. User types can be a regular-user, hacker, spammer, novice-user,

expert-user etc. This is very useful in implementing security measures in the app itself to self-resist

any malicious demands from a malicious user. H. Zhang et al. work can be identified as another

example of user-intention is utilized in security domain. In their work, they identified software

flows or malicious code activities in computer a network using the user-intentions [109].

In chapter 7 I discuss about how to determine the user-intention in a social network en-

vironment by using user’s app usage pattern (in these examples I used several clues such as the

number of Tweets per day, mean reply delay etc.) and how to identify different roles of these

users. Identifying these user-intention is useful in securing a user based systems.

Chapter 8 is another example of utilizing user-intention in a secure environment. In this

example, the user-intention is used to enhance the performance of a secure system that can be very

useful in resource constrained environment such as mobile devices. This chapter explains about

context-aware encryption based on user-intention such that, encryption can be relaxed or tightened.

Here, the identified user-intention are whether the user intended to communicate sensitive infor-

mation or the non-sensitive information. This work can be remodeled to provide security against

unintentional security vulnerabilities in mobile phone conversations.

2.1.2. Developer-intention

Similar to user-intention, developer-intention can be defined as the intention of the devel-

oper of a software or an app. Software developers develop applications in achieving many different

solutions. For instance, a developer can intend to develop a software to monitor the internet traffic

in a smart phone. Mainly the developed software reflects the developer’s intention of the software.

Further, it is hard to determine what the actual intention of the developer is. The only way to de-

termine this would be to analyze the software itself and its documentations. For this reason, in this

dissertation I focus on the app-intentions rather than the direct developer intention. This is because

at the end of the day, the intention of the app is the only important aspect in securing a system
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rather than the actual developer-intention. The app-intention is explained in the next section.

2.1.3. Application-intention (App-intention)

As mentioned earlier, the app-intention is closely related the developer-intention. The app-

intention can be defined as the intention of an application. App-intention can be clearly determine

its behavior. If the app has malicious intentions then it will behave as a malicious app and vice

versa. Therefore, intention of an app is a clear indicator in determining malware applications. In

this dissertation I provide a behavioral based malware identification solution based on its intention

identification. Therefore, identifying the app-intention is very critical in this work. Chapter 4 is

dedicated to explain about these app-intention identification.

App-intention can be divided into several type of intentions.

• Task-intention

• Alternate-intention

• Malicious-intention

• Benign-intention

Thus, all the above intention types are referring to the app-intention. Here onwards in this

dissertation whenever I refer to any of the above type of intentions, the reader should understand

that it refers to a type of app-intention.

2.1.4. Task-intention

Task-intention can be defined as the operations and services an app is programmed to per-

form during its execution life cycle. For instance the task-intention of the Facebook application is

to provide a social networking interface for the user. Every application has its own task-intention.

An app cannot exist without its task-intention. An app is always intended to perform one or more

activities. Some examples of app task-intention are communication, finance, gaming, photography,

music & video playback, navigation, etc.

2.1.5. Alternate-intention

All the intentions that deviate from the task-intention can be identified as alternate-intentions

of an app. For instance, an example app’s task-intention is to provide a banking solution. If that app
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provides a SMS facility in addition to its main task intention, it can be considered as an alternate-

intention. Alternate-intentions not necessarily harmful to a system. It can be legitimate behavior

intended by a regular benign developer. However, identifying the alternate-intention can reveal any

clues on if the app possess any hidden malicious behavior or not.

2.1.6. Malicious-Intentions

If an app is intended to perform any harmful activities in a system, such as stealing data,

sabotaging system integrity, or opening up vulnerabilities to attacks, it can be identified as hav-

ing malicious-intentions. In general, if an app has harmful alternate-intentions (other than task-

intention) then it has malicious-intentions. Further, if the task-intention itself is malicious, it is

not necessary to find any alternate intentions to determine its maliciousness. It can be directly

identified as a malicious app. However, usually this is not the case. Most mobile malware apps are

repackaged in order to hide the malicious behavior under a good benign behavior within a regular

app. This approach helps determine hidden malware samples as well.

There are many types of malicious intentions such as stealing user information, corrupting

user data, hijacking user controls, etc. which are alternate to its task-intention.

2.1.7. Benign-intention

If an app does not have any malicious-intentions, then it is defined as having benign inten-

tions. Thus, the definition of a benign-intention is mutually exclusive from the malicious-intention.

In my opinion, when securing a system, an app is suspicious until proven benign. Therefore, as

the definition suggests, I try to identify malicious-intention and only if it does not depict any such

maliciousness may I then label it as possessing benign-intentions. Thus, in malware identification,

the ultimate goal is to identify such applications that do not have any malicious-intentions so that

they can be labeled as benign.

2.2. Android Platform and Android Applications (Apps)

Android is a mobile operating system developed by Google Inc. which is built on top of

the well known Linux kernel. The Android platform is specifically design for mobile environment
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FIGURE 2.2. Android software stack. Uploaded in Wikipedia by Smieh. Free license.

with touch screen inputs such as tap, swipe, pinch etc. Figure 2.2 depicts the architecture of the

android platform [30].

According to the Android architecture, the bottom most layer is the Linux kernel which is

written in C or/and C++. However, upper layers such as android built-in apps are all written in

java.

Since Android is a free and open source platform, third parties can add functionalities and

do not have to rely on Google (ex: Multimedia Codecs, Sophisticated shell environment, etc.).

This means that it is much easier to both understand and build applications on top of the Android

platform. This is one of the main reasons why I chose the Android platform as the main testing

ground in this dissertation. Many concepts discussed in this dissertation can be extended beyond

the Android platform. For instance, application permissions are used in many other platforms such

as Facebook apps, Google Chrome apps etc. [87] and concepts built on permission requests in this

dissertation can be extended into such platforms as well. However, for simplicity and to construct
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the concept, I have chosen Android as a viable platform.

The Android platform includes many features, included;

• Reuse and replacement of components

• Dalvik virtual machine

• Integrated browser

• Optimized graphics

• SQLite DB owned by each application (can be shared)

• Media support

• GSM Telephony

• Bluetooth, EDGE, 3G, and WiFi

• Camera, GPS, compass, and accelerometer

• Rich development environment

2.3. App Permissions

More information on Android can be found in the next chapter. Intention is related to

Android however, mainly in regard to App permissions. Android OS separates the privileges for

its apps and provides restricted access to each resource. In this way the Android OS enforces

restrictions on Android user apps from performing specific operations [31]. If the app needs a

certain resource to be utilized in its functionality, then it first needs to obtain certain permissions

from the OS and these permissions will be visible and prompted to a user who is installing the app

in an Android system. This gives the user an idea about the functionalities that the app possesses.

However, many general users are not aware of the technical or functionality aspects of many

of these permission requests. To improve the understandability of these permissions, Google has

improved the description on the android app permission request when it is prompted for a user. See

figure 2.3. Though these descriptions give a general idea on what an app can perform with these

permissions, most users are not much of an enthusiast about reading these description. Instead,

the malware identification approach explained in this dissertation can give the user statistical con-

fidence on whether the app is safe to install or not. This is the essence of ‘malware identification

using intention identification’ that I discuss throughout this dissertation.
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FIGURE 2.3. Android app permission request prompted when a user clicked the 
install button in Google play.

2.4. I-Shape of the Task-Intention

On understanding the importance of identifying the task-intention of an app, I expect all

the apps with the same task-intention to behave in a similar way to perform activities and utilize

system resources. Therefore, each app in the same task-intention group possesses a similar set

of permission requests as their requirements are similar. Thus, when the permission requests are

extracted from these same task-intention apps, they follow a similar permission request probability

distribution. This can be formulated by constructing the permission request histogram for that

task-intention category. Normalizing this histogram results in the probability mass function (PMF)

of the permission requests, which have a specific shape for a given category of application [32]. I

name this shape of the PMF as the I-Shape of the category. See Figure 2.4. Extracting the I-shape

of my dataset is discussed in chapter 5.

2.5. Importance of Task-Intention in Malware Detection

As mentioned earlier, all the apps have a task-intention regardless of its nature of being

malicious or not. Therefore, task-intention to app mapping is bijective (one-to-one onto mapping.
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Probability Mass Function I-Shape 

FIGURE 2.4. Probability mass function defines the shape of an app’s intention cat-
egory called the I-Shape. The smoothed curve is used to visualize the shape of the
PMF. This smooth curve is not used in calculations rather the PMF is used.

It is assumed that an app has only one main task-intention). On the other hand, the mapping of

malicious-intention to the app is a many-to-many so that an app can either have a benign inten-

tion, malicious intention, or multiple malicious intentions. Further, a malicious intention can be in

many Apps. One of the main goals in mobile security is to identify such malicious apps (which

has malicious intentions) and either disable them or eliminate them. Task-intention is very useful

in determining its malicious intentions. For instance, if an app performs activities such as trans-

mitting personal information to an external server, it is hard to determine whether this behavior is

malicious or benign unless the actual task-intention is known. If its task-intention is to actually

collect personal information such as the TurboTax app, the above mentioned data transmission ac-

tivity is totally legitimate and can be considered a benign app. Alternatively, if these behaviors are

performed by an app whose task-intention is to monitor battery level, it is suspicious and harmful.

Thus, this yields the importance of identifying the task-intention such that it can be used to identify

the malicious-intention. In this dissertation, my main goal is to identify the task-intention of an

app and then use it to determine its malicious-intention.
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CHAPTER 3

MOBILE SECURITY APPLICATIONS OF INTENTION IDENTIFICATION

In chapter 2, different types of intentions were identified and its usefulness in a mobile

security system was discussed. In this chapter, two major intention types are emphasized, which are

the app-intention and the user-intention. Under these two intention types, four security applications

are discussed. They are malware identification, user role identification, context-aware encryption,

and user identification using EEG. See Figure 3.1. Malware identification is an application of app-

intention, and the other three are three different applications of user-intention. This chapter gives

a brief idea about these three applications. Later chapters discus these application in detail.

3.1. App-intention and Malware Detection

Although signature-based malware detection is the most popular malware identification

method, it has many drawbacks. For instance, malware samples can evade signature-based de-

tection by adopting various transformations, ranging from trivial transformations like changing

package names, to complex transformations like byte code encryption [85]. Therefore, behavioral-

Intention

User-Intention

Identifying User
Types in Social

Network

Context-Aware
Encryption in 

Phone
Conversation

User Behavior
Modeling using

Brain Waves

App-Intention

Malware
Identification

FIGURE 3.1. Intention type used in each mobile security application.
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based static analyses can provide more robust and adaptive solutions for malware identification in

conjunction with signature based solutions. Under the app-intention based solution, I introduce a

novel framework to calculate the risk level of an Android app by using its requested permissions

and its intentions. My approach performs a static analysis on various Android app samples and

identifies potential malware samples based on its behavior. I only used machine learning models

to find the Task-Intention of an application which is very different from malware classification

from machine learning which was discussed in B. Sanz et al [90]. Thus, I only train the system

with regular benign app samples which are abundant and safe. Furthermore, the used machine

learning models do not need to be trained with any malware samples or its signatures to identify

task-intention (task-intention is a part of app-intention). In fact, I never used any malware samples

during the first phase of the algorithm. Also, the permission requests in this approach are not a set

of features in the feature vector.

In malware detection I am following a two phase approach to solve this problem. In phase

1, I build and train several machine learning models to find the task-intention of an app. Once

the models are trained, it can be used to identify the task-intention of any unknown app. Further,

the I-shapes for each of these task-intention groups was constructed in this phase. Then in phase

2, I used the already trained model (in phase 1), to determine the task-intention of an unknown

app. Once I identify the task-intention, the I-shape which corresponds to this task-intention was

retrieved. Then I compare and contrast the permission requests of the unknown app with its I-Shape

to determine whether it is a potentially malicious app or not. If the permission requests deviates

from the I-Shape, I then determine this unknown app as potentially malicious. The implemented

framework involves employing the machine intelligence along with the app’s permission requests.

In order to detect potentially malicious apps, the intention of an app is identified and its risk factor

is calculated.

This unique potential malware identification is implemented using the I-shape which cor-

responds to the task-intention of the unknown app. This I-Shape is compared with the requested

permission by using a matching algorithm that will generate a ratio called matching ratio. If the

matching ratio is more than a certain confidence threshold, the app is potentially safe. Otherwise,
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I flag the app as potentially unsafe and it is subjected to further analysis or quarantined.

The algorithm consists of four main sections:

(1) Feature extraction. (Chapter 4)

(2) Machine learning and training to identify the task-intention. (Chapter 4)

(3) Permission extraction to form the I-Shape. (Chapter 5)

(4) Malware detection. (Chapter 6)

The first three belong to phase 1, while potential malware identification belongs to phase

2. The explained overview architecture of both phase 1 and 2 are shown in figures 4.1 and 6.1.

Malware identification is described in Chapters 5, 4 and 6.

3.2. User-Intention

3.2.1. Identifying User Types in Social Network

User-intention will be useful in determining the user’s behavior. In chapter 7, user-intention

identification is used to determine different behaviors of users in an online social network system.

Then this identification picks out malicious users such as spammers based on their behavior (user-

intention). Twitter is the social network utilized in this example. In this application, I looked into

two different approaches; context-dependent and context-independent. The context-dependent ap-

proach is utilized when information about the network and tweet messages are abundantly available

for analysis. It is intuitive that this information will provide the contextual information about the

network. Otherwise, the context-independent approach is followed. In each approach the user-

intentions (user behavior) are identified differently. In context-dependent approach, since the con-

textual information is available, user behaviors are recognized mainly based on how they interact

with other users. When contextual information is lacking, the user behavior is identified mainly

by the user’s messaging patterns or in this case tweet pattern. In each approach, different machine

learning model are utilized. More details are discussed in chapter 7. The methodologies used on

Twitter social network to identify different user types can be extended to other social medias as

well as to direct mobile phone functions such as on SMS and phone calls. Thus, same model can

be easily extended to identify SMS spamming, phone spamming and other type of users.
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3.2.2. Context-Aware Encryption in Phone Conversation

Another mobile security application of the user-intention identification is discussed in chap-

ter 8. This chapter describes how to enhance the performance of a multimedia encryption system

for mobile platform using the user intention. For this example, I will narrow down multimedia

to be a voice communication through the Internet Protocol (IP) channels. This concept could be

extended to apply in other multimedia applications such as video, text etc., when the multimedia

information content can be recognized. In this particular example, the constraints of a mobile plat-

form resources and how to utilize these resources efficiently without compromising the security

of the data is described. In this chapter, I introduce a novel encryption protocol in a mobile voice

communication using user-intention known as context-aware encryption. The key idea is to use

the user-intention to recognize the sensitivity of the information. When the information is sensi-

tive enough, I perform a regular stronger encryption while rest of the unsensitive information is

left unencrypted or encrypted with less strength to save mobile phone resources.

3.2.3. User Behavior Modeling using Brain Waves

User-intention identification is important in user authentication. It is a clear fact that if the

user is a human being, the user-intention is closely related to that human’s intention. Since all these

intentions are generated in the brain, it is interesting to explore the feasibility of extracting the user-

intentions directly from the brain. Electroencephalogram (EEG) is a way of measuring the echoes

of the brain signals using external probes. EEG is a main candidate in this approach. It is used to

recognize the user-intention of a human being based on different activities and behaviors exerted on

a system. The user-intentions extracted from the brain can be utilized in security systems directly.

There are many researches working on EEG based security solutions, including in areas such as

EEG based user authentication [51, 78], user identification [20], and cryptographic key generation

using EEG [8].

My proposed goal is to use the user behavior on a smart phone to authenticate the user.

Users often use activities like swiping, tapping, pinching, etc. on a smart phone. The EEG can

be recorded while performing these tasks to identify such events. Then, these unique EEG signals

can be used to identify different users [51, 78, 20]. As a preliminary step towards this goal, I have
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performed experiments to identify such different primitive tasks using EEG with a single user. In

chapter 9, I present the results of this experiment to explain the feasibility of the approach. This

work is preliminary, as it needs to be extended to a complete authentication system. Additionally

it can possibly be used someday to model a complex mind control system for a mobile device.
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CHAPTER 4

IDENTIFYING TASK-INTENTION OF ANDROID APPLICATIONS FOR MALWARE

DETECTION

This chapter first explains the dataset that I used in malware identification under app-

intention identification section. Task-intention is one of the main sub category of app-intention.

Later in this chapter, the task-intention identification is discussed in detail. It is important to un-

derstand that since task-intention is the main category of app-intention, one can safely interchange

these two terms. However, app-intention is a more general term and task-intention is a more spe-

cific term.

Task-intentions can be identified using machine learning models. The idea here is to ex-

tract a set of features from mobile apps to group them into its relevant task-intention group using

machine learning models. To achieve this, two different machine learning approaches were exper-

imented; supervise-learning and unsupervised-learning. Based on these experiments, supervised-

learning models did not perform well in task-intention identification. On the other hand unsupervised-

learning models performed better. Thus, the unsupervised-learning models were utilized in the

final malware detection process. All these information are covered in this chapter.

4.1. Mobile App Data Set

The foundation of app-intention identification and malware detection is a reliable data

source. For this application, I have collected three different android apps datasets (APK files).

The first dataset consists of malware samples downloaded [111] from North Carolina State Uni-

versity (NCSU) under the project title Android Malware Genome Project (AMGP). The second

and third datasets were created by collecting benign apps from Google Play. All the collected

necessary apps are reverse engineered to obtain the java source code and the XML files.

The content in this chapter is reproduced from Mohamed Fazeen and Ram Dantu, “Another free app: Does it have the
right intentions?”, Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on, July 2014,
pp. 282−289, with permission from IEEE.
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Data Set Count

Benign Applications - With Class Labels

Business 59

Communication 61

Finance 60

Games 61

Media&Video 63

Medical 59

Music&Audio 62

Photography 60

Productivity 64

Transportation 64

Other 68

Sub Total 681

Benign Applications - Unlabeled 1049

Malware Samples (In 49 families) 273

Total 2003

TABLE 4.1. The datasets for intention based potential malware identification.

The malware data set obtained from NCSU originally consisted of 1,260 android malware

(APK) samples from 49 different malware families. This particular dataset is imbalanced with

some malware families having close to 300 samples over others with only one sample. Thus, for

uniformity, I restricted the number of samples to 10 per family, yielding a total of 273 malware

samples from 47 malware families in the final malware dataset.

First a smaller collection of Android apps were manually downloaded from Google Play. I

collected about 681 apps to construct this dataset. All these application samples were labeled with

its intention class.

Then, I improved the smaller benign dataset further by downloading additional benign
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android apps from Google Play. In this case I obtained the samples without the class labels for the

unsupervised learning model. This collection alone totaled up to 1,049 apps, which were exposed

to unsupervised machine learning algorithms. With this collection, the total dataset increased to

more than 2000 app samples. See Table 4.1.

All the above described datasets consists of android apps in the form of Android platform

installation package files called APK files. I used dex2jar and JD-GUI tools to extract the java

source code and the APKtool to obtain the XML files, the AndroidManifest.xml and the

String.xml.

4.2. Machine Learning Models for Task-Intention Identification

4.2.1. Introduction

Machine learning models can be mainly divided in to two categories, supervised learning

and unsupervised learning. When the used train data set labeled with actual class labels it can be

used to infer the classification model and this is called supervised learning [12]. When the train data

set does not provided with the class labels, thus the clusters are inferred based on the unlabeled

training set [12]. In the task-intention identification problem, I initially used several supervised

learning models. But later I realized that the application category labeling is not reliable in the

training set. Thus, I utilized couple of unsupervised models and I obtained better results.

4.2.2. Supervised Learning

Bayesian

Several Bayesian models such as Naive Bayes, Naive Bayes Multinomial, Bayesian Net-

work were tested while training for this category. The smaller benign dataset, responded well to

all the Bayesian models, especially the Naive Bayesian Multinomial.

In the Bayes approach, P (Ci|X ), the probability of a given feature vector X belonging to a

pattern class Ci ∈ {Business, Communication, F inance,Games,Media&V ideo,Medical,

Music&Audio, Photography, Productivity, T ransportation} is given by:

P (Ci|X ) =

∏n
j=1 P (Xj|Ci).P (Ci)
P (X1, X2, . . . , Xn)

(1)
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In the above {X1, X2, . . . , Xn} are the components of the pattern vector X , P (Ci) is the prior

probability of the class Ci, and P (X ) = P (X1, X2, . . . , Xn) is the probability of the sample vector.

Multilayer Perceptron

In this approach, a feed-forward neural network was used. During training phase, the pat-

tern vectors with known class labels are presented at the input layer, and the outputs are observed.

The weights connecting the neurons in the penultimate layer to those in the output layer should be

adjusted so as to minimize the following mean square error function:

(2) E =
n∑

k=1

(tk −Ok)2

where tk and Ok are the target (expected) and actually observed output values of the kth output

neuron. Since this weight training takes place in the backward direction, this algorithm is known

as the back-propagation learning algorithm. Once the network is trained with all the training

patterns, it can be used to classify the unknown patterns.

This model consisted of h number of hidden layers where h was calculated using the equa-

tion 3.

(3) h =
numberofattribs+ numberofclasses

2

The system was trained by 500 epochs with the learning rate of 0.2.

Random Forest

Random Forest is a classifier formed by an ensemble of decision tree classifiers {h(X,Θk), k =

1, · · · } where the {Θk} are independent and identically distributed random vectors, and X is the

input vector. The random forest classifies X into the class with maximum vote considering the

votes for the most popular class at X by the constituent classifiers.

For the random forest approach I used 100 trees in the model.
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4.2.3. Unsupervised Learning

K-mean clustering

An iterative clustering algorithm which selects K random points as cluster centers (means)

according to calinski-harabasz criterion. In this algorithm, each data point Xn is assigned to K

clusters where k = 1, ..., K. Under 1-of-K coding scheme a binary indicator variable rnkε0, 1 is

defined. Then the distortion measure can be defined as in equation 4 [12]

(4) J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2

where, µk is the center or the prototype associated with the kth cluster

The parameters of the k-mean model used here include; a seed, iterations and clusters of

values 100, 500, and 10 respectively.

Expectation Maximization (EM) Clustering

Expectation Maximization (EM) algorithm, being an important algorithm of data mining,

assigns a probability distribution to each instance which indicates the probability of it belonging

to each of the clusters. The result of the cluster analysis is written to a band called class indices.

For instance value ’0’ refers to the first cluster; a value of ’1’ refers to the second cluster, etc. This

algorithm provides extremely useful results for the real world data set. In general, for a set of

observed variables X and a set of latent variables Z and a parameter θ, the joint distribution can

be defined as p(X,Z|θ) and if it is known, the goal in EM is to maximize the likelihood function

p(X|θ) with respect to θ. [12]

The EM algorithm implemented utilizes a 100 seed with 100 iterations to categorize 10

clusters.

Table 4.8 depicts a sample of how the apps are clustered by the EM model. Similar apps, or

different versions of the same app are grouped into the same cluster while different types of apps

are falling under different clusters indicate the cohesiveness of the clusters.
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Cluster 1

ZFishThemeGOLauncherEXv1.0.apk

ZLoveThemeGOLauncherEXv1.2.apk

T − LOV ELY CATGOLOCKERTHEMEv1.apk

SChristmasThemeGOLauncherv1.0.apk

MonkeyZThemeGOLauncherEXv1.0.apk

Cluster 8

Garfield′sDefense2v1.0.8.apk

CandyCrushSagav1.0.6.apk

ESPNXGamesv1.0.1.apk

8BallPoolv1.0.6.apk

GlowHockey2v1.0.4.apk

Cluster 3

B −RhymesDictionaryv1.5.6.apk

BigEncyclopaedicDictionaryFv1.0.apk

EnglishHungarianDictionaryFv1.0.apk

EnglishMongolianDictionaryFv1.0.apk

FrenchPortugueseDictionaryFv1.0.apk

TABLE 4.2. Clustering results showing similar type of application in a single category.

4.3. Feature Extraction

It is intuitive that an intention of an app is directly related to its functionality. Thus, I was

looking for a set of features that could represent the functionality of the app. Taking these facts

into account, I performed three types of feature extractions. First, only the API calls of the java

source code was extracted (M1). Then, as the second feature extraction method, M2 is constructed

by extending M1 with character frequencies of each app. I browsed through the strings of the

java source and the content of AndroidManifest.xml and String.xml to count the char-

acter usage in each app. I made sure not to extract features from the <uses-permission />,

<permission />, <permission-tree />, and <permission-group /> tags from
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the AndroidManifest.xml as I use them to identify malware samples. As the third method,

M3, I replaced the character frequency in M2 with dictionary based word counting. First, I con-

structed a dictionary with common words used in apps and grouped them into root words. See

table 4.4 for a small sample of the dictionary and their root word (or the group name). Then, I

extracted strings from the same set of resources as explained in M2, to count the words in each

group. Each word hit in a group adds a count to the group. Then this group word count was added

to M1 to construct M3 features.

Then, I tested three different machine learning models against these three feature extraction

methods and I concluded that “M3: API Calls + Dictionary Based” was the best performing feature

extraction method. This feature extraction method was used in both intention classification and

clustering. More details about the feature extraction methods M1 - M3 are described below.

4.3.1. Method 1 (API Calls)

This approach of feature extraction entirely focuses on the import statements in each java

file. On reverse engineering the app, it generates multiple java source files, ranging from 10s to

1000s. Firstly, I hand labeled and grouped the android API packages by looking at the functionality

of the given application package. Table 4.3 illustrates a small section of the hand labeled packages.

Further, a MatlabTM program script was devised to browse through each and every java file of

individual apps to look for any import calls. On finding an import statement, the script extracts

the imported package label and compares it against the list of all the android API packages. If

there is a match, I mark the category based on the functionality this package belongs to as 1. Thus,

following this approach provides a feature vector in a binary form with the dimension of the vector

carrying the number of different labeled functionalities. Further, I counted and normalized the

number of import calls across all the imports of that package by extending the approach, resulting

in a scalar feature vector with real numbers instead of binaries.

The API package list was obtained from Android API reference at http://developer.android.com/reference/packages.html
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Package Name Group Label

android.graphics Graphics

android.graphics.drawable Graphics

android.graphics.drawable.shapes Graphics

android.hardware Input

android.hardware.input Input

TABLE 4.3. Some Android API packages and their hand labels.

4.3.2. Method 2 (API Calls + Character Frequency)

Modifying the previous approach of feature extraction helps to include more features.

The extended feature extraction implementation not only scans the java source files but also

browses through the content of AndroidManifest.xml and String.xml. I extracted

and retained all the attribute and tag values from the AndroidManifest.xml, except those

tagged under <uses-permission />, <permission />, <permission-tree />,

and <permission-group />. Thus, the machine learning models does not train any informa-

tion with respect to the permissions. Post scrapping, the selected attribute information is considered

as a long string and treated to calculate the character frequency for both the xml content in order

to add them into the feature vector.

4.3.3. Method 3 (API Calls + Dictionary Based)

This method being an extension of Method 1, utilizes the scalar vectors along with building

a dictionary of words and grouping them into a root word, instead of just counting the characters

as described in Table 4.4. Selecting a key word is very critical and plays an important role in

the implementation of this method. I researched a couple of applications at the Google Play to

see what type of words best describe different categories of apps to carefully select key words and

group them into buckets. Then I extracted the XML file as described in Method 2, in order to check

the occurrence of the selected keywords in those XML files. If a keyword is found, the count of

the bucket that key word belongs is increased by 1. Thus, on counting all the occurrences of the
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selected keywords, the bucket is incremented and added to the feature vector correspondingly.

Key word Group

device business

move business

keyword business

email office

card office

folder office

TABLE 4.4. Part of the dictionary which was used to extract the features in Method 3.

4.4. Task-Intention Identification by Supervised Learning

Initially, I started the task-intention identification with supervised machine learning models.

To train and test these models I used the labeled benign app dataset. Though these models produced

reasonable performance, it was not good enough for task-intention identification. It also lacked

adoptability. Therefore, I later replaced this with an unsupervised model. However, I present

the results of supervised models to compare with the unsupervised models. In this supervised

approach, I followed the same steps as explained in Figure 4.1 with an exception of unsupervised

learning method replaced by supervised learning model, and construction of classes instead of

clustering.

Name Machine learning model

Model 1 Bayesian

Model 2 Multilayer Perceptron

Model 3 Random Forest

TABLE 4.5. Different machine learning models used in the approach.

Three machine learning models were adopted: Naive Bayesian, Multilayer Perceptron, and

Random Forest. See Table 4.5 The data mining tool WEKA was used to perform machine learning
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Benign Application 

Unsupervised

Machine 

Learning Model 

Apps with 

Task-

Intention 1 

…

Cluster 1

permission

histogram 

(I-Shape 1) 

Cluster 2

permission

histogram 

(I-Shape 2) 

Cluster 3

permission

histogram 

(I-Shape 3)

Cluster n

permission

histogram 

(I-Shape n)

Task-Intention Identification 

…

Extract Features 
- API Calls 
- Dictionary based 

Apps with 

Task-

Intention 2 

Apps with 

Task-

Intention n 

Apps with 

Task-

Intention 3 

Cluster 1 Cluster 2 Cluster n Cluster 3 

Extract permission list from the AndroidManifest.xml 

Construct the permissions histogram 

FIGURE 4.1. Phase 1 architectural diagram for task-intention identification. Here,
I only train the machine learning models with benign apps.

training and analysis [45]. I used the default configurations provided by the WEKA for Naive

Bayesian. A back-propagation feed-forward neural network was used in Multilayer Perceptron

model. I set up the number of layers to be (Number of attributes + Number of classes) / 2. Then

the system was trained with 500 epochs and a learning rate of 0.2. For the Random Forest model,

the number of trees were restricted to 100.

The feature vectors created using different feature extraction approaches were used to train

these machine learning models. Building a good machine learning model can help in classifying
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Model

Bayesian Multilayer Random

Perceptron Forest

SD M1 17% 33% 33%

M2 35% 62% 42%

M3 67% 56% 63%

LD M3 56% 40% 59%

TABLE 4.6. The unsuccessful results of the supervised learning models against 

each feature extraction methods explained in section 4.3. To overcome this, I re-

placed these supervised learning models with the unsupervised learning models for 

task-intention identification. SD:Smaller Dataset, LD:Larger Dataset, Feature ex-

traction methods M1-M3:Method1-Method3.

any unknown app to find its task-intention, such as Game or Business. I performed both 10-fold

cross validation and 66% splitting of dataset when training and testing the model.

4.4.1. Unsuccessful Results of Task-Intention Id. by Supervised Learning

I witnessed several limitations for having obtained not-so high accuracy for the intention

identification. See Table 4.6. App categorization in Google Play played a big role since I used the

Google Play group labeling. Some applications did not have a clear border between categories, e.g.

an application in the productivity category also showed relationship to the business category. Thus,

there is a possibility of misclassification, thereby decreasing the performance and accuracy. The

confusion matrix in the table 4.7(a) clearly illustrates this misclassification of different categories.

In this supervised learning approach task-intentions are decided simply by looking at the

Google play category. This usage of Google Play group labeling could lead to an adversary attack

where individuals can choose a category for their application that has all the right permissions.

However, in the unsupervised learning (See section 4.5), task-intentions can be determined using

its source code. One can easily change the labels to change the task-intention than to change the
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(a) The confusion matrix

classified as

a b c d e f g h i j

18 7 6 0 1 6 0 3 4 5 a

3 25 0 1 4 7 0 2 6 2 b

5 0 31 2 2 4 0 0 2 4 c

0 1 0 45 0 2 0 0 1 1 d

0 2 0 6 25 5 7 3 2 0 e

5 1 1 3 2 30 1 0 5 2 f

0 0 0 3 7 3 37 1 0 0 g

0 0 0 3 3 2 0 40 2 0 h

7 5 2 5 2 3 2 4 22 0 i

2 2 2 3 0 6 0 1 2 34 j

(b) Legend

a = Business

b = Communication

c = Finance

d = Games

e = Media&Video

f = Medical

g = Music&Audio

h = Photography

i = Productivity

j = Transportation

TABLE 4.7. The confusion matrix for the random forest (Model 3) classification of 
benign application dataset (large) with Method 3 feature extraction.
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source code, strings and API calls to change its task-intention. For this reason, unsupervised ap-

proach is stronger than the supervised approach and it is one way of overcoming the drawbacks

of supervised approach. Hence, I modified the task-intention identification by replacing the super-

vised technique with the unsupervised algorithms. I utilized the clustering algorithms to identify a

task-intention. The following section describes the implementation of the unsupervised intention

identification methodology.

4.5. Task-Intention Identification by Unsupervised Learning

After learning that the supervised model is unsuccessful, I improved the algorithm by re-

placing it with an unsupervised learning model. The downloaded benign apps were clustered into

self identified task-intentions and I calculated their I-Shapes for each cluster. Since, unsupervised

learning model determines its clusters, I say the task-intentions are self identified. Once the I-shape

is constructed, each unknown app is classified into identified clusters and analyzed for potential

maliciousness as explained in Figure 4.1. In this model two clustering methods were utilized:

K-mean clustering and Expectation Maximization (EM) clustering. I used all the benign apps re-

gardless of whether they are labeled or not to train the models. For the K-mean clustering, I used

100 as the seed, 500 as the number of iterations and restricted the number of clusters to 10. In EM

clustering, I used the same parameters except iterated the model only 100 times.

Table 4.8 depicts a sample of how the apps are clustered by the EM model. Similar apps,

or different versions of the same app, are grouped into the same cluster, while different types of

apps falling under different clusters indicate the cohesiveness of the clusters.

4.6. Results of Task-Intention Id. by Unsupervised Learning

As mentioned in section 4.4.1, class labels are unreliable. Also, a hacker can purposely

mislabel the app to delude the system. The unsupervised learning model was constructed to over-

come such drawbacks. In fact, because the unsupervised learning model does not require any type

of class labeling, this shows the model is immune to such deceptions. First, the benign apps were

clustered into 10 clusters. Then the I-Shape for each of these clusters were constructed. The mal-

ware samples were then interrogated with the above clustering model to identify what cluster it
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Cluster 1 - Mostly Themes

ZFishThemeGOLauncherEXv1.0.apk

ZLoveThemeGOLauncherEXv1.2.apk

T − LOV ELY CATGOLOCKERTHEMEv1.apk

Cluster 8 - Mostly Games

Garfield′sDefense2v1.0.8.apk

CandyCrushSagav1.0.6.apk

ESPNXGamesv1.0.1.apk

Cluster 3 - Mostly language dictionaries

B −RhymesDictionaryv1.5.6.apk

BigEncyclopaedicDictionaryFv1.0.apk

EnglishHungarianDictionaryFv1.0.apk

TABLE 4.8. Clustering results showing similar type of application in a single category.

will be classified into. The second column of table 4.9 depicts this classification.

I evaluated the benign app clustering using the classification approach [103, 104]. First, the

clustered benign apps were labeled with the corresponding cluster. Then, a naive Bayes supervised

machine learning model was used with a 10-fold cross validations to evaluate the performance.

This classification produce an accuracy of 88.5%. Therefore, unsupervised learning approach

performed better than supervised learning in grouping apps into its task-intentions.

4.7. Summary

Task-intention identification using machine learning models were explained in this chapter.

The dataset consisted of 1730 benign Android apps and 273 malware samples. Two different

types of machine learning models were attempted. Supervised learning models did not produce

successful results. However, unsupervised learning models performed well in grouping apps into

correct clusters based on the cluster performance analysis and manual observations of the clusters.

In the next chapter, these clustered apps are used to construct the I-shape of the cluster using their

permission requests.
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Cluster # Benign Malware

Cluster 0 21 ( 2%) 1 ( 0%)

Cluster 1 232 ( 22%) 134 ( 49%)

Cluster 2 57 ( 5%) 1 ( 0%)

Cluster 3 272 ( 26%) 111 ( 41%)

Cluster 4 36 ( 3%) 0 ( 0%)

Cluster 5 41 ( 4%) 0 ( 0%)

Cluster 6 41 ( 4%) 0 ( 0%)

Cluster 7 11 ( 1%) 0 ( 0%)

Cluster 8 206 ( 20%) 23 ( 8%)

Cluster 9 132 ( 13%) 3 ( 1%)

TABLE 4.9. Results obtained by unsupervised clustering of apps.

38



CHAPTER 5

ANDROID APP PERMISSIONS AND I-SHAPE ANALYSIS FOR MALWARE DETECTION

I-shape is a key component in identifying malicious apps in my malware detection ap-

proach. In chapter 2, section 2.4, I have introduced the concept of I-shape. In this chapter, I

discuss how I extracted the permission requests from the applications in the dataset and used them

to create the I-shapes.

5.1. Permission Extraction & I-Shape Construction

Every android app consists of a file named AndroidManifest.xml which describes

the important information of an app to the Android OS. The Android OS security feature al-

lows the app to access critical functionalities on a need basis, which are requested via this

AndroidManifest.xml. Thus, in this file, under the tag <uses-permission /> one can

find different types of access permission request the app requesting from the OS for it to execute.

If a permission is not defined in this manifest file, even if the app’s java code attempt to access the

resource with APIs, the OS will refuse these requests and will throw a runtime exception. There-

fore, the manifest file is the most reliable place to look for what type of permissions are required

by the app to execute on an Android operating system.

I-shape is composed of an app’s permission requests. In general, I-shape represents the

shape of the permission requests probability distribution in a group of apps. Here, the app group

must be homogeneous, in order for the I-shape to represent a meaningful information. Thus, I

grouped the apps based on its task-intentions such that it forms a cohesive homogeneous group.

Now, when the I-shapes are constructed for each of these task-intention groups, the I-shape dictates

that this is the most probable permission request signature these type of apps request. It will be

very useful in determining the malicious behavior of an unknown app. This is discussed in the next

chapter.

The content in this chapter is reproduced from Mohamed Fazeen and Ram Dantu, “Another free app: Does it have the
right intentions?”, Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on, July 2014,
pp. 282−289, with permission from IEEE.
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To construct the I-shape, I automated the permission extraction process using a MatlabTM

script. Two types of extractions are performed. The first type involves extracting the permissions

requested and their counts of how many times they are requested by all the malware samples in

the dataset. The figure 5.1 depicts what types of permissions were requested by all the malware

in the dataset and how many times they were requested in overall. Note that, here I performed

the permission extraction from the malware apps. However, none of these malware permission are

used to construct the I-shape. I-shapes are always constructed from the permission requests of the

benign apps. The second type of permission extraction describes this.

It is intuitive that these permissions are common for a given task-intention. For instance,

if the task-intention of a set of apps is to provide an SMS communication, it is clear that all

these apps must possess similar permission requests such as SMS SEND, SMS RECEIVE etc.

In the second extraction type, I extracted all the permissions of benign apps based on its given

task-intention group to build the permission-request-histograms. Then, probability mass functions

(PMF) for each of these categories are constructed using those histograms. Consequently, the

permission I-Shapes are constructed by using these PMFs for each of these same categories, as

illustrated in figure 5.2. Here, the used task-intentions are the ones I identified in the previous

chapter. Following this approach, I collected permission-requests of the benign apps in the dataset

and then the I-Shapes were created for the two benign datasets. The malware dataset is not used to

construct the I-Shape. However, permissions of the malware dataset was also extracted as it will

also be used in the malware identification process, which is explained in the next chapter.

5.2. Summary

I-shape construction for the task-intention groups was discussed in this chapter. In the next

chapter, malware detection is explained by using these identified I-shapes and task-intentions.
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 android.permission.READ_CONTACTS  
 android.permission.MOUNT_UNMOUNT_FILESYSTEMS  

 android.permission.WRITE_EXTERNAL_STORAGE    
 android.permission.INTERNET  

 android.permission.INSTALL_PACKAGES    
 android.permission.BROADCAST_PACKAGE_REMOVED  

 android.permission.WRITE_SETTINGS   
 android.permission.RESTART_PACKAGES    
 android.permission.WRITE_APN_SETTINGS  

 android.permission.ACCESS_FINE_LOCATION  
 android.permission.ACCESS_COARSE_LOCATION   
 android.permission.RECEIVE_BOOT_COMPLETED  
 android.permission.ACCESS_NETWORK_STATE  

 android.permission.READ_PHONE_STATE  
 android.permission.SEND_SMS   

 android.permission.RECEIVE_SMS  
 android.permission.READ_SMS   
 android.permission.WRITE_SMS   

 android.permission.MODIFY_PHONE_STATE  
 android.permission.WAKE_LOCK    

 android.permission.ACCESS_LOCATION_EXTRA_COMMANDS  
 android.permission.READ_OWNER_DATA  
 android.permission.WRITE_OWNER_DATA  

 android.permission.SET_WALLPAPER  
 android.permission.CAMERA   
 android.permission.VIBRATE   

 android.permission.ACCESS_WIFI_STATE   
 android.permission.DISABLE_KEYGUARD    

 android.permission.WRITE_CONTACTS  
 android.permission.CALL_PHONE    
 android.permission.READ_LOGS    

 android.permission.MODIFY_AUDIO_SETTINGS  
 android.permission.RECORD_AUDIO  

 android.permission.GET_TASKS    
 android.permission.BLUETOOTH  

 android.permission.BLUETOOTH_ADMIN   
 com.android.vending.CHECK_LICENSE    

 android.permission.CHANGE_NETWORK_STATE   
 android.permission.CHANGE_WIFI_STATE    

 com.android.browser.permission.READ_HISTORY_BOOKMARKS    
 com.android.browser.permission.WRITE_HISTORY_BOOKMARKS   

 android.permission.GET_ACCOUNTS    
 android.permission.KILL_BACKGROUND_PROCESSES  

 android.permission.REORDER_TASKS    
 android.permission.WRITE_SYNC_SETTINGS  
 android.permission.READ_SYNC_SETTINGS   

 android.permission.GET_PACKAGE_SIZE    
 android.permission.CLEAR_APP_CACHE    

 android.permission.DELETE_CACHE_FILES  
 android.permission.BROADCAST_STICKY    

 android.permission.READ_EXTERNAL_STORAGE  
 android.permission.CHANGE_CONFIGURATION   

 android.permission.SET_PREFERRED_APPLICATIONS  
 android.permission.BOOT_COMPLETED  

 android.permission.INJECT_EVENTS   
 android.permission.DUMP    

 android.permission.PROCESS_OUTGOING_CALLS  
 com.android.launcher.permission.INSTALL_SHORTCUT  

 android.permission.ACCESS_GPS  
 android.permission.ACCESS_LOCATION   

 android.permission.ACCESS_CACHE_FILESYSTEM  
 android.permission.WRITE_SECURE_SETTINGS  

 com.android.launcher.permission.UNINSTALL_SHORTCUT   
 android.permission.DELETE_PACKAGES  

 android.permission.RECEIVE_MMS  
 android.permission.RECEIVE_WAP_PUSH  

 android.permission.EXPAND_STATUS_BAR  
 android.permission.SET_WALLPAPER_HINTS  

 com.android.launcher.permission.READ_SETTINGS  
 com.android.launcher.permission.WRITE_SETTINGS  

 android.permission.GLOBAL_SEARCH_CONTROL  
 android.permission.ACCESS_COARSE_UPDATES   

 android.permission.DEVICE_POWER   
 android.permission.PERMISSION_NAME  

 android.permission.ACCESS_DOWNLOAD_MANAGER   
 android.permission.ACCESS_DOWNLOAD_MANAGER_ADVANCED  

 android.permission.ACCESS_DRM    
 android.permission.SEND_DOWNLOAD_COMPLETED_INTENTS  

 android.permission.INSTALL_DRM  
 android.permission.WRITE_CALENDAR  

 com.htc.launcher.permission.READ_SETTINGS   
 com.motorola.launcher.permission.READ_SETTINGS   
 com.motorola.launcher.permission.WRITE_SETTINGS  

 com.motorola.launcher.permission.INSTALL_SHORTCUT   
 com.motorola.launcher.permission.UNINSTALL_SHORTCUT  

 com.lge.launcher.permission.READ_SETTINGS   
 com.lge.launcher.permission.WRITE_SETTINGS   

 com.lge.launcher.permission.INSTALL_SHORTCUT   
 com.lge.launcher.permission.UNINSTALL_SHORTCUT  
 com.motorola.dlauncher.permission.READ_SETTINGS   
 com.motorola.dlauncher.permission.WRITE_SETTINGS  

 com.motorola.dlauncher.permission.INSTALL_SHORTCUT   
 com.motorola.dlauncher.permission.UNINSTALL_SHORTCUT  

 android.permission.FLASHLIGHT   
 android.permission.ADD_SYSTEM_SERVICE  

FIGURE 5.1. All types of permissions requested by the malware and their frequency.
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FIGURE 5.2. The I-Shapes of the clusters I obtained. Each I-Shape is constructed
by using the probability mass functions (PMFs). PMFs are constructed by normal-
izing the corresponding permission histograms [32]. List of the permission types
(x-axis) is presented in figure 5.1. Note that the smoothed curve is used to visualize
the shape of the PMF only. In calculations, probability values of each permissions
are used.
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FIGURE 5.2. The I-Shapes of the clusters (cont.).
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CHAPTER 6

TASK-INTENTION AND MALWARE IDENTIFICATION

This is the final stage of the malware identification algorithm. Malware identification is

a mobile security application of app-intention identification. To determine the maliciousness of a

given android app, the above mentioned task-intentions and I-shapes were used. Therefore, it is

advised to read the above chapters before getting into this chapter.

6.1. Malware Identification

This malware detection algorithm tries to identify whether a given unknown app is poten-

tially harmful or safe. First, features were extracted from this unknown app and the feature vector

was constructed. Then I applied it to an aforementioned trained machine learning model and ob-

tained the app category c to which it was classified. Now, the task-intention of this unknown app

is identified. Thus, I retrieved the probability mass function Hc corresponding to the identified

task-intention group. According to the aforementioned method, I also extracted the permission-

requests of this unknown app, P . Then I used a constant threshold T to extract the most probable

permission list from Hc according to the following method;

Let, Hci ∈ {Permissions in the PMF} where i ∈ {1, 2, . . . , n}

1: if the value of Hci > T then

2: Retain this permission and add to the list LP

3: else

4: Discarded the permission and do not add to the LP

5: end if

The value of T is taken as 0.001 based on the average probability value of all the I-Shapes.

Now I have two lists, a list of permissions LP that this app is supposed to have, and the permissions

The content in this chapter is reproduced from Mohamed Fazeen and Ram Dantu, “Another free app: Does it have the
right intentions?”, Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on, July 2014,
pp. 282−289, with permission from IEEE.
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FIGURE 6.1. Phase 2 architectural diagram for potential malware identification.
Here, I compare the permission request list of the unknown app with I-Shape of its
task-intention.

that this unknown app requests P . I then searched for each P in LP . If a permission was found,

I increased a counter named ’matched permission counter’ M Cnt by 1. Then, I calculated the

matching ratio by using the equation, MR = M Cnt/count(P ). I used a confidence value of

above 95% in MR to label the unknown app to be safe. Otherwise I labeled them as unsafe.
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Actual

Malware apps (+) Benign apps (-)

Predicted (+) True Positive (TP) False Positive (FP)

Predicted (-) False Negative (FN) True Negative (TN)

TABLE 6.1. Confusion matrix terms.

I picked a higher value of 95% to make sure that I-Shape and the permission requests are well

matched to determine whether it is benign.

To test the system performance, I tried to identify the malware in the malware dataset

(positive class) and in a fresh benign app dataset (negative class). Ideally, I would expect all the

apps in the malware dataset to be detected as malware, while from the benign app dataset I would

expect to see none. The table 6.1 depicts the definition of the confusion matrix.

By considering the malware dataset as the positive class, I calculated the sensitivity using

the equation “Sensitivity (%) = TP
TP+FN

× 100%”

Also, I calculated the specificity by considering the benign app dataset using the equation

“Specificity (%) = TN
TN+FP

× 100%”

Then I calculated the balanced accuracy using the formula 5 to determine the performance

of the system [14]

(5) Balanced Accuracy =
Sensitivity + Specificity

2
%

6.2. Potential Malware Identification Results

This section portrays the final performance of the potential malware identification. I ob-

tained these results by performing both phase 1 and phase 2 sequentially. In phase 1, I decided that

the most suitable approach is the unsupervised approach. Therefore, I used two different unsuper-

vised learning models as the phase 1 task-intention identification to obtain the results in phase2.

Thus, I had two overall accuracies corresponding to two different phase 1 unsupervised learning

models. See Table 6.2 for malware detection accuracies.
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Further, for comparison purposes, I also used the supervised learning model for phase 1 to

obtain results in phase 2. By choosing the supervised machine learning model as the task-intention

identification, I produced a balanced accuracy of 70% in detecting potential malware samples in the

best case. This was improved up to 75% using unsupervised models. However, the accuracy of the

unsupervised approach was 89% due to better recognition of benign samples. That is out of 1500

benign samples about 1436 identified as benign (TN). Further, out of 273 malware samples 137

identified as malicious (TP). This yield an accuracy of 89%. Further, K-mean clustering sensitivity

results indicated that it performs better in detecting malware samples than that of in EM. However,

EM was better in identifying benign apps. Due to better identification of benign apps in EM,

it produced a higher accuracy than k-mean as the dataset had more malware samples than benign

samples. Yajin Zhou et al., tested these same malware samples in four popular commercial Android

anti-virus tools to evaluate their performance [111]. Their results depicted that in the best case,

the Lookout anti-virus software tools detected only 79.6% of the malware samples. However,

both AVG and Norton anti-virus tools detected only 54.7% and 20.2% respectively. I wanted to

point out that they used a bigger malware sample of 1260 malware apps while this only used a

subset of that. Further, this was a sensitivity results. My approach obtained a similar sensitivity

performance as the Lookout, when K-mean clustering was used. See table 6.2. However, my

approach outperformed other two popular tools. In general, this approach not only exceeded the

performance of the existing tools, but it also exhibits a safer approach, as I do not need to execute

the malware sample in order to detect its malicious payload.

My detailed analysis of potential malware detection indicated that samples in some mal-

ware families were completely identified by this algorithm, while some of them completely evaded.

See table 6.3. Malware families like Gone60, KMin, Plankto, zHash mainly consist of stand-alone

malware samples [111]. This algorithm identified all the sample in these families. Also, repackag-

ing malware families like BeanBot, DroidKungFuSapp, GoldDream are also completely detected.

Malware families like AnserverBot, BaseBridge, and Plankton are also classified as ‘update attack’

class and these families also were detected with higher accuracy. However, some repackaging mal-

ware families like DroidDreamLig, DroidKungFu1, DroidKungFu2, DroidKungFu3 were detected
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Clustering algorithm used- Sensitivity Specificity Balanced Accuracy
in intention identification Accuracy

k-mean 77% 68% 72.5% 70%
EM 50% 100% 75% 89%

TABLE 6.2. Overall potential malware identification performance when unsuper-
vised learning (clustering) is utilized. Due to better identification of benign apps in
EM, it produced a higher accuracy than k-mean as the dataset had more malware
samples than benign samples.

with lower accuracies. GoldDream malware family is the only family in the database that belongs

to both repackaging and stand-alone. My algorithm identified all the samples in this family as well.

In overall, this algorithm identified 50% of the repackaged malware apps and 55% of standalone

malware apps.

6.3. Related Work

Rassameeroj and Tanahashi[84] clustered apps based on their permission requests. It was

concluded that it is possible to detect malicious apps based on permission requests as long as there

is a careful selection of the permission set. D. Barrera et al. explains how Android permission

can be utilized in mobile security [9]. They utilized Self-Organizing Map (SOM) to evaluate the

access control permission requests. Their analysis was based on about 1,100 Android apps to study

the permission usage patterns and they claimed that certain permissions are very frequently used,

while some are not.

A. Shabtai et al. also adopted a machine learning model to classify android apps into two

groups (tools and games) with a dataset of 2,850 apps [91]. R. Perdisci and M. U’s showed, how

unsupervised learning can be used to perform malware clustering and how it can be evaluated. The

database consisted of about 3,000 malware samples.[75].

Apps in Facebook also follow a permission based access control. M. Frank et al. utilized a

probabilistic model to mine permission request patterns from Android and Facebook applications

with a large number of samples [41]. Though their goal was not to identify malware samples, they

used an unsupervised learning model to find permission request patterns. One of their findings

indicated that Android app categories are related to its permission request patterns. This fortifies

my own argument that similar task-intention apps are related to its permission request patterns.
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Family Det. Total (%) RPKG Upd DrR StA
BeanBot 8 8 100 X
CruseWin 2 2 100 X
DroidKungFuSapp 3 3 100 X
FakeNetflix 1 1 100 X
GamblerSMS 1 1 100 X
GGTracker 1 1 100 X X
GingerMaster 4 4 100 X
GoldDream 10 10 100 X X
Gone60 9 9 100 X
HippoSMS 4 4 100 X
KMin 10 10 100 X
NickyBot 1 1 100 X
NickySpy 2 2 100 X
Plankton 10 10 100 X X
Walkinwat 1 1 100 X
zHash 10 10 100 X
ADRD 9 10 90 X
AnserverBot 9 10 90 X X
BaseBridge 9 10 90 X X
Geinimi 8 10 80 X
Pjapps 8 10 80 X
DroidDream 4 10 40 X
GPSSMSSpy 2 6 33.3 X
DroidKungFu1 3 10 30 X
DroidKungFu2 3 10 30 X
DroidDreamLight 2 10 20 X
DroidKungFu3 2 10 20 X
jSMSHider 1 10 10 X
Asroot 0 8 0 X
Bgserv 0 9 0 X
CoinPirate 0 1 0 X
DogWars 0 1 0 X
DroidCoupon 0 1 0 X
DroidDeluxe 0 1 0 X
DroidKungFu4 0 10 0 X
DroidKungFuUpdate 0 1 0 X X
Endofday 0 1 0 X
FakePlayer 0 1 0 X
Jifake 0 1 0 X X
LoveTrap 0 1 0 X
RogueLemon 0 2 0 X
RogueSPPush 0 9 0 X
SMSReplicator 0 1 0 X
SndApps 0 10 0 X
Tapsnake 0 2 0 X
YZHC 0 10 0 X
Zsone 0 10 0 X

TABLE 6.3. Malware samples identified by this method for all 47 malware fami-
lies and their attack method. Results are sorted based on performance on different 
families. Legend: Det. - Detected, RPKG - Repackaging Attack, Upd - Update 
Attack, DrR - Drive-by Download Attack, StA - Standalone.
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Y. Zhou and X. Jiang from North Carolina State University instated the Android Malware

Gnome Project to collect Android malware samples [111]. This is the source of malware apps

used in this work. As an extension for this work, Y. Zhou et al. also published a systematic study

about detecting malicious applications on popular Android markets [112]. In their malware detec-

tion they followed a two step approach, where they first performed a permission based filtering,

followed by behavioral footprint matching. In the first phase, the apps were filtered by looking

at the permissions which were probable for certain malware family. In this approach, I stressed

the extraction of I-Shape for a similar task-intention group. Their results showed that the official

market had a low infection rate of 0.02% compared to that of alternative markets, which ranged

from 0.2% to 0.47%.

X. Wei et al. studied about how Android app permission requests evolved from the time

period of 2009 to 2011 [100]. Their findings indicated that permission requests tend to grow and

aimed towards providing access to new hardware features, including dangerous permissions. They

also identified that most of the applications are over privileged. These negative impacts motivated

me to implement this security system.

Undocumented permissions always seem unnecessary for applications which intend to do

other jobs. These permissions may be used to create a more complete user profile by actively

collecting personal information, which can be dangerous, as discussed by Hao Chen et al. [89].

Further, they developed a framework which identifies a set of security-sensitive API methods,

specifies their security policies, and re-writes the bytecode to interpose the invocations in a given

application that is being used [11].

The manifest and its permission requests do allow the possibility of ascertaining the app’s

functionality, thereby providing a good initial platform for identifying malicious activities. As

explored by [39] and [111], unnecessary permission requests cause an app to be over-privileged.

These permissions, in combination with other popular requests, could possibly lead to privacy

leaks, thereby causing the apps to become malicious.

G. Canfora et al. classified Android malware using three different metrics; the occurrences

of a specific subset of system calls, a weighted sum of a subset of permissions that the application
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required, and a set of combinations of permissions. They evaluated 200 malware and 200 benign

apps to assess the performance of these metrics. Again, this model mainly differed from my

approach as they trained the models with malware features. [16]

B. Sanz et al. conducted a similar study to categorize Android malware applications. Their

dataset consisted of about 820 samples from 7 categories. The WEKA tool was used to perform the

data mining. It is interesting to note that one of their feature extraction methods is the frequency

of occurrence of the printable strings, which is similar to one of ours. It is very important to note

that their approach is different in several ways. My approach does not use the machine learning

models to identify malware samples rather I used them to find the task-intention of an app. Further,

I used the permission requests to identify potential malware apps, they are not a set of features in

the feature vector while in Sanz et al. approach it is in the feature vector. Further, my approach

can be extended to identify zero day malware apps while in Sanz et al. approach zero day malware

identification depends on the performance of the classifier. [90]

6.4. Summary

Identifying potentially harmful Android apps by using the intention of those apps were

highlighted in this work. Machine learning models were used to identify the task-intention of

an app. Once it is known, I retrieved the most probable permission-requests for that task-intention

group called the I-Shape and compared it with the permission-requests of the unknown application.

Based on this comparison, I identified whether an app is potentially malicious or not. This method

could be utilized to identify the safety of an app before its installed or to identify brand new

malware apps. I used both supervised and unsupervised machine learning models to determine

the task-intention of an app and the unsupervised model outperformed the other. I obtained an

accuracy of 89% in identifying potentially harmful apps. I believe this accuracy can be increased

by improving the dictionary and by training more benign app samples. Thus, it leads to a life long

learning, which will evolve into better performance. In the next chapter, identification of leaders,

lurkers, associates and spammers in a social network is discussed.
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CHAPTER 7

USER-INTENTION AND MALICIOUS USER IDENTIFICATION IN SOCIAL NETWORK

7.1. Introduction

Recent years have witnessed a proliferation of social networks with popular applications

such as Twitter, Flickr, YouTube, LiveJournal, Orkut, and Facebook [38]. These networks are

poised for further growth with emerging applications such as social television (TV) [55] to share

people’s thoughts with family and friends while watching TV alone at home. With this rapid pace

of growth in social networks (SN), there has also been a growing interest in the Internet research

community in the SN analysis to address various aspects of social networking. Wu and Zhou

performed a SN analysis using Del.icio.us, a free SN bookmarking web service that permits users

to tag each one of their bookmarks with freely chosen index items [107]. They have shown that

the patterns of users’ tagging can be detected by visualizing the users’ tagging behaviors and tag’s

evolution. They also established that the users within a subscription network share more common

interests than random pairs of users in Del.icio.us. Using a large dataset containing 11.3 million

users and 328 million links from multiple online SNs namely Flickr, YouTube, LiveJournal, and

Orkut, [64] developed a large-scale measurement procedure to analyze the structure of multiple

online social networks, and found significant structural differences between the SNs and previously

studied networks, particularly the Web. SNs have a much higher fraction of symmetric links and

exhibit much higher levels of local clustering. These properties may be used to design effective SN

algorithms and applications. For an analytical study on information dissemination in large-scale

SNs, [17] use the data including 11 million photographs from favorite markings of 2.5 million

users on the Flickr to address the following questions: i) how widely does information propagate

in the SN? ii) How quickly does information propagate? iii) what is the role of word-of-mouth

exchanges between friends in the overall propagation of information in the network? Results of

The content in this chapter is reproduced from Mohamed Fazeen, Ram Dantu, and Parthasarathy Guturu, “Identifi-
cation of leaders, lurkers, associates and spammers in a social network: context-dependent and context-independent
approaches”, Social Network Analysis and Mining 1 (2011), no. 3, 241−254, with permission from Springer.
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their analysis indicate that: i) even in case of popular photographs, information does not spread

widely throughout the network, ii) it spreads slowly, and iii) information exchange between friends

accounts for over 50% of all favorite markings, and it incurs a significant delay at each hop.

In a work on SN content analysis, [63] employ ISIS, a general stochastic model (with a set

of sequential statistical tests) for Interacting Streaming Information Sources, to identify items that

gather a higher attention in social media. In a similar application context, [19] identify messages

dealing with the trending topics or special events in an SN using visualization techniques and

artificial intelligence based data mining methods.

In the context of new challenges in this field related to privacy, background knowledge, and

data utility, many researchers addressed the anonymization (user identity suppression) problem.

[110] present a short but systematic review of the existing anonymization techniques for privacy

preserving publishing of social network data. Considering trust between users in a social network

as a parameter similar to the reputation of a specified user rather than a quantification of preference

and profile matches between users, [53] propose a fuzzy logic based system to compute the trust

values for individual users in an SN by propagation and aggregation through the network the trust

values provided on a scale of 0 to 10 by the users about the other directly connected (hence well

known) users. [57] address the problem of detection of spam among blogs, the SN media similar to

a micro blogger like Twitter, but with more capability. The authors basically identify the spammers

from the repetitive temporal regularity of contents and consistent linking patterns. The temporal

regularity, in turn, is measured by using the entropy of the “blog post time” difference distribution.

Experimental results indicate that a high accuracy of 90% in spam blog detection can be achieved

by their method. [102] address the problem of identification of influential users in twitter using

an improved page-ranking system called TwitterRank based on the concept of homophily, the

tendency of individuals to associate and link with similar others, or those with similar topics of

interests.

In the context of SN privacy, I address in this dissertation the problem of identification of

types users in a twitter network. I categorize the twitter users into 4 types: i) Leaders (those like

the news groups, who start tweeting, but do not follow any one there after, though they could have

53



many followers), ii) Lurkers, who are generally inactive, but occasionally follow some tweets,

iii) spammers, the unwanted tweeters,also called as twammers, and iv) close associates, includ-

ing friends, family members, relatives, colleagues, etc. Two classification approaches have been

proposed here to address this problem: i) context-dependent classification for situations where an

abundant amount of tweet data is available; here I employ a fuzzy classification scheme, and ii)

context-independent classification (based on the user tweet patterns) that is suitable when enough

information is not available about the network context.

Organization of the rest of the chapter is as follows. Section 7.2 presents my approach to

context-dependent classification of twitter users. In section 7.3, I outline a context-independent

classification approach to handle situations where sufficient information regarding twitter users

under consideration is lacking. Details of experimentation and results are presented in section 7.4.

Finally, summary is presented in section 7.5.

(a) Social network represented as a simple graph (b) Social network represented as a graph with
weighted links

FIGURE 7.1. Two graphical views of a social network.
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FIGURE 7.2. Proposed fuzzy system architecture for link (relationship) strength 
Evaluation.

7.2. Context-Dependent Classification of Twitter Users

Social networks are formed by social groups of people that are linked by social bond or

relationship. In a group, one can follow another or one can be followed by the other. In the twitter

jargon, those two types of individuals are called followers and followees, respectively. Unlike

in the case of emails, the mutual relationships between individuals/groups in the twitter network

can be tracked by monitoring the tweets. Even though it is possible to compile email message and

response pairs, the sparseness of data there makes it difficult to estimate the strength of relationship

between the corresponding individuals. In the twitter (generally, SN) domain, on the other hand, it

is possible to estimate the SN link (relationship) strengths by using the followee-follower message

statistics. At a gross level, it can be said that better the mutual communication, higher the link

(relationship) strength. Further, if the link between two individuals is stronger, it is unlikely that

either of them is a twammer.
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Since most of the tweets occur between close associates, the twitter data for this group is

generally overabundant compared to the other three groups, and this data imbalance poses prob-

lems for an identification of the users, particularly those belonging to sparsely populated classes.

Hence, I follow a two stage process. In the first stage, I estimate the strength of links in the social

network and eliminate a large number of users with strong social bond (or link strength) because

they naturally classify into the group of close associates. Then, in the second stage, I perform a

linear classification of the four user types mentioned in section 7.1, using number of tweets and

the followee-follower ratio as two features considering only those tweeters with weak link strength

(less than 15% of maximum strength) between them.

TABLE 7.1. Sample rules of the fuzzy rule base.

No. Rule

1 IF replies IS VL AND common followers IS VL AND

mean reply time IS VL THEN rel strength IS VL;

5 IF replies IS VL AND common followers IS VL AND

mean reply time IS VH THEN rel strength IS L;

10 IF replies IS VL AND common followers IS L AND

mean reply time IS VH THEN rel strength IS M;

25 IF replies IS VL AND common followers IS VH AND

mean reply time IS VH THEN rel strength IS H;

75 IF replies IS M AND common followers IS VH AND

mean reply time IS VH THEN rel strength IS VH;

For a good estimation of the link strengths, I make use of the fact that compared to an SN

representation as a simple graph with nodes and links as shown in Fig. 7.1(a), its representation as

a graph with weighted links as in Fig. 7.1(b) provides better insights into not only the twitter spam

identification problem but also various other SN problems. However, since the relationship strength

depends upon a vague concept such as the “keenness” of the followers, I develop here a fuzzy logic

approach for estimation of the relationship (link) strength and implement it using jFuzzyLogic
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[21], an open source code in the Java language for the fuzzy control language (FCL) defined by

the International Electrotechnical commission (IEC)’s standard 1131-7 [25]. Three parameters

“Reply Message Percentage”, “Common Follower Percentage”, and “Normalized Mean Reply

Delay” have been considered as indicators of the keenness with which a tweeter is followed, and

hence used to constitute the input set of this system depicted in Fig. 7.2. Percentage of reply

messages among the total messages and the promptness (or inversely the delay) with which a user

responds are obviously indicators of the user keenness in following a conversation. Similarly,

since common followers of the tweeters on either side of a link suggest a sharing of similar ideas

or topic of interests between the tweeters, percentage of common followers among the total tweeter

population is a good indicator of relationship strength. To bring the “mean reply delay” parameter

into the range [0 100] just like the other two, I normalized it with a scaling factor that sets the

maximum delay to 100. The fuzzifier module of the system performs fuzzy quantification of each

one of the 3 inputs into 5 levels (linguistic terms/values)- Very Low (VL), Low (L), Medium (M),

High (H), and Very High (VH), and determines for each input parameter the membership values in

each category (level) based on the parameter distributions for each level that are pre-configured at

the time of system setup. The fuzzy logic (rule base) processes the fuzzy inputs (level-membership

tuples for the three input parameters) generated by the fuzzifier and generates a fuzzy output (level-

membership tuple) for the relation (link) strength. The rule base itself is generated using a meta-

rule (implemented in Java) that assigns integer values 0 through 4 for the linguistic terms VL

though VH, respectively, and maps each input term triplet onto an output term. Specifically, the

output linguistic variable will assume the values VL, L, M, H, VH for values of S, the sum of

the integer values corresponding to the three input linguistic terms, in the ranges 0 ≤ S ≤ 2,

2 < S ≤ 4, 4 < S ≤ 7, 7 < S ≤ 9, 9 < S ≤ 12, respectively. In Table 7.1 , I present 5 typical

rules among the total 125 rules (for 3 input variable each with 5 possible linguistic values). The

output linguistic values depends on the rules that were fired and the membership value of the output

is determined by aggregating the membership values from the input level-membership tuples of the

corresponding rule. Since the input variables can be members of different categories (levels) with

different membership values, multiple rules could fire and yield multiple output level-membership
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tuples, which are finally mapped onto a real number by the defuzzifier. The defuzzifier is pre-

configured to use the well known center of gravity method for generating the crisp output (real

number) from the linguistic term-membership tuples.

TABLE 7.2. Membership distribution functions for the input and output variables.

Fuzzy

Sets→ VL L M H VH

Crisp Inputs/

Output↓

Input 1: Reply

Message % S(-2, 1) G(4, 1) G(7, 3) G(12, 3) S(0.1, 55)

Input 2: Com.

Follower % S(-2, 1) G(2, 1) G(4, 1) G(8, 2) S(0.1, 55)

Input 3: Mean

Reply Time S(-0.3, 25) G(50, 10) G(75, 5) G(95, 2) S(4, 100)

Output: Rel.

Strength G(0, 15) G(25, 10) G(50, 10) G(75, 10) G(100, 15)

Com. Follower⇒Common Follower; Rel. Strength⇒ Relational Strength

The jFuzzyLogic software facilitates the users to define the input/output parameter distri-

butions for each one of the linguistic classes (terms) for determination of the class membership

values based on the parameter values. For these distributions, it is possible to use either standard

functions such the Gaussian or sigmoid or custom functions. I have used mostly Gaussian function

except for the fringe VL and VH classes for the inputs where I used sigmoids. Table 7.2 gives

the functions chosen for each one of the inputs and output, and the 5 linguistic classes. In this

table, G represents the Gaussian distribution, and S, the sigmoid. For the Gaussian function, the

two parameters represent mean and for the Sigmoid function, the two parameters are the gain and

center, respectively. The distribution selection and parameter tuning is done by repeated trails to

get a smooth and gradually increasing output. Fig. 7.3 depicts the membership functions for the
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(a) Membership function for the “Reply” Message in-
put

(b) Membership function for the “Common Follower”
input

(c) Membership function for the “Mean Reply Delay”
input

(d) Membership function for the “Relationship
Strength” output

FIGURE 7.3. Membership functions for various linguistic classes of the 3 input and 
1 output variable.

3 inputs and 1 output. It may noted here that though some graphs extended for the values the

parameters beyond the range [0 100], the membership values are computed only for values within

the range.

7.3. Context-Independent Classification of Twitter Users

Oftentimes, extensive contextual information for the estimation of the relationship between

two tweeters is not available. Particularly, the twammers (or tweet spammers) catch us by surprise
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(a) Tweet patterns of a close associate

(b) Tweet pattern of a spammer

FIGURE 7.4. Tweet patterns of the three different classes of tweeters (though actual
time series patterns extend over a period of 25 to 28 days, they have been truncated
to 10 days here because periodicity is not visible on a compressed scale).

thereby rendering the approach detailed in section 7.2 useless. Hence, I propose in this section

an approach for user (tweeter) type detection simply based on the generic tweeting patterns of the
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(c) Tweet pattern of a news blogger

FIGURE 7.4. Tweet pattern of the three different classes of tweeters (cont.).

tweeters belonging to different tweeter classes. This approach derives support from the empirical

evidence about the distinctive nature of the tweet patterns collected from different types of tweet-

ers. Fig. 7.4 depicts the sample 10-day tweet patterns from the twitter database that was developed

by a procedure described in the following section on experimental results. The tweet pattern shown

in Fig. 7.4(a) is that of a normal tweeter, who could be a friend, colleague, or family member, and

hence does not show much periodicity. The pattern shown in Fig. 7.4(b) is that of a spammer with

user name “la hora,” who was spamming from a bot named “Ya son las 02:50!”. It is worth noting

the periodic nature of the pattern with no distinction between day time and night time segments.

When the tweet messages were analyzed most of them were similar and meaningless. Tweeting

occurred every 10 minutes, and hence nearly a constant number of messages were generated each

day. Finally, the patern in Fig. 7.4(c) is that of a news blogger with USER-ID “spitsnet.” I verified

that this person is a news blogger by following the links. Further evidence comes from the obser-

vation that this person tweets in the dutch, and Sp!ts(pronounced Spits), according to Wikipedia

[105], is a tabloid format newspaper freely distributed in trains, trams and buses in the Netherlands.

It is interesting to notice that this pattern resembles a harmonic series with a very low number of
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tweets in the midnight and a high number during the day time. Thus it is possible to attempt

the same tweeter classification problem using a context independent approach of matching an un-

known tweet pattern with the prototypes (or the labeled samples) from different classes. The user

classes I consider here are the leaders (e.g. the news blogger), spammers, and associates. Since

it is difficult to identify lurkers with sparsely available data, I consider only a three-class problem

that excludes this class in the context-independent approach.

For email spam detection, the statistical Bayesian approach has been very popular, and is

found to be effective. In a typical work in the Bayesian framework, Ma, Tran, and Sharma [61] used

a technique called “Negative Selection” to detect spam email without any prior knowledge about

the spam emails. Yeh and Chiang [108] carried out a re-evaluation on the Bayesian filter for email

spam detection, and found that though it yields high accuracy on plain text email messages, it is not

as effective with modern emails with multimedia content and message encoding. They suggest the

use of a scheme combining different spam detection strategies. Thus, it may be seen that both the

Bayes and MLP classifiers are competitive at least for the email spam detection problem. Hence,

these two classifications tools have been considered for my investigations into the problem of user

type detection based on the tweet patterns. I have included in this repertoire of classification tools,

the random forest method developed by Breiman [13].

In the Bayes approach, P (Ci|X ), the probability of a given tweet pattern vector X (formed

by the time samples over a specific period of tweet frequencies) belonging to a pattern class Ci ∈

{Associate, Spammer, Leader} is given by:

P (Ci|X ) =
P (X|Ci).P (Ci)

P (X )

=
P (X1, X2, . . . , Xn|Ci).P (Ci)

P (X1, X2, . . . , Xn)

=

∏n
j=1 P (Xj|Ci).P (Ci)
P (X1, X2, . . . , Xn)

(6)

In the above {X1, X2, . . . , Xn} are the components of the pattern vector X , P (Ci) is the a pri-

ori probability of the class Ci, and P (X ) = P (X1, X2, . . . , Xn) is the probability of the sample

vector. The third line in the above equation is a consequence of the assumption that the compo-
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nents of X are conditionally independent; a Bayes classifier using this assumption is termed as a

naive Bayes classifier. Now, since P (X1, X2, . . . , Xn) does not depend upon the chosen class, the

Bayes classification algorithm boils down to assignment of the pattern vector X to the class Ci for

which P (Ci).
∏n

j=1 P (Xj|Ci) is maximum. For this computation, it may be assumed that P (Xj|Ci)

conforms to a normal distribution as follows:

(7) P (Xj|Ci) =
1√
2σ2

ji

e
−

(Xj−µji)
2

2σ2
ji

Here µji and σji are the mean and standard deviation, respectively, of the jth component of the

pattern vectors belonging to the class Ci.

FIGURE 7.5. A typical three layered feed-forward network.

In the MLP approach, a feed-forward neural network [88] of the form shown in Fig. 7.5 is

used. The circular elements are nonlinear (usually, sigmoid) functions representing neurons, and

the lines are weights representing inter neuronal synapses. The leftmost layer of neural net is the

input layer, and the rightmost is the output layer. The input layer can have as many neurons as the

components of the pattern vector. The output neurons can be as many as the number (in this case,

three) of classes in the classification problem. The neuron layers in between the input and output

layers are called hidden layers; they are effective in producing good nonlinear mappings. During

training phase, the pattern vectors with known class labels are presented at the input layer, and the
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outputs are observed. All neurons but one in the output layer are expected to assume zero values;

the one representing the input pattern’s class should have a zero. If that does not happen, the

weights connecting the neurons in the penultimate layer to those in the last (output) layer should

be so adjusted so as to minimize the following mean square error function:

(8) E =
n∑

k=1

(tk −Ok)2

where tk and Ok are the target (expected) and actually observed output values of the kth output

neuron. It can be shown that the local minima of this function can be achieved by gradient descent

formulas that adjust the weights of neurons connecting the last layer first, then those connecting

into the previous layer, and so on till those feeding into the first layer are modified. Since this

weight training takes place in the backward direction from the output to input layers, this algorithm

is known as the back-propagation learning algorithm [88]. Once the network is trained with all the

training patterns, it is ready to classify the patterns with unknown class labels by producing high

output at all but one of the output neurons.

According to Breiman [13], Random Forest is classifier formed by an ensemble of decision

tree classifiers {h(X,Θk), k = 1, · · · } where the {Θk} are independent and identically distributed

random vectors, and X is the input vector. The random forest classifies X into the class with

maximum vote considering the votes for the most popular class at X by the constituent classifiers.

7.4. Experimental Results

TABLE 7.3. The Twitter database Statistics.

Total Total Total Total Average Average Average

Users Links Tweets Tweet Links/ Tweets/ Replies/

Replies User User User

441234 2045804 6481900 2312927 5 15 5
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7.4.1. Data Collection Procedure

The main requirement for this research is availability of a good data set that includes de-

tails of all the activities in the twitter network such as user profiles, the number of messages in-

terchanged between the users, and the interactions between the users, etc. Since all the online

social networks are based on real individuals, privacy settings make it very difficult to acquire a

proper data set with all activities of each individual from the network. Most popular social network

web-sites provide Application Programming Interfaces (APIs) for running their profile crawlers,

but these are either restricted or need special permissions. However, I circumvented the privacy

restrictions problem by simply programming the Twitter crawler to skip over the restricted users.

Since the number of restricted users is very low compared to the total number of users in Twit-

ter, this strategy is expected to have little effect on the results of the analysis. Another problem I

faced while accessing twitter database is due to Twitter’s API Rate Limiting policy which limits

the number of requests per hour for the data records made through the API to 150. Luckily, this

restriction could be waived to white-listed users with special permissions. I obtained these per-

missions from Twitter and could access as many as 20000 records per hour. Table 3 summarizes

the statistics of the twitter database I developed using this process. However, since it is difficult

to visualize such a huge network, I show only the results on 500-node subnet in subsection 7.4.2.

Further the difficulties in hand-labeling the user types forced me to limit the experimentation only

528 randomly sampled tweeter records in subsection 7.4.3.

7.4.2. Results on Link Strength Determination and Context-Dependent Classification

I determined the link strengths of a 500-node twitter network by applying the fuzzy logic

based classification method discussed in section 7.2 on the twitter database developed by us. It

is interesting to visualize some characteristic features of this network from its graphical depiction

in Fig. 7.6. First, it can be observed that the network nodes form strong clusters, and the cluster

structures don’t change much when weak links are removed; this indicates that the same set of

tweeters communicate frequently with one another though some are more involved than the other

in tweeting. Next, since it is easy to infer that the tweeters with strong connectivity are close as-

sociates, the classification needs to be applied to the tweeters with low relationship strength. From
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(a) Connectivity of a 500-node twitter network with all Links shown.

FIGURE 7.6. Changes in twitter network clustering with thresholding of links (the 
numbers at the nodes are the USER IDs and the numbers on the links are their 
strengths).

the figures 7.6(b) and 7.6(c), it is clear that a threshold of 15% (of maximum relational strength)

for the link strength, is good enough to separate out the tweeters who are unambiguously close as-

sociates. Hence, I applied the simple linear classification algorithm using number of tweets and the

followee-follower ratio as two components of the pattern vector only to the tweeters with the link

strength below this threshold. Clear separation of the four tweeter classes as depicted in Fig. 7.7

suggests that this method holds promise for an effective identification of leaders, lurkers, spam-

mers, and associates. In view of the enormity of the analysis required to be done for hand-labeling

of the records for the purpose of validation of these classification results, I first formed a smaller

validation set consisting of: i) the few records corresponding to the points in the leader, lurker, and

spammer quadrants in the plot (Fig. 7.7), ii) those represented by the points on the boundary of the
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(b) Connectivity of the twitter network with only links having relationship strength above
15%.

FIGURE 7.6. Changes in twitter network clustering with thresholding of links (cont.).

“close associates” quadrant, and iii) those corresponding to a few randomly selected points in the

middle of the “close associates” quadrant. I then hand-labeled each one of these records in the val-

idation set by going through the profile information and the tweets contents. Finally, considering

the hand labels of the records as the ground truth, I tallied the results of linear classification on the

validation set with the ground truth. Validity of my classification approach has been established by

a perfect tally.

7.4.3. Results of Context-Independent Classification

For this experimentation, I used a set of total 528 tweeting frequency patterns that includes

224 leaders (news groups), 164 spammers, and 140 associates. By using the 9 equally spaced

time samples over a 10-day window as components, 10 dimensional pattern vectors are formed
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(c) Connectivity of the twitter network with only links having relationship strength above
40%

FIGURE 7.6. Changes in twitter network clustering with thresholding of links (cont.).

FIGURE 7.7. Linear separation of Leaders, Lurkers, Associates, and Spammers.
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TABLE 7.4. Confusion matrices of the three classifiers in the TCV test procedure.

Naive Bayesian MLP Random Forest

Confusion Matrix Confusion Matrix Confusion Matrix

Class↓→ L S A L S A L S A

Leaders(L) 224 0 0 220 4 0 223 1 0

Spammers(S) 0 163 1 1 161 2 2 162 0

Associates(A) 0 0 140 4 2 134 0 0 140

Classification

Accuracy→ 99.81% 97.54% 99.43%

TABLE 7.5. Confusion matrices of the three classifiers in the R66T test procedure.

Naive Bayesian MLP Random Forest

Confusion Matrix Confusion Matrix Confusion Matrix

Class↓→ L S A L S A L S A

Leaders(L) 75 0 0 73 1 1 75 0 0

Spammers(S) 0 56 0 0 55 1 0 56 0

Associates(A) 0 0 49 1 2 46 0 1 48

Classification

Accuracy→ 100% 96.67% 99.44%

for each one of the 528 data records. For the MLP I have used 9 neurons (corresponding to the

components of the pattern vector) in the input layer, 11 neurons in the hidden layer, and 3 neurons

(corresponding to the 3 classes) in the output layer.

Since the classification results depend not only on the classifier chosen, but also on the

training procedure adopted, I have considered three training/test procedures as follows for this ex-

perimentation: i) Ten-fold cross validation (TCV) method- Here the data is split into 10 sub-parts,

and each sub-part is used in a round robin fashion as the test set with the remaining nine as training

sets, ii)R66T method where randomly Selected 66% records form the training set and the rest are

used for testing, and iii) O66T method where the first (oldest) 66% of the time ordered records form

69



TABLE 7.6. Confusion matrices of the three classifiers in the O66T test procedure.

Naive Bayesian MLP Random Forest

Confusion Matrix Confusion Matrix Confusion Matrix

Class↓→ L S A L S A L S A

Leaders(L) 30 6 20 56 0 0 0 0 56

Spammers(S) 26 29 1 0 56 0 1 55 0

Associates(A) 2 0 66 20 0 48 54 0 14

Classification

Accuracy→ 69.44% 88.89% 38.33%

the training set and the rest are used for testing; this method is an implementation of the strategy of

applying old experience to new situations. The classifiers used for experimentation, as discussed

in section 7.3 are the naive-Bayes (NB) classifier, multi-layer percetron (MLP), and and random

forest (RF) classifier. In the experiments with each classifier-training procedure combination, I

obtained the confusion matrices and classification accuracies for each one of the three classifiers

under the above three test scenarios. Further, since classification accuracy does not reflect the cor-

rect performance when the data set is imbalanced with far more samples in some groups than the

other, I employed the popular F-measure that is used in the database (DB) literature to measure the

efficacy of retrieving the correct DB records. In case information retrieval, the records intended

for retrieval as one class, and the rest are considered as irrelevant. The relevant records retrieved

by an algorithm are considered as true positive (TP ). Irrelevant records retrieved are considered as

true negatives (TN ) and the relevant records not retrieved are considered as false negatives (FN ).

Finally, the irrelevant records not retrieved are denoted as false positive (FP). The proportion of

records retrieved from the total set of relevant records is termed as TP rate or recall (R), and the

proportion of relevant records among the total set of records correctly processed (retrieved or omit-

ted) by a data retrieval algorithm is called precision (P ). The Fmeasure is the harmonic mean of
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TABLE 7.7. F-measure computations for the three classifiers in the TCV test procedure.

Class↓ Naive Bayes

TPR FPR P F

Leaders 1 0 1 1

Spammers 0.994 0 1 0.997

Associates 1 0.003 0.993 0.996

Weighted

Averages→ 0.998 0.001 0.998 0.998

MLT

TPR FPR P F

Leaders 0.982 0.016 0.978 0.98

Spammers 0.982 0.016 0.964 0.973

Associates 0.957 0.005 0.985 0.971

Weighted

Averages→ 0.975 0.013 0.976 0.975

Random Forest

TPR FPR P F

Leaders 0.96 0.007 0.991 0.973

Spammers 0.988 0.003 0.994 0.991

Associates 1 0 1 1

Weighted

Averages→ 0.994 0.04 0.994 0.994

Note: TPR, FPR, P and F repre-

sent true positive rate, false positive

rate, precision, and F-measure re-

spectively.
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TABLE 7.8. F-measure computations for the three classifiers in the R66T test procedure.

Class↓ Naive Bayes

TPR FPR P F

Leaders 1 0 1 1

Spammers 1 0 1 1

Associates 1 0 1 1

Weighted

Averages→ 1 0 1 1

MLT

TPR FPR P F

Leaders 0.973 0.01 0.986 0.98

Spammers 0.982 0.024 0.948 0.965

Associates 0.939 0.015 0.958 0.948

Weighted

Averages→ 0.967 0.016 0.967 0.967

Random Forest

TPR FPR P F

Leaders 1 0 1 1

Spammers 1 0.008 0.982 0.991

Associates 0.98 0 1 0.99

Weighted

Averages→ 0.994 0.003 0.995 0.994

Note: TPR, FPR, P and F repre-

sent true positive rate, false positive

rate, precision, and F-measure re-

spectively.
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TABLE 7.9. F-measure computations for the three classifiers in the O66T test procedure.

Class↓ Naive Bayes

TPR FPR P F

Leaders 0.536 0.226 0.517 0.526

Spammers 0.518 0.048 0.829 0.637

Associates 0.971 0.188 0.759 0.852

Weighted

Averages→ 0.694 0.156 0.705 0.684

MLT

TPR FPR P F

Leaders 1 0.161 0.737 0.848

Spammers 1 0 1 1

Associates 0.706 0 1 0.828

Weighted

Averages→ 0.889 0.05 0.918 0.888

Random Forest

TPR FPR P F

Leaders 0 0.444 0 0

Spammers 0.982 0 1 0.991

Associates 0.206 0.5 0.2 0.203

Weighted

Averages→ 0.383 0.327 0.387 0.385

Note: TPR, FPR, P and F repre-

sent true positive rate, false positive

rate, precision, and F-measure re-

spectively.
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recall and precision. These relations can be stated mathematically as follows:

R =
TP

(TP + FN)

P =
TP

(TP + FP )

Fmeasure =
2

( 1
R

+ 1
P

)
=

2RP

(R + P )
(9)

For adapting the F-measure to measure classification performance, I considered successively each

one of the three user classes (i.e. leaders, spammers, and associates) as the relevant class and

treated the remaining two together as a single irrelevant class. For different classifier and test

method combinations, the TP , TN , FP , and FN are then be obtained from the corresponding

confusion matrices, and the F-measures are computed. Ultimately, the overall F-measures are

computed by an weighted average scheme in which individual class F-measures are given weights

(in the interval [0 1]) proportional to the number of samples in the corresponding classes.

Tables 7.4, 7.5, and 7.6, respectively, present the confusion matrices for the 3 classifiers

under the TCV, R66T and O66T test procedures described above. These results indicate that MLP

outperforms the other two classifiers with respect to classification accuracy when the O66T test

procedure is used, though its results are slightly shy of those with the other classifiers when the

TCV and R66T test procedures are used.

Tables 7.7, 7.8, and 7.9 summarize the results of F-measure computations for the three

classifiers under the TCV, R66T, and O66T procedures, respectively, using the confusion matrix

data in tables 7.4, 7.5, and 7.6. These results include the F-measures for individual classes (lumping

together the remaining two classes as an irrelevant class) as well as the weighted average measure

computed by applying to the data of each class a weight proportional to its population in the

training set. On F-measure also, the MLP exhibits a very good performance compared to the other

two classifiers with O66T test procedure, and yields competitive results under the remaining two

test procedures.The performance of the Random Forest method under the O66T procedure is below

par.

The ROC curves shown in Fig. 7.8 for the three user classes for the best classifier (i.e.

74



(a) ROC Curve for the “Leaders” Class

(b) ROC Curve for the “Spammers” Class

(c) ROC Curve for the “Associates” Class

FIGURE 7.8. ROC curves for the three classes of Users when MLP is used under 
the O66T Procedure.
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MLP) under the most challenging test procedure (i.e. O66T) establish the viability of context-

independent classification procedure.

7.5. Summary

In this chapter, I present two classification methods for twitter network user identification:

i) context-dependent (data-heavy) method which employs a fuzzy logic approach to estimation

inter-user relationship strengths in the first step and then a linear classifier to separate out the

four user classes, and ii)context-independent method that uses tradition classifiers and generic

user tweet patterns to distinguish between the users in situations where the availability of user

information is limited.

This research enforces the conventional wisdom that spammers follow a large number of

people (followees), but they themselves are followed by very few people. Specifically, as evidenced

by the results of subsection 7.4.2, spammers are defined by the accounts that make more than

10,000 tweets in a 10-day interval (or equivalently over an average of 1000 tweets a day) and have

a followee-to-follower ratio of 1.5 to 1 or more. The twitter leaders, on the other hand, can be

distinguished by their high rate of tweeting, large number of followers, but a few, if any, followees,

and hence by a followee-to-follower ratio much below 1. Close associated are marked by strong

connectivity to their followers, low to moderate number of tweets (1000) per day, and small to

moderate (less than 3) followee-follow ratio. Finally, lurkers is a rare class of tweeters, who follow

many people, but they themselves rarely post or reply any tweets.

The results on the more challenging problem of classifying users with limited data, the

MLP classifier has been found to outperform the naive Bayesian and Random Forest classifiers

when the procedure of classifying the new patterns with the old patterns is adopted. Since that is

how new spammers are identified generally, the MLP can be considered as an effective context-

independent approach to spam filtering.
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CHAPTER 8

USER-INTENTION AND CONTEXT-AWARE MULTIMEDIA ENCRYPTION

In a phone conversation, context-awareness refers to the identification of the conversation

topic. Knowing what is being conversed will help determine the sensitivity of the conversation.

If the spoken content in the conversation is sensitive, one can encrypt it while the unsensitive

information could be encrypted with relaxed encryption algorithms or avoid encryption entirely.

Phone resources can be saved by doing so, and this is the outline of this chapter.

To enforce this mechanism, it is important to know the context and the content of the

conversation. The context can be identified by using the intention of the conversation (I.e. the

intention of the user). If the user has spoken a sensitive word, the system must recognize the

intention of that word as “to converse a sensitive information”. Based on this intention, the system

could perform the enhanced audio speech data encryption. This chapter illustrates how to utilize

the user-intention in a mobile conversation to improve the performance of an existing encryption

protocol. The user-intention in a phone conversation is referred to as context-awareness throughout

this chapter.

8.1. Introduction

Voice over IP (VoIP) has been successfully implemented in many platforms and its pros

and cons are discussed extensively in the research community [36]. With the growth of the smart

phone industry, VoIP technology is inevitably becoming popular among the mobile phone users.

However, since VoIP is an IP based communication, it suffers similar Internet security vulnerabili-

ties and threats [29]. Many security features have been implemented to protect VoIP conversations,

including utilization of strong encryption and scrambling [71]. In contrast, enforcing such exhaus-

tive security measures could be expensive on mobile platforms which have limited resources and

The content in this chapter is reproduced from Mohamed Fazeen, Garima Bajwa, and Ram Dantu, “Context-aware
multimedia encryption in mobile platforms”, Proceedings of the 9th Annual Cyber and Information Security Re-
search Conference (New York, NY, USA), CISR 14, ACM, pp. 53−56, 2014. DOI=10.1145/2602087.2602115
http://doi.acm.org/10.1145/2602087.2602115, with permission from ACM.
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power. Here, I am exploring an efficient secure channel of VoIP communication on mobile plat-

form that could enable context and content aware encryption. My intention is to save unnecessary

CPU utilization during VoIP data encryption. This, in turn can save CPU time, battery power and

other resources like memory, I/O, etc.

Context-aware systems are “Systems that adapt to the context of the user, application and

their communication and computation environment, as well as to the changes to the context infor-

mation over time” [73]. In this regard, the context of a conversation such as talking to a banker on

a phone and providing the social security number are of main interest here.

For simplicity, I restrict this context-aware encryption method to VoIP content in this paper.

However, this context-aware approach can be extended to other types of multimedia content, such

as video, text, and pictures.

8.1.1. Motivation

Audio data in a mobile phone is the digitized analog audio information. Generally tele-

phone conversations and wide-band speech data are sampled at a frequency of 8-16 KHz with a

resolution of 8-bits (1 Byte). Thus, 5 minutes of audio data at least includes 5×60×8000 = 320000

Bytes of information. Say, if I use the AES-128bit (Rijndael) with cipher-block chaining (CBC) to

encrypt this data, it will take about 16.0 rounds per Byte to encrypt data [27]. Therefore, it would

take about 320000 × 16 = 5120000 number of AES cycles to encrypt 5 minutes of speech. In

terms of computation, this consumes a lot of processing time, energy and other resources.

Further, encrypting audio speech data is expensive than the same information that was

stored in words (letters). For instance, in average a human can talk about 100-150 words per

minute [7, 48]. By assuming the speaker speaks continuously for 5 minutes, during this talk time

he/she will talk about 150× 5 = 750 words. In English each word caries an average of 4.5 letters

per word [80]. Thus, if the same speech put in words and letters, it caries about 150×5×4.5 = 3375

letters. Since each ASCII character can be represented with 8-bit or 1 Byte the same speech can

be represented with 3375 Bytes. The audio speech to character representation of the same duration

speech ratio is about 320000/3375 ≈ 95. Its almost 100 time efficient than uncompressed audio.

Thus compared to text data, audio data uses more data storage though the amount of information for
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the speech session is about the same. Hence, encrypting all the audio data is expensive compared

to that of in the text form. Especially computationally expensive encryption algorithms like AES

will be inefficient such magnitude of data. It will be worse in mobile devices because of limited

the power and other resources. Therefore, it needs a better mechanism to perform speech audio

encryption with existing encryption algorithm.

However, human conversations carry less amount of sensitive information than the total

speech. For instance, non-sensitive words (such as hi, hello, that, this, etc.), pauses between words,

silence during listening on a telephone conversation are such non-sensitive information. Encrypt-

ing such information with computationally expensive algorithms is not necessary and we one can

cut the cost by using less expensive algorithms.

According to M. Kennedy et al., in a smart phone, CPU is the second largest energy con-

sumer next to the screen. Their results clearly indicate that CPU power consumption increases

with its usage and it increases sharply when it exceeds 80% [49]. Therefore, saving CPU usage

directly can save the power consumption. Further, in a VoIP technology survey by S. Karapantazis

& F. Pavlidou claims Voice Activity Detection (VAD) can save 30-35% of the bandwidth by simply

blocking blank voice activities[47]. My scheme explores further into the speech content to provide

a more efficient encryption mechanism in VoIP to save many such resources in a mobile phone.

8.1.2. Problem Definition

The goal of this work is to implement a VoIP data encryption mechanism that identifies

sensitive and nonsensitive data based on the context and content, and encrypts them differently

to reduce the computation cycles. By doing so, I intend to conserve energy, CPU time and other

resources while still preserving the security of the data on the mobile platform. Further, I aim to

modify the existing sRTP protocols to enable the context-aware encryption mechanism.

8.2. Proposed Solution

The proposed algorithm consists of 5 phases. Each phase explains a sequence of operations

performed on the voice data when it is transmitted from the sender to the receiver. Phase 1 to

4 provides a half-duplex channel and to achieve a full-duplex communication, two half-duplex
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channels are used.

Phases one and two will intercept the audio data and analyze them for sensitive contents.

Once sensitive information is detected, phases three and four will encrypt the data, construct the

custom VoIP packets and transmit them via public channels. At the receiving end, the VoIP data

will be captured and sorted into high- or low- strength encryption packets. Then the encrypted data

are decrypted with the appropriate key and algorithm and converted into audio format. In phase

five performance analyses will be performed.

Following are the 5 phases of the proposed architecture:

Phase 1: Intercepts the audio data and implements the word extractor module using a speech

recognition engine to extract the text words from the audio speech data.

Phase 2: Identify sensitive words by using context and content in the extracted words. Ex: Num-

bers, Passwords, and similar sensitive words.

Phase 3: The sensitive information is encrypted with high-strength (Resource intense. Ex: AES,

3DES, RSA) algorithm while non-sensitive information is encrypted with low-strength

(Less resource intense. Ex: Blowfish, DES, TEA, etc) algorithm and is transmitted

through the network as data packets. Note that I always encrypt the audio data (or words

in audio form), not the recognized text words. The recognized text words are only used to

determine if the audio words are sensitive or not. It is always easier to process text data

than audio data due to the difference in information content (bits).

Phase 4: Once the receiver gets the data, it is reconstructed into high- and low- strength encrypted

data packets and decrypted accordingly. Then they are merged to reconstruct the audio

voice stream. (In case of a less sensitive context and more performance demand, one can

avoid the low-strength encryption. However, this can open the system to several attack

vectors. See section 8.3)

Phase 5: Measure the performance by varying parameters.

The proposed architecture is depicted in Figure 8.1. The Figure 8.2 illustrates how sensitive

parts of the speech data are encrypted, transmitted and decrypted.
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FIGURE 8.1. Proposed architecture.
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FIGURE 8.2. Context-aware speech audio data encryption and decryption.

8.2.1. Speech Recognition on Mobile Platform

One key challenge of this work is to convert the audio-representation of the speech infor-

mation into text-representation in real time via a speech recognition tool. Such potential speech
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engines are: Built-in speech recognition engine in the Android platform, “Dragon AudioMining”

by Nuance [97], and CMUSphinx[1]. CMUSphinx is utilized in my algorithm due to its perfor-

mance and portability. Also, CMUSphinx stores its databases and dictionaries in the phone storage

(standalone) and does not need any remote access to process speech recognition.

8.2.2. Proposed Solution Vs Existing Solutions

Existing protocols like Secure Real-time Transport Protocol (sRTP) utilize the fulltime en-

cryption of the data. The proposed approach uses two different algorithms: intense encryption

for sensitive data and relaxed (or computationally light weight) algorithm for non-sensitive data. I

cannot enforce the proposed scheme using sRTP, as it does not directly support a multiple encryp-

tion scheme [60]. Building a custom protocol is a lucrative alternative and can be used to improve

the existing protocols. The key advantage over the existing method is resource saving.

Further, the system also can be used to totally block the sensitive information being trans-

ferred from the source. The content can also be controlled based on the recipient by using the

caller id. For instance, a set of sensitive words being blocked to a person A may vary from person

B and this could be pre-defined.

In recent mobile systems, manufacturers tend to equip mobile devices with dedicated

crypto-coprocessors. These processors are designed with tamper resistant shielding to provide

energy-efficient encryption system [6]. If these processors are provided, I could utilize these co-

processors in my approach to save further resources.

8.3. Potential Attack Vectors and Solutions

In this section I identify potential attack vectors and their counter mechanisms to discuss

the usability of this algorithm.

8.3.1. Sign-Post Sensitive Content Attack

In case of only encrypting the sensitive content and leaving non-sensitive information un-

encrypted (lets say mode 1), sensitive information will be marked as sign-posts. Hence, instead of

needing to analyze all VOIP streams for the sensitive ones, the network adversary can just look for

the ones which are encrypted.
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Counter Attack: To prevent this type of attack I encrypt both sensitive and non-sensitive

information, but with different strengths. This will leave the adversary to identify what cypher

is corresponding to what algorithm which is not an easy task. Thus, it will simulate the regular

encryption (full encryption). Further, as a precaution measure, one can encrypt the packet header

with a low strength encryption to prevent any exposure of the packets identity. Since, the header

contains a boolean and to increase the entropy of the cypher of the header, one can concatenate a

random number to the header before encryption.

8.3.2. Known-Message Attack

1. : When the system is in mode 1 (See 8.3.1), due to some false negatives, there could be cases

where a word can exist in the VOIP stream in both encrypted and unencrypted form.

That’s a starting point for crypto-analysis.

2. : Also, because of Kerkhoff’s principle, one needs to assume that everything apart from the

encryption key is public. Thus, network adversary could have access to the dictionary of

sensitive words of the scheme. Therefore, the scheme is open to multiple known message

and dictionary attack vectors.

Counter Attack: The first attack can be easily prevented by applying the same solution as

in section “Sign-Post Sensitive Content Attack”. Thus, any false negatives are also encrypted with

less strength and not directly accessible to the adversary.

For the second attack I propose two solutions. The first solution is to store the sensitive

words as its hashed digest in the database and then encrypt the database. Even if an adversary

breaks the encryption, the words cannot be identified as it is in its digest format (similar to password

storage). Further, this hashing provides faster searching of the word.

As a second solution, a random time spacing could be added for the sensitive words as

shown in equation 10. Thus, the cypher will be different for the same word. Let tl be the time

length of the audio word and Tupper be the maximum time that can be added to a word. Thus, I find

the time length of the word to be encrypted as te

te = tl + tr where tr - is a random time value(10)
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0 6 tr 6 Tupper and, Tupper < Average word time length(11)

8.3.3. Known-Context Attack

This attack vector also opens up when the system is in mode 1 (See 8.3.1). Human speech

does not encode sensitive data in single words, but sensitivity may arise from the entire context of

the sentence. In fact, in many cases BEEP-ing out single word from a stream of a conversation

will quite often not protect the conversation’s secrecy and the unencrypted section could reveal the

majority of the secrecy or otherwise provide crypto analysis hint for the adversary.

Counter Attack: This can also be prevented by applying the same solution as in “Sign-

Post Sensitive Content Attack” section.

8.3.4. Malleable and Replay Attack (DoS)

Again when the system is in mode 1 (See 8.3.1), the selective encryption of sensitive words

introduces attacks along the lines of malleability and replay that an active network adversary may

resort to. For instance, the adversary could repeat encrypted packets out of context mangle cipher-

texts rendering sensitive content unusable to the very least and thereby have an easy option for

DoS.

Counter Attack: Solution in section 8.3.1 can be used as a first line of defense in this type

of attack. For further security, one can encrypt the audio data + the hash digest (SHA-2) of the

audio data in the sensitive-words-data-packets. If the cypher is tampered, it can be verified with

this approach. Once the tampering is detected the connection could be dropped before the system

over loads.

8.3.5. Man in the Middle Attack (MIM)

Most of the above attack vectors are different types of MIM attacks. Packet sniffing is a

main approach in MIM attack.

Counter Attack: To reduce the risk of packet analyzing in MIM attack, I do not include

any encryption details in the data packet except the cypher text. In case of open header, even if it
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carries a boolean that does not specify what encryption algorithm it corresponds to. Both sender

and receiver should agree upon the encryption protocols before transmitting any data.

8.4. Prototype

An application prototype was built to demonstrate the proposed algorithm. This Android

application uses CMU Sphinx as the speech recognition tool [1]. The recognition accuracy was

enhanced by carefully selecting a proper acoustic model and appropriate (Number dictionary) dic-

tionary model.

Also, for the encryption the AES-128 bit algorithm is used. For the demonstration pur-

pose, I only encrypted the sensitive information with AES while non-sensitive section was left

unencrypted. However, in an ideal scenario, the non-sensitive information will be encrypted with

a less intense algorithm. Again, for the simplicity and demonstration purpose I only used num-

bers as sensitive information. In the future, I will select the sensitive words list not only based on

the context but also based on the recipient. In this prototype, a half-duplex communication was

demonstrated and two different Android devices were used, one as the audio data sender and the

other as the receiver. The screenshots of the sender and receiver applications are shown in the

Figure 8.3.

8.5. Results

Results are presented in terms of ‘sensitive words detection performance’ and ‘encryption

performance’. All these applications were tested on a Samsung Note II smart phone. Figure 8.4

depicts the performance of the sensitive words detection and Table 8.1 and Figure 8.5 depict the

performance of the context-aware encryption and regular encryption.

8.6. Related Work

In news broadcasting station, slipping an undesired word is very critical. Since most news

broadcastings are aired live to the public, there is no much time to correct the mistake either. More

to the fact that a bad mistake can degrade the reputation of the broadcasting service as well as the

news anchor. The US patent number US7437290 B2, invented by Damon V. Danieli, introduced

a novel method of censoring undesired words in speech data by an automatic-censoring-filter that
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Network

(a) (b) 

FIGURE 8.3. Screenshots of the implemented prototypes - (a) The receivers screen.
(b) The voice sender’s screen.
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FIGURE 8.4. Average sensitive-words search time per detected word when the sen-
sitive words database size is changing.

can be online in either real time or in batch mode [28]. His method also uses a similar method as

proposed in this work where mispronounced phonemes and/or words were recognized and altered

so that it cannot be audible or intangible. According his method these censored words either

can be stored or made available for an audience in real time. In this approach, I am using a similar
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Trial Average time delay per buffer† (ms)

No. FULL Encryption Context-Aware Encryption

1 11.3 6.7

2 9.1 6.1

3 11.3 5.4

4 8.5 6.8

5 10.4 5.7

Average 10.12 6.14

TABLE 8.1. The average processing time delay per buffer for full and context-
aware encryption. Each recording was measured by speaking numbers from 1 to 5
two times. In the Context-aware encryption only uttering number 5 was considered
as sensitive and encrypted. (†Buffer size = 256 bytes)
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FIGURE 8.5. CPU time utilization when fully encrypting and context-aware encrypting.

approach to select the sensitive information and utilize it in a different environment in which, on an

online phone call, in a more resource constrained mobile phone and use them to apply encryption

algorithms. So that the data can be secured while conserving mobile phone resources and energy

utilization.

An input audio data stream comprising speech is processed by an automatic censoring filter

in either a real-time mode, or a batch mode, producing censored speech that has been altered so that
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undesired words or phrases are either unintelligible or inaudible. The automatic censoring filter

employs a lattice comprising either phonemes and/or words derived from phonemes for compari-

son against corresponding phonemes or words included in undesired speech data. If the probability

that a phoneme or word in the input audio data stream matches a corresponding phoneme or word

in the undesired speech data is greater than a probability threshold, the input audio data stream is

altered so that the undesired word or a phrase comprising a plurality of such words is unintelli-

gible or inaudible. The censored speech can either be stored or made available to an audience in

real-time.

A work from a collaboration of scientists from King Saud university, Indiana University

and University of Illinois at Urbana-Champaign worked on the title Context and Location-Aware

Encryption for Pervasive Computing Environments. The paper begins with description about what

is context-aware computing and its applications. The researchers approach was to decouple the

context from the identity such a way that it can incorporate additional security features, value-

added services and efficient key management for group communication. Their approach was to

identify the location of a node (server or client) using Bluetooth and then authorize the user to

access a resource. ARE with 128-bit and 265-bit key sizes were used to encrypt the data. [5]

Another example of context-aware computing was demonstrated by the MIT Media Lab

under the paper title AreWeThereYet? - A Temporally Aware Media Player. The system provides

an intelligent audio player that can calculate and estimate the available listening time by adjusting

the listening rate or selecting play-list using listeners current location and their predicted destina-

tion to. [3]

“Context-Aware Computing with Sound” was a title of a work done by a team at the com-

puter laboratory of University of Cambridge. They also discussed about context aware audio pro-

cessing. This work is about, audio networking that uses available sound hardware (i.e. speakers,

sound-cards and microphones) for low-bandwidth, wireless networking. The method is unique in

a way such that it uses a data transmission system via audio signals. [62]

A patent from Carey Nachenberg explains about content aware data encryption. The patent

claims for content aware encryption of text or audio data. If the data is audio, the author claims a
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speech-to-text approach to obtain the text and then apply the encryption as for the text data. An

encryption policy is determined by the contents. Based on the content and the policy that apply

the content will determine the encryption method. The methods of encryption key claims were

Advanced Encryption Standard (AES) key, a Blowfish key, a Data Encryption Standard (DES)

key, a Bluefish key and an IDEA key, and the public key is as a Diffie-Hillman encryption key, an

RSA encryption key or an Elliptic Curve encryption key. [67]

Another patent form the inventor L. Y. Gomez claims that ”receiving context informa-

tion relating to the context of the applications; generating a key pair using the provided context

information from the applications; and sending the generated key pair to the at least two appli-

cations.”. Here the inventor claims the content information as some location information such as

environmental, temporal, user or computing information. Here key pair generation involves con-

text information and the idea behind this is, context based keys can provide additional security.

[42]

In an article about VoIP security in Security Management magazine, J. Wagley explains

about how vulnerable close VoIP system are. He claims that ”Eurojust, announced that it was

considering spearheading an effort to help its 27 constituent countries find a way to listen in on en-

crypted VoIP”. According to the author one of the popular VoIP provider Skype also suspicious in

providing back door to the law enforcement. Phil Zimmerman, the inventor of Pretty Good Privacy

(PGP) crypto system, invented and an open source VoIP software solution named Zfone. ”Making

a product open source is one of the best ways to ensure that it doesnt have any backdoors, says

Peter Eckersley, staff technologist at the San Francisco-based Electronic Frontier Foundation.”.

[98]

In the work ’P3: Toward Privacy-Preserving Photo Sharing’ of R. Ra et al. describes how

an important section of an image can be encrypted while leaving sufficient unencrypted data so

that it can be utilized in cloud file sharing services [83]. In general, when an image is encrypted,

it cannot be used or none of its meta information is visible until its being decrypted. Thus, such

encrypted images cannot be rendered in a cloud file sharing services such as FaceBook, Google+,

Flickr etc. unless they are decrypted. The novel idea in R. Ra et al. is that the image is split into
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two section called public and private where public image contain only the vital meta information

about the picture sufficient to identify, render and resize in a cloud file sharing server while hiding

all the vital content information. The secret image contains the hidden vital content information

and if the image needed to be viewed, this secret image has to be merged with the public image to

reconstruct the full image. The public and secret image division was performed based on the AC

and DC components of the image threshold at a ”sweet spot” [83].

It is very important to note that, the partial encryption described in this algorithm does not

refer to encrypting cropped section of an image. Rather it is the division of meta information and

its content. Though the algorithm described in the paper relates to this work, there are several

fundamental dissimilarities between these two projects. In the partial photo encryption, image is

being split into two parts regardless of its content, compared to that of in this project, the audio files

are segmented based on its content. Further, both images needed to put back the original image

while in this project encrypted and unencrypted sections are independent.

The Symantec corp. introduces a secure way of communicating through messages with

”Symantec Content Encryption for Symantec Messaging Gateway” [96]. The Sysmantec Content

Encryption will monitor any outgoing email and its content for user defined sensitive informa-

tion. User specify the sensitive information via policy management. Once sensitive information is

detected it will encrypt the message before transmitted to the intended recipient.

The key similarity in this project and Symantec model is that, both methods encrypt the

data based on the content. However, the Symantec model encrypts the whole document when

sensitive data is detected while in this project only the sensitive information is encrypted. Further,

the obvious contrast is that text document (emails) vs audio data where audio data are streaming

data while emails can be considered as static data.

8.7. Future Work

In the demonstrated model sensitive words are predefined. This can be improved by storing

each sensitive words in a tree structure, each branch related to certain context. This will enable the

app to retrieve sensitive words dynamically based on the uttered context.
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In a future version, sensitive words will be hashed and encrypted before storage to prevent

certain attacks.

Elliptic curve cryptography (ECC) attracts mobile security providers due to its less com-

putational complexity and encryption strength. I will replace AES with ECC for enhanced perfor-

mance and better security.

8.8. Summary

It is also possible to toggle the encryption manually providing an encryption on/off switch

to the end user. User can flip the switch manually as desired. However, it is possible that the

user can slip a word mistakenly with sensitive information and it can be too late by the time the

user realizes it. With this model it automatically detects the sensitive words without the user’s

explicit intervention to protect the user’s privacy and security. User-intention is utilized to achieve

this capability. This gives an added security and peace of mind in telephone conversations while

saving energy by avoiding unnecessary encryption.

One can also use this method to simply block out the sensitive words from being transmitted

out of the mobile phone. I.e. once a sensitive information is detected, instead of encrypting the data

and transmit it to the other end, simply block that word being transmitted. This way, the model can

protect the user from unintentional utterance of sensitive or bad words. In this way it can address

the security vulnerabilities which occur due to unintentional speech.

In conclusion, the overall model gave a better performance in encrypting selected sensitive

speech data in real time. Also, it can be used as a shield to protect and block sensitive informa-

tion before sending it to the recipient. Thus, it can be used as a sensitive word filter in a phone

conversation. Overall, this section describes a VoIP data encryption protocol that could be applied

in a mobile platform which can save processing time and in turn battery life and other resources.

Further, I assume that this will be beneficial for all mobile phone users who are concerned for their

privacy and security during a phone call, and while saving battery life to provide an increase in

conversation time as well.
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CHAPTER 9

FUTURE WORK: EEG BASED USER-INTENTION IDENTIFICATION FOR

AUTHENTICATION

Identifying the intention is a key aspect in this work, whether it is the intention of the app

or the intention of the user. In the recent past, EEG technology has advanced in a way that there

were many portable EEG devices produced to the market for an affordable price. These devices

can be paired with a smart phone to connect human brain signals to the phone. See appendix A for

how to obtain EEG data into an Android smart phone. With the right equipment, these data can

be processed to obtain many vital information about the users mind, including his or her intention.

That is the user-intention when an app is used by a user. What if I can identify the user-intention

by users brain feedback, without the users voluntary involvement in reporting his/her perception

about the app? As discussed in previous chapters, user-intention could be utilized in different

ways to provide security for a mobile system. In this chapter, I emphasis the idea of EEG based

user-intentions identification, rather than looking into its applications.

First, to understand the concept of EEG, let’s take look at where it originates from.

9.1. Structure of the Human Brain

User motor activities are closely bound with brain activities. In L. King’s book, Experience

Psychology, the structure of the brain and its functions are described in detail. In chapter 2, King

describes an individual’s LEFT prefrontal cortex is more active than the right when the subject

is stimulated with activities such as watching an amusing video. In this particular experiment,

researchers used videos like a puppy playing with a flowers, and monkeys taking bath as amusing

stimuli. On the other hand, clips that provokes fear or disgusts such as a leg amputating showed

generally more activities on the right prefrontal area of the brain. [54]. This observation implies

that not only does the human brain divide its task into the left and right sides of the brain, but also

that each side processes different types of tasks.

From birth, the human brain is basically divide into three parts, Forebrain, Midbrain and

Hindbrain. Hindbrain is located at the rear-most part of the brain and consists of the medulla,
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FIGURE 9.1. Anatomy of the brain and their tasks in brief. Pic. by L. King. [54]

cerebellum, and pons [54]. See Figure 9.1. Midbrain is literally the middle part of the brain,

located between hindbrain and the forebrain. Midbrain consist of the reticular formation system

and a system of neurons that consist of some specific neurotransmitters. The frontal part of the

brain known as the forebrain is the larger portion of the brain, and consists of structures like the

limbic system, thalamus, basal ganglia, hypothalamus, and cerebral cortex. The functionality of

each of these structures and their location in the brain are briefly explained in the Figure 9.1.

Based on the above structure, forebrain activities are the center of attention in this research.

The human brain is a very complex system. One motor activity of human behavior could activate

many parts of the brain and coordinate by itself to perform various tasks. However, with the above

description, one can realize that different parts of the brain are responsible for different tasks.

Therefore, it can also be studied on by looking at its functionality. In such a division, the cerebral

cortex (the wrinkled surface) consists of two hemispheres. Each hemisphere is divided into four

lobes named as occipital, temporal, frontal, and parietal. See Figure 9.2. Each of the lobe is
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FIGURE 9.2. Division of the cerebral cortex based on functionality of the brain. 
Pic. by L. King. [54]

further divided into subsection based on its functionality. Following is a brief description about the

functionality of each section.

The occipital lobes: respond to visual stimuli.

The temporal lobes: Involved in hearing, language processing, and memory.

The frontal lobes: Involved in personality, intelligence, and the control of voluntary muscles.

The parietal lobes: Involved in registering spatial location, attention, and motor control.

However, these are not hard cut localizations; rather they are the most common and general

areas of the brain that perform these designated activities.

In this work, I am interested in capturing the human motor activities such as moving the

finger, swiping, etc. Thus, it is interesting to see the region of the brain that performs motor activ-

ities in detail. Two sub regions of the brain that preforms motor activates are the somatosensory

cortex and the motor cortex. The body sensation information are processed at the somatosensory

cortex while the information regarding voluntary movements are processed in the motor cortex

[54]. According to the research performed by W. Penfield, Figure 9.3 depicts the parts of the body

that associate with the sections of the somatosensory and motor cortexes [74].

In this problem, no matter how many parts of the brain are activated, I am only interested

in the designated activity that the subject performs at the end. Most of these activities are either
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FIGURE 9.3. Parts of the body associated with the parts of the motor and so-
matosensory areas of the cortex. Pic. by L. King. [54]

motor activities, like moving the finger, hand etc., or sensations such as touch, vision, and audio.

Therefore, EEG signals coming from these regions will determine what type of tasks the subject

performed. Thus, in this research, I used EEG signals from these regions to build the task classi-

fiers.

9.2. Electroencephalography (EEG)

Electroencephalography (EEG) is the signal that is recorded by observing scalp electrical

activity which is generated by the firing of neuron brain cells in the brain [106]. EEG is also

referred to as recording of the brain’s spontaneous electrical activity over a short period of time, as

recorded from multiple electrodes placed on the scalp [106]. EEG was originally used in neurology

to diagnose and/or study epilepsy, comas, encephalopathies, brain deaths, etc. There were also

other uses, such as diagnosing tumors, stroke, and other brain disorders, which have faded away

due to substitute technologies.
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(a) (b) 

FIGURE 9.4. EEG measurement devices. (a) Neurosky Mind-Band. (b) Emotiv EPOC.

9.3. EEG Monitoring Devices

There are two brands of BCI devices which are used in experiments, namely The Neurosky

and The Emotiv as shown in the figure 9.4. The Neurosky model is equipped with two electrodes,

where one is used as a reference. The electrodes are dry sensors. The connection between the

computer and the device was established via Bluetooth. The data collection software was same for

the both devices. Mind-Band is more flexible and has more freedom in placing the electrode. To

improve the quality of the contacts, an electrode gel was used, though none of these models were

wet sensors. The NeuroSky not only produces EEG data, but also it calculates the power spectrum

in addition to Meditation and Attention levels of the brain.

Emotiv Epoc is a 16 electrode, 16 channel, wet sensor based BCI device that is equipped

with a gyroscope. It can also detect head motions as well. This device is uses Bluetooth for

computer-device connection.

9.4. User-Intention Using EEG

Identifying the user-intention when a user accessing a mobile app using EEG signals is the

key motive here. It is easy to identify basic events such as tapping, swiping, pinch, etc. using EEG.

Once such events are identified, it can then be utilized to identify much complex user behaviors, or

user-intentions. Thus, it is essential that I develop a system which is capable of identifying basic

activities using EEG. I call these basic events atomic events.
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FIGURE 9.5. Atomic events considered in the work.

9.4.1. Atomic Events

An ‘atomic event’ is a simple and single event - performed while recording the EEG. Thus

an atomic event takes place for a relatively small duration. For instance, tapping, pinching, and

swiping on the mobile phone screen are considered to be atomic events. A series of atomic events

can be combined serially or in parallel to form a larger, composite event. I call this a task. For

example, to unlock a mobile phone screen, tap on the unlock icon and swipe it across the screen.

This example involves two atomic events. Therefore, if I can identify atomic events using EEG,

I may be able to identify more complex tasks by combining atomic events. I used a divide and

conquer approach to tackle the concept of identifying atomic events and using this knowledge to

identify more complex tasks.

To capture the atomic event using EEG, I only recorded the EEG while performing an

atomic event. Since these are simple and short events, the EEG recordings are also in the form of

short recordings. In this work, I try to identify a set of atomic events that are common to smart

phone users. In this experiment, only following the atomic events were considered, though there

are certainly other additional atomic events.

(1) Listening to music,

(2) Pinching the screen to zoom out,

97



(3) Tapping the screen to press a button,

(4) Swiping the screen,

(5) Typing some words on the screen.

See figure 9.5.

9.5. Methodology

For the purpose of identifying atomic events performed on a smart phone, I utilized a

machine learning approach. The idea here was to train a model with known atomic events, and then

test it with a set of unknown events to see whether the system can recognize the unknown events

with the learned knowledge. If the system can recognize atomic events with better accuracy, it

will prove that the atomic event identification using EEG is not only repeatable (can recognize the

same atomic even multiple times) but also reliable (identified atomic event is the actual performed

atomic event).

Developing a system to recognize atomic events can be utilized in identifying more com-

plex user activities on a mobile phone. It can be also extended to identify the user intention on the

mobile phone. Since this proposed model uses a machine learning model, it needs to be trained

and tested. Thus, a good set of features are required. Since EEG signals are used in this approach,

features must be extracted from these signals. Generally EEG signals are recorded in the time

domain. Many EEG analyses suggest that it is better to identify EEG features in the frequency

domain than in the time domain. Thus, for feature extraction, the collected EEG signals are con-

verted to the frequency domain before features are extracted. Feature extraction is discussed in a

later section in this chapter. Once the features are extracted, supervised machine learning models

are trained and tested with untrained atomic events.

9.6. Experimental Setup and Data Collection

The 14-electrode EMOTIV EPOC device was used to record EEG. All the channel data

were used in the training and testing. As usual, first the base line EEG data were recorded while

the subject was resting both with eyes closed and while eyes were opened. Then the subject was

asked to be seated in front of a table with a smart phone presented. In the standby position, the
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phone was placed on the middle of the table and the subject was asked to rest his hands on the

either side of the phone. Once a command is given, the subject performed an atomic event on the

mobile phone’s screen and brought back both hands to the standby position. The EEG signal was

recorded only when the subject was performing the atomic event. This way the EEG for the atomic

event was captured. The subject was asked to perform each of the atomic events shown in the table

9.1 one at a time. Each atomic event EEG recordings were repeated 10 times.

9.7. Feature Extraction

Lets consider a sample EEG recording to understand the above process of forming the full

feature vector. Each recording has 14-channels of EEG records. Each channel was processed

identically and combined the results of each channel to form the feature vector. First, each EEG

channel was converted to a frequency-time spectrum. Then the window size was increased to

the whole EEG reading duration, so that it would eliminate the time axis of the frequency-time

spectrum plots and only produce the frequency spectrum. Thus, in this case, the time window of

the FFT is the total EEG recording duration. This is acceptable as I am performing only atomic

Atomic Event Number of recordings

Baseline (EC) 3

Baseline (EO) 3

Listening to music (EO) 11

Pinching the Screen (EO) 10

Swiping the Screen (EO) 10

Tapping the screen (EO) 10

Typing “this is nsl” (EO) 10

TABLE 9.1. Description of EEG data collection. All pinching, tapping, and swip-

ing were performed when using the right hand. For tapping and swiping, only the

right index finger was used. Both hands were used while typing. [EC: Eyes Closed,

EO: Eyes Open]
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V1 - Average power of Theta (4-7 Hz) for each channel (14 values) 
V2 - Average power of Alpha (8-12 Hz) for each channel (14 values) 
V3 - Average power of Low Beta (13-17 Hz) for each channel (14 values) 
V4 - Average power of Mid Beta (18-20 Hz) for each channel (14 values) 
V5 - Average power of High Beta (21-30 Hz) for each channel (14 values) 

Full Feature vector, FV = [V1, V2, V3, V4, V5] 

n(FV) = 14 * 5 = 70 

V1 V2 V3 V4 V5 

Frequency spectrum 
of 14-channels are 
plotted here 

FIGURE 9.6. Extracting features from frequency spectrum to form feature vector.

event in each reading. This process is illustrated in Figure 9.7.

Once they were converted into frequency domain, each channel frequency was divided into

5 segments based on the standard EEG frequency ranges; Theta (4-7Hz), Alpha (8-12Hz), Low

Beta (13-17Hz), Mid Beta (18-20Hz), and High Beta (21-30Hz). See Figure 9.6 for frequency

ranges of the standard EEG bands. The power values in each window were averaged to produce
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… 

Convert each EEG 

channel from time-

domain to frequency-

time power spectrum. 

FFT window size is 

smaller than the total 

data recording time. 

 Convert each frequency-time spectrum to only 

frequency domain. FFT window size is same as the 

total time.  

Each line in the graph represents the power values of 

the frequency spectrum for each channel. 

FIGURE 9.7. Converting EEG signals of all 14-channel to the frequency domain.

the feature value. Since there were 14 channels, 14 feature values were produced for one frequency

band. Thus, for each 5 bands, it produced 14 × 5 = 70 values in the final feature vector for each

reading. This process is illustrated in Figure 9.6. Once the feature vectors were extracted from

each EEG reading, they were organized into an ARFF file format for the Weka [45] tool to process

in its various machine learning models.

9.8. Readings

This section depicts the power spectrum of the EEG signals obtained while performing

atomic activities on the phone. A single EEG channel can produce a power spectrum. Since the

EEG device produced 14-channels of EEG data per reading, 14 power spectrums were produced

per reading. In other words, for each recording of 14-channel EEG data, 14-power spectrums

were generated. To simplify the illustration, only the first activity type (atomic event) is presented

with two types of readings sets: 1. the power spectrums for each channel with the time axis (FFT
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is applied for small windows of time) and 2. the power spectrum for the whole window (time

is eliminated by applying FFT for the whole time window). Since the latter is produced by the

previous plots, for the rest of the atomic events only the second set of power spectrums(power

spectrum generated by applying FFT for the whole time window) were depicted.

(a) Listening to Au-
dio/Music

(b) Pinching the screen
with the right hand index
finger and the thumb

(c) Swiping the screen with
the right index finger

(d) Tapping the screen with
the right index finger

(e) Typing on the soft key-
board with both thumbs

FIGURE 9.8. Power base of all 14 channels per event.

This collection generated a large amount of data. For illustration purposes, I present one

set of readings from each activity type. Each sub-figure in Figure 9.8 illustrates the frequency

spectrum of all the 14-channels per given event.

Listening to Audio/Music: See Figure 9.9 for power spectrums with time and Figure 9.10 for

power spectrum for the whole reading. This is to indicate that that figure 9.10 is gener-

ated from figure 9.9 by cumulating through the time axis. The time varying frequency

spectrum is not required in this scenario as all these plots are referring to atomic events.

It is assumed that, during an atomic event there were no significant variation in the power

spectrum. Further, to depict the rest of the events, only power spectrums generated form

the whole readings are considered.

Pinching: See Figure 9.11 for power spectrum for the whole reading.
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Swiping: See Figure 9.12 for power spectrum for the whole reading.

Tapping: See Figure 9.13 for power spectrum for the whole reading.

Typing: See Figure 9.14 for power spectrum for the whole reading.

9.9. Preliminary Results and Observations

Since this is a classical classification problem, I present the results in a confusion matrix.

The accuracies and F-measures were calculated to determine the performance of the system. Since,

in the previous experiments, Multilayer Perceptron (MP) depicted the better performance, in this

model only this classifier is used. The data set was split into two sections, one being the train

set and the other being the test set. The train set consisted of 50% of the data while the test set

consisted of the other 50%. I trained each machine learning model with the train set and tested

with the test set. The results are shown in Tables 9.2 and 9.3. The WEKA performance summary

is shown below.

=== Evaluation on test set ===

=== Summary ===

Correctly Classified Instances 24 85.7143 %

Incorrectly Classified Instances 4 14.2857 %

Kappa statistic 0.8255

Mean absolute error 0.0713

Root mean squared error 0.184

Relative absolute error 29.7309 %

Root relative squared error 53.3957 %

Total Number of Instances 28

9.10. Summary and Future Work

Even with a totally new data set collected at a different points of time and with both more

data and a new set of events, the model performed to produce an overall accuracy of 85.7%. This

accuracy further can be improved by filtering EEG data by removing artifacts. This concludes that

atomic event classification is feasible and highly accurate.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIGURE 9.9. Listening to Audio/Music - frequency spectrums of all 14 channels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIGURE 9.10. Listening to Audio/Music - Power base of all 14 channels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIGURE 9.11. Pinching the screen with the right hand index finger and the thumb - 

Power base of all 14 channels.

106



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIGURE 9.12. Swiping the screen with the right index finger - Power base of all 

14 channels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIGURE 9.13. Tapping the screen with the right index finger - Power base of all 14 

channels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

FIGURE 9.14. Typing on the soft keyboard with both thumbs - Power base of all 

14 channels.
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Confusion Matrix

Classified As

a b c d e f g

1 0 0 0 0 0 0 a=baseCE

0 0 0 0 1 0 0 b=baseOE

0 0 6 0 0 0 0 c=musicOE

0 0 0 4 1 0 0 d=pinchOE

0 0 0 0 4 1 0 e=swipe

0 0 0 1 0 4 0 f=tap

0 0 0 0 0 0 5 g=typingOE

TABLE 9.2. Confusion matrix for multilayer perception.

TP Rate FP Rate Precision Recall Recall F-Measure ROC Area

0.857 0.031 0.833 0.857 0.857 0.844 0.962

TABLE 9.3. Performance of the multilayer perception. TP:True Positive, FP:False 

Positive, ROC:Receiver Operating Characteristic.

In the future, these atomic events will be combined to perform more complex tasks. Also,

when EEG signals are recorded as a sequence, a windowing technique is proposed to identify a

sequence of atomic events. Then, based on the sequence of atomic events performed, the overall

activity could be determined. Eventually this could lead to identify a user based on the unique

atomic event sequence signature. In the future I hope to open up a research area with a concept

called ‘atomic event detection using EEG’ to identify user’s intention.

Also, in the future this model will be studied to perform the same classification with a

smaller number of electrodes. This would localize the most common atomic events to a certain

part of the brain. This can be performed by using statistical feature selection algorithms in order to

identify the most potential area of the scalp and then decide which electrodes need to be eliminated

or vise versa. The idea here is to simplify the EEG collection by reducing the number of electrodes,
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while also identifying the most ideal location of the scalp to place the limited number of electrodes.

This work can be extended to identify different users by producing unique EEG signal for

different atomic events. This can be used to continuously authenticate the users in a mobile phone

even after the initial authentication. This way, even if the mobile device is acquired by another user

(due to stealing, coercion, etc.) and broke the password, still the attacker cannot use the mobile

device as the owner’s EEG is required to use the device.

111



CHAPTER 10

DISCUSSION AND CONCLUSION

This section includes the overall interpretation of my dissertation work and how it addresses

the thesis. I discuss my proposal to improve the security of mobile phones. This includes:

• Dynamically recognize malware and trolls through modeling behavior patterns.

• Identify sensitive words to optimize encryption in a voice conversation.

• Create a dynamic, powerful, unable to be falsified or mimicked authentication system that

uses unique information that is constantly provided by the user.

10.1. Limitations of Current Models and How They Can be Addressed in Future Work

10.1.1. Malware detection limitations

There are several limitations when attempting to address malware detection. The first is

that there are malware which are designed to evade being detected in their permission requests,

including repackaged applications which are challenging to detect. Additionally, once malware is

detected... what is the next step? It is difficult to quarantine something that is designed to resist

being quarantined. And finally, we could improve the benign application grouping by extracting

additional features.

Lessons Learned and Limitations

With this work, I came to an understanding that the intention of an application plays a vital

role in determining its behavior in a system. I introduced a novel approach to identify potential

Android malware applications by identifying its intention and observing its permission requests.

This system utilizes several machine learning models, which indicates that it can be trained to

perform better. I also identified several limitations in this approach, such as consequences of

mislabeling the classes, dependency on the permission list, and issues in reverse engineering the

Android app due to Java Native Interface calls. I also provided solutions for problems like class

mislabeling by introducing unsupervised machine learning models. However, other problems are

left to be addressed in future work. Further, one of the feature extraction methods adopted a string

112



extraction approach, which could also pertain to certain limitations. When the user language of

the app is not English, these dictionaries could fail to extract the correct features and this could

leads to poor performance. Nevertheless, this could be resolved by constructing dictionaries with

multiple languages and this model is capable of such scalability.

Zero-day Malware Detection

Zero-day malware apps are emerging threats previously unknown to the malware detec-

tor system [24]. This approach does not follow any payload signature based malware detection.

Therefore this system does not need to be trained with malware payload signatures. I only train

this system with the characteristic features of the benign apps. I detect malware apps when they

try to obtain unrelated permissions from its task-intention I-Shape. Therefore, the model can be

used to easily identify any Zero-day malware samples that do not have the right intention. Further,

because of I did not use any malware samples to train the system, all the detected malware samples

are Zero-day malware detections.

10.1.2. Social network limitations

One major limitation inherent to statistical base solutions is the completeness of the dataset.

It is important but hard to get a hold of a complete and comprehensive dataset. To obtain a rea-

sonable sample size, more crawling is needed to collect information about the network. Further,

social graphs are dynamic and relationships change with every single human interaction. The ap-

proach needs to be improved to have a model which constantly evaluates the social graph, because

spammers/lurkers/trolls evolve over time.

10.1.3. Phone Encryption limitations

Phone hardware is limited and could benefit from improving battery power, CPU, and even

adding dedicated encryption chips. Further, speech engine / voice recognition engine used in the

model is not very accurate. It needs to be trained further for more robust recognition. Further, it

is important to have a stand-alone speech recognition system that does not depend on any external

resources like Google speech engine. Sending sensitive words to a cloud to recognize will defy the

main purpose. Because if they are not encrypted it can be eavesdropped by a man in the middle.
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Encrypting each word before sending to a cloud for sensitive word recognition again will not make

any sense in this application as the main goal of recognizing sensitive words is to perform the

encryption.

10.1.4. Limitations of using EEG with a phone

There are a number of limitations with EEG. The first is that EEG is not perfect yet needs

to be improved on handheld devices. Another limitation is that EEG has to be worn and the current

design is uncomfortable and inconvenient. Despite this, EEG is extremely useful and is probably

the direction of the future if it can be simplified.

Another limitation is that my study only identified different types of activities of a single

user using EEG, so more studies need to be done in order to use this as an authentication model.

Again, my work here was a preliminary study, so further experiments should be conducted with

a larger dataset and multiple users. This behavior can then be used to create signatures for users.

These signatures could then be used to authenticate user logins on their phones.

10.2. Conclusion

Importance of identifying the intention of an agent to provide security for mobile system

was studied in this dissertation. Intentions can be of different forms. To begin with, different types

of intentions were studied. Two identified major different intentions were the user-intentions and

the application-intentions (app-intentions). Application-intentions were further subdivided into

four types; task-intentions, alternate-intentions, malicious-intentions, and benign-intentions. User-

intention was useful in identifying malicious behavior of a user in a system while app-intention

was useful identifying malicious behavior of an application.

Later in the document, four useful security applications were discussed. First, a malware

identification system in the Android system was studied. It was one of the direct applications of

app-intention identification. At the inception of the approach, task-intention of an Android app

was identified using machine learning models. Later, permission requests of such Android apps

were extracted and I-shapes were constructed for each different types of task-intention groups.

I-shapes represent the probability distribution of the permission requests of given Android app
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task-intention group. Then, by using the task-intention, permission requests and the I-shape of an

app, its maliciousness or the benign-ness was determined. This approach produced an accuracy

of 89% in identifying malware samples in the database. In terms of specificity, this approach

performed better than traditional anti-malware tools such as AVG and Norton.

Under applications of user-intention identification, three examples were discussed; user

role identification in a social media, context-aware encryption in voice communication, and EEG

based behavior identification and user authentication.

A Twitter social network dataset was used in user role identification. In this problem,

two approaches were demonstrated; context-dependent and context-independent approaches. In

both approaches, different machine learning models were utilized. These user role identification

demonstrated how to use user-intention to identify malicious users such as spammers, spam-bots,

lurker etc.

In the context-aware encryption application, another usage of user-intention identification

was explored. User-intention in a telephone conversation is used to improve the performance

of existing encryption protocols. The idea was to monitor the phone conversation with speech

recognition system in real time to identify any sensitive information. Once such information is

detected, user-intention is identified to be ‘transmit sensitive information’. Thus, the encryption

mechanism encrypts the data with higher strength. Otherwise it is not encrypted. A sample model

was implemented to prove the practicality of this model and feasibility of the model was studied.

Finally, user-intention was explored further with EEG brain signals of a phone user. The

idea was to introduce a novel platform to identify user intention through EEG by identifying user’s

fine grained behavior known as atomic events. Many potential mobile security solutions could be

pointed out with this approach such as continuous user authentication, cryptographic key gener-

ation, user misusing mobile apps. Though none of the potential applications were implemented

under this section, it was left open for the future references to explore further on this.

The intention identification and improving the mobile security by utilizing those identified

intentions are the main contribution of this dissertation.
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10.3. Summary

Since mobile devices are becoming very popular, security is a very serious issue to be

addressed. Attacks are evolving from all directions. Therefore it is an important task for future

security researchers to keep up with these trends.
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APPENDIX A

READING EEG DATA IN A MOBILE PHONE

In this chapter, I discuss on how to integrate the Emotiv EEG device to an Android device

and communicate with the headset to obtain raw data, visualize it, save it, and process it. I also

discuss about challenges faced by other researchers and how they overcame these challenges.

(a) Emotiv USB
wireless data
Receiver (USB
Dongle)

(b) Emotiv EEG recording, wet sensor elec-
trode headset

FIGURE A.1. Emotiv EEG recording device.

A.1. Introduction

The Emotiv EEG head sets are available with different packages. Though the hardware

is the same on all the packages, the software bundle varies based on its functionality. The main

difference in device software is the capability of obtaining the raw data from the device and record-

ing it on a file. The Research and Enterprise editions are capable of handling the raw EEG for a

higher price tag. Since the device is same for all the editions, the same raw data is encrypted when

it is transmitted from the USB receiver to the PC. The previously mentioned exclusive software

only poses the key to decrypt the raw data. However, the manufacturer has not officially published

any technical information about the decryption or about the decryption key. The USB receiver

connects to the headset automatically when the headset is in close proximity. The Emotiv USB

receiver is shown in Figure A.1(a). Communication between this USB receiver and the head set is
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established on a wireless medium according to the 802.11 frequency range (2.4Ghz). Therefore,

this device does NOT use Bluetooth. The manufacturer’s comment on this decision is “EPOC uses

a low-power chipset which is not Bluetooth - BT is horribly power hungry and we avoided it to

make sure our battery lasts a while”. Also, this USB dongle is known to encrypt the EEG raw data

before any data is sent to the PC.

A.1.1. Problem Definition

I wanted to create a software driver for the Android mobile device in order to communicate

with the Emotiv USB communication device, called the Emotiv USB dongle. The Dongle will

automatically connect to the headset and communicate with it to receive the raw data. Then I

wanted to process the data in realtime, by using the developed software to obtain the raw data, and

finally visualize the data and store it in the local SD card for later retrieval.

A.1.2. Methodology and Challenges

The following activities can be identified as the outline of solving this problem;

• Create a communication bridge between the USB dongle and the Android device

via USB connection: Since the manufacture provided very less details about the Emotiv

USB dongle, finding its USB interfaces and its EEG sensor details were difficult. Further,

figuring out some critical USB dongle parameters like usage of each USB interface, type

of the interface, direction of the end points, protocol of the data frame consumed reason-

able time due to lack of documentation. Initially, this needs to be addressed to establish

the communication.

• Decrypting the raw data packets: As mentioned earlier, the raw data frames are en-

crypted with AES-128 due to its commercial nature. With the aid of external sources, the

USB dongle software was exploited to determine its encryption key. Thus, it was used to

decrypt the packets. This is the most challenging part as the manufacturer generated the

encryption key based on the serial number of the Emotiv USB dongle and it varies from

device to device. Also, all the sources who exploited the device have cracked mainly on

PC platforms with different languages like C or Python, rather than Java. Thus, to obtain
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the cryptographic key, the dongle must be connected to one of those systems. Setting up

such a platform is tedious and time consuming, especially due to extensive dependencies.

• Constructing the data packet from the data frame: Once the raw data frames are

decrypted, the data will be in raw binary form. Constructing a data packet that represents

meaningful information such as EEG node sensor values and built in gyroscope values

is challenging, again due to the lack of documentation about data packets. Furthermore,

although external resources have done this in other language models such as C or Python,

porting them to Java/Andoid is challenging.

A.1.3. Literature

Two interesting projects can be pointed out on the use of the Emotiv headset with a mobile

smart phone. However, none of these publications explain a direct connection to the Android

platform.

Campbell et al., a research team from University of Dartmouth, published a paper on how

to connect the Emotiv EEG device to a smart phone. They used the EEG signals to dial a call

of a person in the contact list [15]. They then used this device to obtain the P300 [58] signal to

classify the people in the contact list. The mobile device they used to process the data was an Apple

iPhone. It is interesting to note the way they connected the Emotiv EEG headband to the mobile

phone. As they mentioned in the paper, they acknowledged that Emotiv is a closed-source SDK

and the raw data is encrypted. Thus, they used a laptop to obtain the raw data from the headset

that runs the proprietary Emotiv SDK and relay that information to the mobile phone via WiFi.

This means that they never connected the Emotiv headset directly to the phone in order to obtain

raw data, as was suggested in this work. Furthermore, their technique had several disadvantages in

the communication, such as high power consumption for Wifi communication and unreliability of

external hardware (like a PC or a laptop).

Another research team from the Technical University of Denmark, Stopczynski et al. built

a smart phone interface for the Emotiv EEG device. This group used a Nokia N900 phone which

runs the Maemo 5 OS (an OS developed by Nokia for its phones) to interface the EEG device [95].

Their system directly connected to the Nokia device and decrypted the EEG raw data in the phone
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in order to visualize it on the mobile screen. The software was implemented using Python, and

the setup was used to ”demonstrate the ability to distinguish among emotional responses reflected

in different scalp potentials when viewing pleasant and unpleasant pictures compared to neutral

content.” [77]

According to a Blog post by G. Moro, a toolkit named ’Emokit’ from C and Python was

implemented to communicate and obtain the raw EEG from the Emotiv device in a PC [66]. This

PC software is independent from the Emotiv workbench toolkit. The ’Emokit’ is an open source

toolkit which is freely available on GitHub under the following link https://github.com/

qdot/emokit. This code and documentation was very useful in obtaining the encryption key of

the USB dongle.

An interesting concept emerged in the market related to the brain mobile interfacing called

neurocam form Japan. The idea was to use brain signals to determine your interests towards what

you are looking at. A head mounted iPhone will trigger a video recording automatically if you

show more than a certain level of interest [70, 69].

It is interesting to note that a similar approach is followed in this work, except all the

implementations are on the Android platform. This has never attempted by any other group to

this date. In fact, the Emotiv EEG device manufacturer also announced that their device does

not support Android platform yet and they are in the process of implementing such APIs for the

Android platform. Thus, I implemented the EEG to mobile phone integration due to the urgent

need in my research.

A.2. Implementation

Once the USB dongle is plugged into the phone and the head set is switched on and brought

into close proximity, the dongle will establish the Dongle-to-Headset connection automatically. I

assume that this connection is established by default before implementing the rest of the software

connection. The software of connecting the Emotiv USB dongle to the Android device was im-

plemented in three stages. See Figure A.2. In the first stage, the Android app established the

communication between Emotiv USB dongle through Android APIs. Once connected, the app

was capable of accessing the raw data. Since the dongle encrypts these raw data, it needs to be
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Step 1: Probe USB devices,
connects & obtain raw data
frames (32-byte frame size) 

Emotiv USB Dongle 
(Performs the encryption) 

FIGURE A.2. Architecture of the interface.

decrypted before processing. Hence, at stage two, these raw data were decrypted. Then it was

converted to proper EEG data packets in stage three. This produced the EEG data for each channel

and other information. Once stage three is done, the raw EEG data was available for visualizing

and processing. More details about this process are discussed in the following sections.

A.2.1. Android App to Emotiv USB dongle connection and obtain 32byte data packets

This was the first step in this data retrieval. Initially, a broadcast receiver was initiated to

auto detect the USB device and obtained the user permission to connect to the USB dongle. Then,

the app created a USB manager to probe all available USB devices connected to the mobile phone.

Once it identified the plugging in of the Emotiv USB dongle, the app prompted the user (first time
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FIGURE A.3. Flow Chart of the data reading Android app.
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only) to authorize this app to use the USB device. When its authorized by the user, it established

the communication and started reading data frames from the dongle. This process is illustrated in

the flowchart depicted by Figure A.3.

However, to establish the above explained connection, it is necessary to identify the param-

eters of the USB device which was plugged in. To obtain the parameters, one can use any USB

probing tool to collect the dongle’s information. Figure A.4 depicts the parameters of the Emotiv

USB dongle. As mentioned earlier, this device has two interfaces and each interface consisted

of one Human Interface Device (HID) interrupt type as an IN endpoint. Thus, data can be only

received through this port and cannot send any data to the dongle or to the headset through this

port. The vendor id of the device is 8609.

Once the data connection is established it can send 32-byte data frames at an average rate

of 128Hz. The structure of this frame and how to construct the EEG and other data embedded in

this frame are discussed in a later section.

A.2.2. Decrypting the packets

According to the Emokit tool documentation, the encryption is AES-128 bit with 128bit

key [26]. Also according to this, the data emitted from the Emotiv headset is not encrypted and

it is encrypted at the USB dongle. In early batches of the USB dongles encrypted the data with a

common key. Since this key was breached, the manufacturer produced later batches with unique

encryption keys based on the serial number of the USB dongle. Thus Emokit documentation

describes how to generate this key from the dongle.

Emokit toolkit was developed in C and Python languages to extract the key from the USB

dongle. The toolkit was capable of receiving raw data from the Emotiv device. I used the Python

version of this toolkit to extract the cryptographic key of the dongle. After the key was extracted,

it was used with the Android Crypto package to decrypt the packets. Due to the proprietary nature

of the cryptographic key, it is not included in this document. One can refer to the Emokit toolkit

documentation for further details.
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Device Info Device Path: /dev/bus/usb/002/042
Device Class: Use class information in the

Interface Descriptors (0x0)
Vendor ID: 21a1 Vendor
Name: Emotiv Systems Pty. Ltd.
Product ID: 07fa Product
Name: not in db Interfaces

Interface #0
Class: Human Interaction Device (0x3)
Endpoint: #0

Address : 129 (10000001)
Number : 1
Direction :
Inbound (0x80)
Type :
Intrrupt (0x3)
Poll Interval : 1
Max Packet Size: 8
Attributes : 000000011

Interface #1
Class: Human Interaction Device (0x3)
Endpoint: #0

Address : 130 (10000010)
Number : 2
Direction : Inbound (0x80)
Type : Intrrupt (0x3)
Poll Interval : 1
Max Packet Size: 32
Attributes : 000000011

FIGURE A.4. Android USB probe results on Emotive USB dongle

A.2.3. EEG and other data construction form the 32 byte data packets

Once I obtained the key, it was used to decrypt and obtain the 32byte data frames. Accord-

ing to Emokit documentation [26], these frames were segmented as follows;

• Sensor Data - 128hz

• Gyro Data - 128hz

• Battery - 1hz

• Sensor Quality - 1hz-16hz (Depends on the sensor)
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Bit Indexes 0:07 8:21 22:35 36:49 50:63 64:77

Used for Counter/Battery F3 Data FC5 Data AF3 Data F7 Data T7 Data

Bit Indexes 78:91 92:105 107:120 121:133 134:147 148:161

Used for P7 Data O1 Data Connection Quality ? O2 Data P8 Data

Bit Indexes 162:175 176:189 (Rotating) 190:203 204:217 218:231 233:239

Used for T8 Data F8 Data AF4 Data FC6 Data F4 Data Gyro X

Bit Indexes 240:247 248:255

Used for Gyro Y ?

TABLE A.1. The bit ranges for each raw data.

Since each data frame has 256bits (i.e 32bytes), different ranges of bits represent different

values. Emokit documentation describes this in detail. Table A.1 explains the EEG raw data

representation in the data frame. A special mechanism was followed to obtain the battery power

and EEG sensor contact quality as explained in the Emokit documentation.

A.2.4. Saving the Raw data

The Emotiv device produced 32 byte raw data frames at a rate 128Hz. Each data packet

consisted of the basic following information.

• Packet Counter

• Battery Level

• Contact Quality

• Contact EEG Sensor Readings

• Gyro Sensor Readings

To save the EEG data to a file, I created a comma separated text file (CSV) that consisted

of fields for the above data list. Since the data packets were produced without a time stamp from

the device, a time stamp was created by using the nano time of the mobile phone. Therefore, in

addition to the above fields, the nanotime was also added at the first column for time stamping. A

sample of the recoded file is shown in the figure A.5.
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tm cnt batt gyrox gyroy AF3 AF4 F3 F4 F7 F8 FC5 FC6 O1 O2 P7 P8 T7 T8 q_AF3 q_AF4 q_F3 q_F4 q_F7 q_F8 q_FC5 q_FC6 q_O1 q_O2 q_P7

q_P8 q_T7 q_T8

1.93E+13 0 93 0 0 7630 8483 9006 7662 8780 9652 8773 7678 8569 9202 8518 8554 8451 8363 998 1014 984 950 1030 962 992 986 1064 908

1072 728 1044 940

1.93E+13 4 93 0 -1 7659 8510 9030 7692 8818 9659 8799 7706 8607 9222 8595 8604 8477 8401 998 1014 984 950 1030 962 992 986 1064

908 1072 728 1044 940

1.93E+13 5 93 0 -1 7649 8477 9018 7678 8822 9661 8787 7699 8605 9242 8601 8587 8482 8399 998 1014 984 950 1030 962 992 986 1064

908 1072 728 1044 940

1.93E+13 6 93 1 -1 7659 8484 9024 7690 8814 9688 8795 7715 8596 9226 8604 8576 8506 8420 998 1014 984 950 1030 962 992 986 1064

908 1072 728 1044 940

1.93E+13 7 93 1 -1 7656 8503 9031 7697 8790 9696 8796 7721 8570 9209 8576 8593 8493 8426 998 1014 984 950 1030 962 992 986 1064

906 1072 728 1044 940

1.93E+13 8 93 1 -1 7656 8500 9036 7697 8819 9696 8801 7724 8554 9213 8567 8602 8477 8433 998 1014 984 950 1030 962 992 986 1064

906 1072 726 1044 940

1.93E+13 12 93 1 -1 7661 8478 9024 7690 8830 9681 8799 7692 8581 9217 8602 8581 8497 8407 998 1014 984 950 1030 962 992 986 1064

906 1072 726 1044 940

FIGURE A.5. Sample of a recorded csv data file.

An action bar button is introduced to handle data recording. This is a toggle button where it

initiate and ends data recording. When the system is not recording to a file, the button will show a

grey color that depicts idle. See figure A.6(a). Once this button is pressed, it will bring up a dialog

box to enter a file name. See figure A.6(b). The user can enter a file name or the field can be left

blank for a default file name. This is convenient when instant data recording is required. Once it

starts recording, the button will turn into a red color to indicate that the data is being recorded to a

file. See figure A.6(c). This button can be pressed again to stop recording. The recorded file will

be placed in a folder under the provided name with the current date and time. See figure A.6(d)

A.2.5. Realtime Visualization in the Mobile Application

EEG data visualization on the mobile phone is implemented using a tool called

“AChartEngine” for Android [2]. The tool provides APIs to implement different types of charts for

Android devices and I have utilized this open source tool to implement and visualize EEG graphs

in the app. The chart type used in this work is a line chart. See figure A.7(b) for the data visualizing

of the app in real time.

Data were presented in two different views: one as a numerical view and the other as a

graphical view. Each view is accessed by a user interface (UI) tab. Initially the ‘Text View’ tab
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(a) Application is idle and
not recording. Check the
color of the record button.

(b) When record button is
pressed, bring up this dia-
log to enter a file name. If
the file name left blank the
system will use a default
name

(c) Data being recoded.
Note the data visualiza-
tion.

(d) Recorded data file
folder in the mobile SD
card. Browsed by the file
viewer

FIGURE A.6. Screen shots on recording EEG data to a file.

is displayed and it will depict the numerical values of the raw data. See figure A.7(a). When

the ‘Graph View’ tab is pressed it will initiate the graphical view of the data and plots all 14-

channel EEG data in real time. See figure A.7(b). When this tab is selected, the system will

disable the background updating of the numerical view. However, if the ‘Text View’ is selected,

the system will update the graphical view in the background. Otherwise, graphical view will lose

some plotting data during the text view is selected.

A.2.6. Fast Fourier Transformation (FFT) in the Mobile Phone

Performing the frequency domain analysis on EEG data is very important in processing

EEG data. Hence, the mobile app should be capable of performing the FFT on EEG data in

realtime. To perform this, I utilized an external FFT java library called JTransforms. This library

is originally designed to perform FFT on the regular pure Java platforms [101]. Porting this library

to the Android platform was not a difficult task. Only extra memory needed to be allocated in the

Android toolkit in eclipse for this library to compile properly. However, applying FFT for EEG

data in a mobile phone was challenging due to its computational complexity. Since EEG produces

a large amount of data it is important to determine whether the FFT can be applied in a feasible
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(a) Text view of the EEG data (b) Graphic view of the EEG data

FIGURE A.7. Screen shots on EEG data visualizing.

amount of time.

By integrating the JTransform tool, I have obtained the FFT of a one second window of

each channel EEG recording. For each second, the mobile phone performed FFT for all fourteen

channels. According to the performance statistics, the Samsung Note II performed this within

about 8.9ms. See the table A.2 for FFT performance results. This is feasible enough to perform

any other derived calculation after applying FFT on the EEG data. Since this app is capable of

obtaining frequency bands in an efficient time frame, one can use this to train machine learning

models on the mobile platform for atomic events.

A.3. Emotive Data Comparison: PC vs Mobile

The data recorded from the mobile device was exactly the same as that of a PC except the

file format to which they have been stored. Based on EEG studies, it is a known fact that meditation

or baseline recording while the eyes are closed significantly depicts the Alpha band frequency (i.e.

it will show higher activity in the frequency band of 8-12Hz). So I performed this experiment to

capture the Alpha frequency from a PC recording and from a mobile recording. Then they can be
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Time in (ns) Time in (ms)
I/System.out(2312) Time for FFT 8140124 8.14
I/System.out(2312) Time for FFT 4953792 4.95
I/System.out(2312) Time for FFT 3479958 3.48
I/System.out(2312) Time for FFT 3709083 3.71
I/System.out(2312) Time for FFT 4177166 4.18
I/System.out(2312) Time for FFT 3847792 3.85
I/System.out(2312) Time for FFT 3951500 3.95
I/System.out(2312) Time for FFT 4715917 4.72
I/System.out(2312) Time for FFT 6817833 6.82
I/System.out(2312) Time for FFT 8554666 8.55
I/System.out(2312) Time for FFT 15673083 15.67
I/System.out(2312) Time for FFT 6110916 6.11
I/System.out(2312) Time for FFT 3768000 3.77
I/System.out(2312) Time for FFT 4966166 4.97
I/System.out(2312) Time for FFT 3583166 3.58
I/System.out(2312) Time for FFT 5005209 5.01
I/System.out(2312) Time for FFT 16232833 16.23
I/System.out(2312) Time for FFT 3643917 3.64
I/System.out(2312) Time for FFT 3400625 3.4
I/System.out(2312) Time for FFT 39166167 39.17
I/System.out(2312) Time for FFT 16419833 16.42
I/System.out(2312) Time for FFT 20538500 20.54
I/System.out(2312) Time for FFT 18531417 18.53
I/System.out(2312) Time for FFT 4092707 4.09

Average 8895015.41666667 8.9
TABLE A.2. FFT performance results - Here each record represents how long it 
took the Samsung Note II phone to perform 1sec worth of all 14-channel EEG data. 
The data sampling rate is 128Hz.

compared to see the similarity of the data recording.

To capture the Alpha waves on both devices, a subject was asked to perform the following

activity. First the subject was asked to rest (while their eyes were open) for 10 seconds. Then

the subject was asked to close their eyes and rest for another 10 seconds. The EEG activities are

recorded on both PC and mobile devices in two different instances while performing this activity.

Two different instances were used due to both PC and mobile cannot record data from a single

head set at the same time.

Results are shown in figure A.8(a) and A.8(b).

The results show that both graphs were similar (both depicted the expected alpha waves
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(a) Data recorded from the PC application

(b) Data recorded from the Mobile application
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when the eyes were closed) and this was consistent on multiple instances as well. Therefore, the

EEG raw data recordings on the mobile device with my application were the same as the data

recorded from the PC software which was provided by the manufacturer.

FIGURE A.8. Class diagram.
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A.4. The Mobile App and the Setup

The experimental setup and the developed app is shown in figure A.9. Some screenshots

of the app is shown in figure A.6. The class diagram of the application is shown in figure A.8.

This application enabled multichannel EEG data recording and processing in an Android mobile

device. This interfacing could be done with a minimal hardware and software requirements. Only

additional required instrument was an ‘On the Go’ (OTG) adapter other than the main EMOTIV

instrument.

Samsung Note II 

phone 

The USB on-the-go 

(OTG) cable 

The USB Dongle 

provided with the 

Emotiv device 

14-channel Emotiv 

EPOC EEG head set 

FIGURE A.9. Experimental setup to read data from the EEG headset.
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APPENDIX B

MOBILE PLATFORM RESOURCES AND HARDWARE

B.1. Introduction

Currently, smartphones are equipped with various kinds of sensors. The main usages of

these sensors vary from recognizing the orientation to reading the finger print of the user. Most

of these sensors can be utilized in more innovative ways than its intended actual purpose [52].

For instance, the intended task of the accelerometer is to orient the content of the phone screen

based on its orientation. However, P. Mohan et al., utilized this accelerometer to sense the road and

traffic conditions [65]. J. Eriksson et al. also described on how to use the same accelerometer to

monitor potholes in the road [33]. Similarly, all the other equipped sensors can be utilized in more

productive and innovative applications and W. Z. Khan et al. summarized some of these interesting

applications [52]. When looking at these capabilities, sensor data can cause many security and

privacy issues. I have published an abstract paper with C. Claiborne, and R. Dantu on such security

and privacy issues with these sensors [22]. The paper also proposed a framework to anonymize

the sensor data when needed. Thus, it is necessary to understand some of the major sensors in

a smartphone and be aware of their capabilities when providing security for these systems. This

section presents several smartphone sensors and their capabilities.

In this research, I used several Android devices ranging from Google Nexus One to Sam-

sung Note II. The table B.1 summarizes some of the devices used in this research and their available

sensors. Some of these sensors and its performances are discussed in this chapter.

B.2. Accelerometer

Acceleration is the rate of change of velocity in time 12. The SI unit for acceleration is

ms2. The accelerometer sensor measure the acceleration in x, y, z axes, this is called the 3-axis

accelerometer. According to android developers, generally the coordinate system of most of the

sensors including the acclerometer sensor is defined as shown in figure B.1 [43]. This coordinate

system is set relative to the orientation of the mobile phone’s screen.
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Device Name Manufacturer Processor Available Sensors

Google Nexus One HTC Cooperation 1 GHz Scorpion

Accelerometer, Proximity,

Compass, GPS, Bluetooth,

Wi-Fi, Touchscreen, Camera

Google Nexus S Samsung 1 GHz Cortex-A8

Accelerometer, Gyroscope, Proximity,

Light, NFC, Compass, GPS, Bluetooth,

Wi-Fi, Touchscreen, Camera

Google Galaxy Nexus Samsung Dual-core 1.2 GHz Cortex-A9

Accelerometer, Gyroscope, Barometer,

Proximity, Light, NFC, Compass, GPS,

Bluetooth, Wi-Fi, Touchscreen, Camera

Google Nexus 4 LG Electronics Quad-core 1.5 GHz Krait

Accelerometer, Gyroscope, Barometer,

Proximity, Light, NFC, Compass, GPS,

Bluetooth, Wi-Fi, Touchscreen, Camera

Samsung Note II N7100 Samsung Quad-core 1.6 GHz Cortex-A9

Accelerometer, Gyroscope, Barometer,

Proximity, Light, NFC, Compass, GPS,

Bluetooth, Wi-Fi, Touchscreen, Camera

TABLE B.1. Android smart phone devices used in this work.

(12) acceleration(α) =
∆v

∆t
=

velocity change
time difference

FIGURE B.1. Sensor Coordi-

nate System used in Android 

API. [43]

The Google Nexus One is equipped with BMA 150 dig-

ital triaxial accelerometer sensor. It has a sensitivity range of

2g/4g/8g with a max axial refresh rate of 3300 Hz. The limita-

tions of the refresh rate and software integration yield a usable

refresh rate around 2530 Hz [35, 44].

B.2.1. Accelerometer Accuracy

None of the sensors are accurate. Sensors are incorpo-

rated with intrinsic errors and these must be minimized by adding

error correction to the measurements. The accelerometer sensor

accuracy was tested in a lab experiment to verify how accurate it
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(a) Phone Attachment (b) Experimental Setup

FIGURE B.2. Experimental setup for accelerometer accuracy test.

is compared to the actual acceleration.

Comparing with the Ground Truth: A series of tests was performed which aimed at testing

the accuracy of the Bosch BMA150 accelerometer in the Nexus One. To test the accuracy of the

phone, I utilized a bicycle-like wheel that has very good bearings. This provides little friction but

is still present as the wheel eventually comes to a complete stop. I attached the phone to the end of

the wheel parallel to the rotation of the wheel which is clamped down and immobile. The phone is

in the same holster that is used for the testing inside the vehicle. I spun the wheel and set the phone

to record accelerometer values. Figure B.2 illustrates the experimental setup used for the accuracy

test[35, 44].

The experiment was recorded in which the timings per phone revolution around the wheel

were analyzed. To compare with the accelerometer data from the phone, I calculated the averaged

angular acceleration at different revolutions around the wheel in which the phone experienced.

Since I used a wheel apparatus, centripetal acceleration or force was calculated in the y-axis and

then compared with a calculated value. To describe the experiment, a sensor recording application

was started on the phone and placed in the holster which was attached to the outside of the wheel

by velcro. At the same time, a camcorder began recording the experiment which was later used to

obtain the time per phone/wheel revolution. The experimental acceleration ac was calculated using

the radius of the wheel (r), angular velocity (ω) and r=0.336

(13) ac =
(v2t )

r
= ω2r
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FIGURE B.3. Experimental and recoded acceleration data comparison.

After the centripetal acceleration was calculated using 13, it was compared against the z-

axis data from the phone. The z-axis was used because I had the phone oriented parallel with the

wheel and the direction of the centripetal acceleration is always inwards along the radius vector

of the circular motion. Figure B.3 illustrates this analysis visually while I also calculated both

the Spearman and Pearson correlation value between the two accelerations. Test 1 resulted in a

Pearson correlation of 0.9997 and a Spearman correlation of 1 while Test 2 resulted in a Pearson

correlation of 0.9978 and a Spearman correlation of 0.9979. These high correlation values convey

that the phone is sufficiently accurate. [35, 44]

B.3. Gyroscope

The gyroscope is a sensor in the mobile phone that outputs the angular rotational velocity

about the three axes shown in figure B.1. The units are in radians/second and this is a more reliable

sensor to determine the orientation angle of the mobile phone. Gyroscope sensor model built in

the Google Nexus S is K3G manufactured by STMicroelectronics. Its angular velocity ranges are

in 250/500/2000dps. The sampling rates for the gyroscope is 100 Hz [10].

B.4. Near Field Communication (NFC)

Near Field Communication (NFC) is relatively a new type of sensor equipped in most of the

new Android devices. Its main purpose is to make a short-range wireless communication (within

about 4 cm apart). Google wallet is one of the main applications of this technology. Recently

released Apple iPhone 6 and 6 plus are now equipped with NFC sensor for their Apple Pay services.
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It is also used to read RF id tags. It can be used to share small payloads of data between an NFC

tag and an Android-powered device, or between two Android-powered devices [43].

In hardware level, NFC uses an induction coil to transmit data from the induction current.

To show the induction power, several experiments were performed with the NFC antenna. In this

set of experiments, the electric potential induced by two audio speakers and the power supply of

one of these speakers were measured and tested. The power supply of the speaker (AC to DC

transformer) can induce a significant amount of electric potential in the NFC antenna.

B.4.1. Experiment - Measuring the Induced Voltage in NFC Antenna

The speakers I used in this experiment were a pair of small computer speakers (smaller

speaker) and a mini hifi speaker (bigger speaker). Since the smaller speaker did not show any

significant magnetic field fluctuations it was excluded in this experiment to measure the induced

voltage. Though the bigger speaker was used in the experiment to measure the induced voltage it

did not produce much of a voltage and the detected voltages were in micro volts. However, the

power supply of the speaker induced a significant amount of voltage. And also this induced voltage

increased with the volume of the speaker as it used more power for high volume.

Experimental Setup

First, the mobile phones back cover with the NFC antenna was dismounted from the mobile

phone and the two terminals of the antenna was connected with two metal wires. Then it was

connected to a high precision volt meter. See figure B.4(a). Then the NFC antenna was placed on

top of the power supply as depicted in figure B.4(b).

First the induced voltage was measured before turning on the speaker. The speaker had 10

different speaker volume levels. For each volume level a sound of 60Hz were played in the speaker

and the induced voltage in the NFC antenna was measured.

Results

When the NFC antenna was placed on the speaker and played a sound of 60Hz with full

volume, it only produced an induction voltage of 0.06 mV. But when it was placed on the power

supply the induced voltage increased; figure B.5 depicts the results. The power supply of the
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(a) NFC antenna terminal connected
with two metal wires

(b) NFC antenna placed on top of the
power supply

FIGURE B.4. Experimental setup for NFC sensor induction current testing.

speaker is a transformer and near this the NFC antenna can induce a significant amount of voltage.

The bigger speaker used in here did not induce significant amount of voltage when it was played

even on full volume. The higher the volume of the speaker, higher the induced voltage from its

power supply. It is intuitive that higher volume draws higher energy and this resulted in inducing

higher voltages.
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FIGURE B.5. Voltage induction results.
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