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A method was developed for extending a fine-scaled forest gap model to a 

watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case 

study for the method. A topographic wetness index calculated from digital elevation data 

was used as a measure of hydrologic across the modeled landscape, and the gap 

model modified to have with a topographically-based hydrologic input parameter. The 

model was parameterized by terrain type units that were defined using combinations of 

USDA soil series and classes of the topographic wetness index. 

A number of issues regarding the sources, grid resolutions, and processing 

methods of the digital elevation data are addressed in this application of the topographic 

wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived 

and contour-derived elevation grids were used, and the grids were processed using 

both single-directional flow algorithm and bi-directional flow algorithm. The result of 

these different grids were compared and analyzed in context of their application in 

defining terrain types for the forest gap model. 

Refinements were made in the timescale of gap model’s weather model, 

converting it into a daily weather generator, in order to incorporate the effects of the new 

topographic/hydrologic input parameter. The precipitation model was converted to use a 

Markov model to initiate a sequence of wet and dry days for each month, and then daily 

precipitation amounts were determined using a gamma distribution. The output of the 



new precipitation model was analyzed and compared with a 100-year history of daily 

weather records at daily, monthly, and annual timescales. 

Model assumptions and requirements for biological parameters were thoroughly 

investigated and questioned. Often these biological parameters are based on little more 

than assumptions and intuition. An effort to base as many of the model’s biological 

parameters on measured data was made, including a new technique for estimating 

optimal volumetric growth rate by measuring tree rings. The gap model was set up to 

simulate various terrain types within the landscape. 
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CHAPTER 1 

INTRODUCTION 

Tree growth depends on a variety of organism, population, ecosystem, and 

landscape-level factors. Height, leaf area, competition, light availability, soil nutrients, 

and soil moisture all affect a tree’s growth. Soil nutrient and moisture levels vary with 

topographic position and the soil’s physical properties, which are shaped by the 

underlying geology and surrounding conditions. Water, sediments, and nutrients move 

through a watershed along a topographic gradient. Slope and its aspect also impact 

available solar radiation intensity. In other words, landscape factors such as geologic 

features and topography affect the spatial distribution of the resources necessary for 

tree growth. Other landscape factors such as surrounding land cover and forest 

fragmentation can affect seed dispersal, soil erosion, and surface water runoff. 

Disturbances such as wildfire, flooding, and stress due to wind occur at landscape 

scales and affect landscape features. 

Many environmental problems impact larger areas covering landscape, regional, 

and even global scales. Understanding ecological processes at a wide range of spatial 

scales is important in addressing many of these problems. Ecosystem management, 

conservation programs, and predicting impacts of environmental stressors are all goals 

and activities that currently use and can further benefit from environmental models. 

Achieving this over landscape-scaled areas requires developing broad-scale models 

that are ecologically relevant. One limitation of developing such models is that much of 

our knowledge base is fine-scale (Urban, Acevedo, & Garman, 1999). For example, 

plant physiology has developed a good understanding of how individual trees grow and 
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respond to environmental factors. As a result, there are many forest models based on 

the dynamics of individual trees and the understood eco-physiological processes of the 

tree species present. The extent of the scale of such models is typically an aggregate of 

a statistically relevant number of plots sized according to the crown area of the largest 

trees. At larger, landscape-level scales, vegetation is often simulated through 

abstractions such as plant functional types and land cover types, with dynamics often 

based on transition probabilities from one land cover type to another. Models from 

different scales are typically not based on the same empirical data, and often are not 

even based on the same concept of how plants respond to physical and environmental 

conditions (Urban et al., 1999). Gap models are a category of spatially fine-scaled forest 

models that simulate the growth and development of a stand of trees. The term gap 

refers to a canopy gap, such as would occur after a large tree in the forest fell. The 

earliest forest gap model called JABOWA was developed in the late 1960s, and it has 

since been modified and extended to accommodate for a range of vegetation modeling 

applications (Bugmann, 2001; Shugart, 2002). Gap models simulate individual trees 

from birth to death based on the understood properties of different tree species and 

competition among individuals for light, water, and nutrients. Weather and soil moisture 

in gap models are typically simulated on monthly time scales, and tree growth is 

calculated in annual increments as a function of a growing season’s worth of monthly 

conditions. Model parameters used to define different species’ responses to 

environmental conditions and competition, while ideally based on quantitative 

measurements, are often based on known relative differences between the species, or 
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on assumptions and intuition. Gap models were originally designed to simulate small, 

isolated stands of trees on physiographically homogeneous plots. 

This research provides a close examination of the development of a high fidelity 

forest gap model for the Cross Timbers ecoregion and investigates an approach to 

extend the plot-scaled forest model to a watershed-scaled landscape. The idea is to 

take a model that simulates forest growth on homogeneous plots based on the 

physiological responses of individual trees, improve the fidelity of the model’s biological 

parameters and its hydrological components, and develop a method to extend that 

model across a landscape with heterogeneous soil and topographical conditions, 

thereby linking through simulation the fine scale of an individual tree’s growth responses 

to the broad scale of a forested landscape. The model selected for this purpose is a gap 

model derived from FACET, which is a descendant of JABOWA (Urban, 2000; Urban, 

Miller, Halpin, & Stephenson 2000). The new model, called FACETA, differs from its 

FACET predecessor by changing the temporal resolution of the soil moisture and 

weather simulations from monthly to daily time steps and by including annual soil 

moisture indices aggregated from daily moisture results. 

Another change to FACETA is the introduction of a watershed-level input to 

simulate the hydrological effects of topography. More specifically, there are two 

topographic inputs with parameter values based on a topographic index that is 

calculated across the watershed. The index, often called the topographic wetness index 

(TWI) but also known by several different names and existing in a few different variants, 

combines the hydrologic run-on potential of the upstream catchment area together with 

the accumulation potential of the local slope. It is considered an index of hydrologic 
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similarity, and has been used in a variety of applications in hydrology, soil science, and 

plant ecology. FACETA has been adapted to use TWI as an input to simulate the 

spatially distributed effects of topography on hydrology within the modeled watershed. 

Using the Cross Timbers ecoregion, or more completely the Cross Timbers and 

Prairies ecoregion, as a case study for this application of FACETA is a convenient 

choice as the University of North Texas is located in the Cross Timbers ecoregion. 

Additionally, the ecoregion has characteristics that make it a good study area for this 

extension of FACETA. There are three relatively distinct vegetation patterns within the 

Cross Timbers and Prairies ecoregion, and the physical properties that drive these 

differences are topography and soil. Upland areas with fine textured soils develop into 

grasslands, upland areas with coarse textured soils develop into post oak savannas and 

woodlands, and floodplains and areas along streams develop into hardwood forests 

with species composition similar to what is found in bottomlands throughout the 

Southeast. This mix reflects the fact that the Cross Timbers and Prairies is a transitional 

ecoregion between Southeastern deciduous forests and Midwestern prairies. Because 

the distinctive vegetation patterns within the Cross Timbers are linked so closely to the 

watershed-level differences in topographic position and soil type, the ecoregion offers a 

good case study to test FACETA’s ability to simulate the vegetation differences resulting 

from these landscape characteristics. 

A number of secondary research objectives are encompassed in the overall 

objective of developing a method to extend FACETA. These objectives can be grouped 

into three categories: landscape and terrain, modeling and simulation, and silvics. While 
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the categories overlap, it is useful to discuss the categories and the research questions 

related to each separately.  

Landscape and terrain category of objectives starts with determining the 

landscape factors that are most relevant to vegetation dynamics in the study area. 

Broadly, these landscape factors are soil and topography, with the primary topographic 

factors being those that drive hydrological processes. A method for partitioning the 

modeled landscape into smaller terrain type units that are based on those landscape 

factors is developed, and the landscape is partitioned into model-ready units. The forest 

gap model is modified to incorporate a hydrological input from the landscape and terrain 

types, and the model parameters for the terrain types are estimated. A number of 

research questions are embedded into these objectives: 

1. What topographic features, measurements, or indices that can be 
determined from elevation data can be used to represent hydrological 
characteristics in a forest gap model? 

 
2. Do elevation data derived from different sources, for example contour-

derived versus light detection and ranging (LiDAR) derived data, affect the 
topographic feature used to define terrain types, or the terrain type 
definitions and boundaries? 

 
3. Does the spatial grid resolution of the elevation data affect the topographic 

feature used to define terrain types, or the terrain type definitions and 
boundaries? 

 
4. Does using different elevation grid processing algorithms affect the 

topographic feature used to define terrain types, or the terrain type 
definitions and boundaries? 

 
5. How do the soil-related components of the terrain types differ if taken from 

a broad-scaled source such as a USDA county soil survey compared with 
if they are measured directly from in the study area, and do these 
differences impact forest model output? 
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Objectives in the modeling and simulation category include implementing a 

number of changes to the gap model FACETA in order to simulate the differences in the 

terrain types. The driver behind all the model changes is the need to implement a 

mechanism for modeling the spatially distributed hydrological effect of topography 

without creating a full, spatially distributed hydrology model. The reasons for avoiding a 

spatially distributed hydrological modeling approach can be summed up as a desire to 

keep it as simple and generic as possible. The type of hydrological processes that drive 

vegetation patterns are very complex, and are linked as much or even more to 

subsurface water dynamics than surface water flow captured by traditional hydrological 

models. Soil moisture dynamics at the catchment level scale are such that changes 

occur at time scales of days rather than months, so increasing the fidelity of the soil-

moisture component of the model and changing the temporal resolution from what had 

been monthly time steps to daily ones is another modeling objective. This then 

necessitates changing the temporal resolution of the weather simulation component of 

the model from monthly to daily time steps. Research questions addressing these 

objectives are: 

1. Does the TWI represent hydrological similarity and differences well for a 
forest gap model?  

 
2. Does the FACETA daily weather simulator capture daily, monthly, annual, 

and long-term weather and climate patterns of the modeled study area? 
 
3. How does an increased temporal scale for soil moisture modeling 

contribute to a better implementation of tree and soil model relationships? 
 
The silvics category of objectives primarily lies in developing a set of model 

parameters that are estimated as much as possible from quantitative measurements. 

One of the problems with any modeling of natural systems is that many aspects of the 
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modeled system may not be knowable or are not quantitatively measurable, so these 

aspects are approximated based on assumptions, intuition, or qualitative descriptions. A 

general goal of this research is to base FACETA’s silvics components on quantitative 

measurements whenever possible, which requires making measurements of the 

geometry and growth characteristics of trees. In addition to the physical measurements 

made on trees, this category of objectives also often includes trying to bridge between 

physical measurements and the assumptions behind a model’s parameters. Silvics 

research questions include: 

1. What are the best approaches to estimating silvics model parameters, 
both ones that can be measured for directly and those that cannot? 

 
2. How well do the tree measurements fit the model assumptions? 
 
3. How can you successfully model tree responses to soil moisture 

conditions? 
 
Soil and topographical inputs are used to define the model terrain types (Fig. 

1.1). Research objectives contained within this group include developing a way to 

determine the terrain types from spatial elevation data, and investigating how different 

spatial resolutions and sources of that elevation data and different algorithms used to 

process that data impact the terrain types. Terrain type, biological, and climatic 

components are input into the gap model FACETA, which simulates forest growth. A 

number of research objectives are contained within these categories of model inputs 

and modeling. Specific model objectives include implementing changes to the temporal 

resolution for weather and soil moisture simulation, adding tree responses to daily 

moisture conditions, and implementing a way to simulate hydrologic similarity among 

terrain types. Estimating model parameters, investigating relationships between tree 
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measurements and model assumptions and parameters, and investigating differences 

in the model’s soil parameters estimated from a coarse scale soil survey versus from 

local field measurement are all model input objectives. FACETA can then be used to 

generate simulated forest cover maps for selected terrain types within the watershed. 

 
Figure 1.1. Research objectives conceptual flow. This figure provides a conceptual summary of 
the approach taken in this research. Starting at the top-left side of the figure and moving 
clockwise: Soil and topographical inputs define the model terrain types. Research objectives 
within these include developing a way to determine the terrain types from spatial elevation data, 
and investigating how different spatial resolutions and sources of that elevation data and 
different algorithms used to process that data impact the terrain types. Terrain type, biological, 
and climatic components are input into the gap model FACETA, which simulates forest growth. 
Research objectives within this group include implementing model changes to the temporal 
resolution for weather and soil moisture simulation, adding tree responses to daily moisture 
conditions, implementing a way to simulate hydrologic similarity among terrain types, estimating 
model parameters, investigating relationships between tree measurements and model 
assumptions and parameters, and investigating differences in model soil parameters estimated 
from a coarse scale soil survey versus local field measurement. FACETA is then used to 
generate simulated forest cover maps for different terrain types within the watershed. 
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This research approach contributes to the knowledge base in a number of 

different topics. The use of topographic indices is not new in ecological applications or 

even in context of gap models (Urban, 2000); however, FACETA may be the only 

example of using a topographic index as a hydrological input in a gap model. There are 

studies that examine the impact that various sources of digital elevation data, different 

grid resolutions, or grid processing algorithms have on topographical or hydrological 

interpretations made using the elevation data, and there are even some that examine 

the impact on ecological interpretations (Kopecký & Čížková, 2010). However, studies 

examining the impact these choices have on ecological interpretation are limited, and 

none examine it in context of a forest model.  

Variability of soil conditions over relatively small spatial distances as well as the 

inaccuracies that can occur in interpreting a 1:24000 scale soil map and survey, too, 

literally are well known, but soil surveys are a common source of information and data 

for many applications including models such as FACETA. Measuring soil properties 

directly from samples taken in the field may be more accurate, but in most cases, it is 

too costly for determining soil model parameters for an entire watershed. This study 

looks at how big of a difference there can be in soil parameters for a gap model if 

estimated from a soil survey compared with parameters estimated from field samples, 

and whether those differences impact the output of the gap model.  

Weather simulation is an important component of many modeling applications, 

from agricultural to impacts of climate change, and in most applications weather is 

simulated in daily time steps. However, there are some general problems with daily 

weather simulators. They often do not capture the real world year-to-year variability of 
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weather, and they have a tendency to capture the statistical properties of rainfall totals 

at temporal resolution–daily, monthly, or annual–but not the other two (Srikanthan & 

McMahon, 2001). The FACETA daily weather simulator compares real weather data for 

annual variability, statistical properties of rainfall totals at these different time steps, and 

the ability to simulate dry periods or floods. 

Towards the objective of basing as many of the model’s silvics parameters as 

possible on actual measurements rather than on qualitative descriptions and intuition, 

this research improves the understanding of the silvics of tree species native to the 

area, some of which are not commercially important or well studied. Specifically, this 

research highlights the use of tree ring data to improve the estimation of growth rate, 

which is a sensitive parameter that is difficult to measure directly. 

In general, this research examines the structure and assumptions of a gap 

model, examines a method for scaling the gap model up to a watershed-level 

landscape, and provides a detailed map for developing a gap model for that landscape. 

 

10 



CHAPTER 2 

LITERATURE REVIEW 

Introduction 

Landscape ecology takes a broad-scale, landscape approach to understanding 

problems in biology and ecology. Driven by a need to understand ecological and 

biological impacts of changes in the environment occurring across a range of spatial 

scales, landscape ecology is being applied to a rapidly growing number of topics and 

problems (Turner, Gardner, & O'Neill, 2001). Landscape ecology studies the effects of 

spatial configuration on ecological processes across landscapes, which typically cover 

spatial extents that are larger than what is usually focused on in ecology. Sanderson 

and Harris (2000) give a definition of a landscape simply as being two or more 

ecosystems in close proximity. Turner et al. (2001) define a landscape as “an area that 

is spatially heterogeneous in at least one factor of interest.” Forman and Godron (1986) 

require “a heterogeneous land area composed of a cluster of interacting ecosystems 

that is repeated in similar form throughout.” The notion of repeated spatial patterns is 

important for many definitions of landscape. Robert Ruhe, one of the first American 

geomorphologists to study soil-landscape processes at larger regional and watershed-

sized scales, defines a landscape as a collection of spatially related landforms that 

usually can be seen in a single view (Grunwald, 2006; Ruhe, 1969). Haber (as cited in 

Farina, 2006) offers another visual perspective of a landscape as “a piece of land which 

we perceive comprehensively around us, without looking closely at single components, 

and which looks familiar to us.” These last two definitions rely on a view or visual 

perception of a landscape. Indeed, it is the perception of the organisms living within a 
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landscape that defines the extent of the landscape. While landscapes are generally 

thought of as being large geographic areas, the definition is not size dependent, and 

landscape ecological concepts can be applied to areas ranging in extent from meters to 

hundreds of kilometers. The scale used depends on the organisms and phenomenon of 

interest. As Wiens and Milne (1989) point out, a human perceives a much larger 

landscape than a beetle. If the phenomenon of interest is the dynamics of a forest 

stand, then an appropriate landscape extent from the perception of the stand must be 

considered. Landscapes are complex systems nested within larger systems, while at 

the same time composed of smaller subsystems (Farina, 2006). Landscapes have the 

fractal property of self-similarity of patterns that exist nested at different scales. It is 

therefore useful to consider landscapes through a hierarchical framework when trying to 

understand how components at different spatial and temporal scales interact with each 

other (Urban, O’Neill, & Shugart, 1987; Farina 2006).  

Watersheds are also hierarchical systems, being composed of sub-basins that 

are composed of even smaller order sub-basins. While hydrologic sub-basins form a 

natural decomposition of a watershed, it can also be partitioned into a mosaic of 

different landforms, landscape positions, moisture regimes, plant communities, or soil 

types. The terms watershed and landscape are far from synonymous; e.g., the 

Mississippi River watershed contains many landscapes while the watershed of a small 

ephemeral stream may be only one of many features within a human-perceived 

landscape. However, the watersheds of many lower order streams have a spatial extent 

similar to what we often think of for landscapes. These landscape-sized watersheds 

come to mind from the description of a watershed given by the American geologist and 
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explorer, John Wesley Powell, as being "that area of land, a bounded hydrologic 

system, within which all living things are inextricably linked by their common water 

course and where, as humans settled, simple logic demanded that they become part of 

a community" (United States Environmental Protection Agency [US EPA], 2009). Forest 

stands within a watershed share resources, and these stands may interact with each 

other through processes such as seed dispersal (Urban et al., 1987). Therefore, an 

appropriate landscape extent to consider in understanding forest stand dynamics may 

be a watershed. Urban et al. describe four levels of forest hierarchy based on functional 

scale: gap, stand, watershed, and landscape. A gap is defined as the area covered by 

the crown of a large, canopy-dominant tree. At the gap level, individual trees interact 

frequently in competition for resources. Fine-scale disturbances such as a single tree 

falling can significantly affect other trees within the gap but not individuals outside of it. 

Gaps within a stand share similar but not identical characteristics, and while interactions 

such as the movement of water and seed dispersal occur among gaps within a stand, 

the interactions are not as frequent or significant as those within a gap are. Similarly, 

stands within a watershed interact through the movement of nutrients and seeds but not 

as frequently as the interaction between gaps within a stand. The watershed level 

contains many of the processes that affect vegetation distribution. However, some 

processes such as weather patterns, species movement, and disturbances such as fire 

may not be contained within a watershed and a larger landscape must be considered. 

Forest Gap Models 

Models of forest dynamics at the gap-sized scale have been developed and used 

for several decades. While the term gap model was not used until 1980, the first such 
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model, JABOWA, was developed for the Hubbard Brook Forest in 1969 (Botkin, Janak, 

& Wallis, 1972; Bugmann, 2001; Shugart 2002). Since then numerous gap models have 

been developed for other forests and conditions, and eventually for other ecosystems 

such as grasslands and savannas (Shugart, 2002). Forest gap models belong to a more 

general family of models called individual-based models (IBMs). As computing 

resources became more available to ecologists in the 1960s, a variety of models 

simulating the behavior of individual organisms has been developed. Some of the 

earliest applications of IBMs included studies of the effects of individual animal behavior 

within population models, and foresters interested in predicting timber yields from 

stands of trees. As the models developed, larger numbers of individuals started being 

simulated resulting in models of community interactions and ecosystem dynamics. 

Given that early forest IBMs were applied towards predicting timber yields, it is not 

surprising that they focused on individual tree size, the number of trees in the stand, 

and how the two relate. Understanding how the growth of individual trees relates to the 

number of trees within a stand had long been a focus in forestry, making the application 

of IBMs in understanding forest stand dynamics a somewhat natural development. The 

earliest forest IBMs were based on stand yield tables, which are tools that have long 

been used to predict yields in forestry. Yield tables are based on height and diameter 

growth data taken from study plots, and they are therefore calibrated to particular 

species growing in specific densities and growing conditions. This poses a problem 

when trying to apply a yield table calibrated to different soil conditions, stand densities, 

or species. A crucial difference between JABOWA and these earlier forest IBMs is that 

the growth of individual trees is simulated using a set of equations based on species-
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specific growth properties and environmental tolerances, interactions between 

individuals in competition for resources, and environmental conditions of the stand. 

Growth of a tree is based on a growth equation that yields an optimum increment of 

diameter growth based on the current diameter. Optimal diameter growth is 

decremented using a set of equations that reduce the growth according to less than 

optimal environmental conditions or competition for resources. The growth equation is 

based on two assumptions: as a tree matures and grows, it adds leaf area, thus 

increasing its photosynthetic capacity and subsequently its growth rate; at the same 

time, the increased size of a tree requires more respiration and has higher maintenance 

costs, resulting in a decreased growth rate as the tree ages. While there are a number 

of different formulations for the growth equation, many adhere to these assumptions 

resulting in somewhat parabolic shapes with increasing growth rates during the first part 

of a tree’s life, followed by decreasing growth as the tree ages. Both the growth 

equation and the equations that reduce the growth from optimum are parameterized 

according to species. 

Many gap models originating from the original JABOWA model have stuck 

closely to the original structure, but others have also diverged from it (Shugart, 2002). 

The models have been applied to many different kinds of forests around the world in 

applications ranging from forest management to understanding the impacts of climate 

change. Some of the assumptions and simplifications contained in JABOWA that made 

simulating numerous individual trees of different ages and species possible at a time 

when computing capabilities were limited have also lead to some strongly criticized 

weaknesses (Bugmann, 2001). While these assumptions and simplifications continued 
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in many subsequent gap models, some more recent models have tried to address some 

of the weaknesses by eliminating assumptions, increasing complexity and fidelity of tree 

responses to environmental conditions and competition for resources, increasing fidelity 

of the environmental conditions, or developing spatial context and relationships both 

within and between plots. JABOWA was designed with the assumption that plots are 

horizontally homogenous and the locations of individual trees within the plot are not 

tracked, which results in the assumption that the crowns of all trees within the plot cover 

the entire area of the plot. This produces shading biases. An example is between two 

small trees that realistically would have little or even no interaction. Another assumption 

that produces a strong bias in shading relationships is that all of the leaf area exists in a 

single horizontal layer at the top of each tree, so a tree even a centimeter shorter than 

another tree will be completely underneath the taller tree. The problem of asymmetry in 

shading is addressed in Leemans and Prentice’s (1989) FORSKA model, which 

introduced a cylindrical crown. Some other gap models have since adopted a cylindrical 

crown. The cylinder was first applied in conifer forests, but it has been used generically 

as the crown geometry for deciduous trees as well. Other geometries such as spheres 

could be used as a further refinement. The model SORTIE represents a greater 

refinement in modeling light competition by using a three-dimensional crown, modeling 

crown transmissivity, and by abandoning the horizontal homogeneity assumption and 

assigning locations for individual trees. Another one of JABOWA’s original assumptions 

is that there are no interactions between modeled plots. This limitation was first 

addressed by Urban et al.’s (1999) model ZELIG, which incorporated some interactions 

between plots. For example, shading can occur across adjacent plots. ZELIG originally 
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used the two-dimensional disc crown geometry but later incorporated the cylindrical 

crown. A later version of ZELIG adjusted the climatic variables according to topographic 

position. First applied to mountainous terrain of the Pacific Northwest, slope, aspect, 

and elevation were used as the important topographic variables. A plot of homogeneous 

slope, aspect, and elevation is referred to as a slope facet, lending the name FACET to 

this terrain sensitive version of ZELIG. The gap model used in this research was 

modified from FACET, primarily by incorporating a refined time scale for the soil 

moisture and weather sub routines. The changes made to the existing FACET model 

were significant enough to warrant a new name: FACETA. Another valid criticism that 

has been made generally for gap models is that they often use fairly simple 

parameterizations rather than modeling the relevant physiological processes 

mechanistically (Bugmann, 2001). While a large amount of data exits for a few 

commercially important tree species, the data for high fidelity parameterization simply 

do not exist for most species important in modeling many forests. Consequently, many 

parameters are based on groupings such as tolerance classes. A well-studied species 

might be used to determine the equations, and then parameters are assigned for the 

different classes by ranking the tolerances of lesser-known species relative to the 

tolerances of the well-known ones. However, there have been many efforts to base 

important parameters more on empirical data rather than on observed relative rankings. 

This version of FACETA attempts some of these refinements by incorporating allometric 

measurements and tree ring data of the modeled local tree species to determine some 

of the important growth parameters. 
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Forest Models and Landscapes 

The evolution of IBMs and gap models is an example of applying ecological 

knowledge across scales. IBMs model the behavior of individuals, but the result is an 

emergent community, so the knowledge of how individuals respond is being used to 

simulate a hierarchical level above the individual responses. Understanding how 

processes at one hierarchical level of living systems affects other levels are important 

research areas in many ecological and biological fields.  An example is how molecular-

level changes to DNA can result in cancer or how the toxicological effects of a pesticide 

can affect an ecosystem. However, the relationships between hierarchical levels are 

often complex and difficult to predict. Given that ecosystem processes occur at many 

different scales, understanding the relationships of patterns and processes at different 

spatial and temporal scales is an important pursuit in ecology. One problem with 

understanding processes at larger spatial and temporal scales is that it becomes more 

difficult to collect the relevant data. As the importance of understanding ecological 

processes at the landscape scale has become more recognized, the variety and 

applications of landscape-scaled models has grown. Forest landscape models have 

developed out of a variety of ecological concepts and theories, and have included both 

empirical and mechanistic approaches (Mladenoff & Baker, 1999). Forest landscape 

models have been developed as resource management tools used to assess alternative 

scenarios that cover broad spatial and temporal scales that are often not possible to do 

in real-world conditions. Many have been applied in the management of real 

landscapes. Shifley, Thompson, Dijak, and Fan (2007) note the increased use of forest 

landscape disturbance and succession models in forest management and planning over 
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the last two decades. They discuss three categories of approaches used for modeling 

forest landscapes. One approach is to represent the landscape as a mosaic of polygons 

of homogeneous vegetation patches. Each polygon is in one of a finite number of 

possible forest states, and the polygons transition between states according to a set of 

rules. Spatial relations in these kinds of models can be but are not always modeled 

using neighborhood rules (Barrett, 2001). The second approach described by Shifley 

et al. (2007) divides the landscape using a regular raster grid. Tree species 

composition, age classes, and size classes change for each cell according to a set of 

rules. These models are essentially state transition models like the polygon-based 

models but with potentially much finer resolutions spatially, temporally, and in the 

possible states or demographic descriptions. The raster-based models do not simulate 

individual trees, rather the demography of the cell as a whole. The third approach is to 

extend individual-based models across landscapes. Individual-based models such as 

forest gap models were originally designed to model a single stand without any spatial 

relations simulated. Today, using high-speed computers and parallel processing, 

multiple stands in different physical settings can be modeled simultaneously along with 

spatial processes that occur between the stands. In general, these three forest 

landscape modeling approaches are described in order of increasing complexity, 

computational load, input requirements, and output options.  

Urban et al. (1999) discussed three approaches to extending fine-scale models 

to cover larger spatial extents. The simplest method was to use a sampling approach 

across the modeled landscape to develop a different set of parameters for a fine-scale 

point model at different locations. The landscape was modeled as a conglomeration of 
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these point models. This approach has the advantage of simplicity but ignores 

interactions between the point model locations, such as the flow of water, and therefore 

is not truly spatial. A second approach was described as brute force (i.e., build a bigger 

model that runs on a bigger computer). Such a model necessarily was more complex as 

it needed to simulate spatial interactions across the landscape such as hydrology and 

nutrient flow. The third approach described using a fine-scale point model to determine 

parameters for broad-scaled landscape models that statistically reconstructed the 

results of the fine-scale model. Urban et al. (1999), Acevedo, Urban, and Ablan (1995, 

1996), Acevedo, Ablan, Urban, and Pamarti (2001), and Acevedo, Pamarti, Ablan, 

Urban, and Mikler (2001) used simulation runs of a plot-scaled forest gap model (ZELIG 

and FACET) to estimate parameters for a landscape-scaled semi-Markovian patch 

transition model (MOSAIC) to link models from these two different scales. In an 

approach such as this, variations in the landscape that affect the forest dynamics should 

be accounted for within the plot-scaled model. Acevedo et al. (1995) applied this 

technique to the H. J. Andrews Forest in the Oregon Cascade Mountains and identified 

temperature and precipitation as affected by elevation as the key variants of the 

landscape. Gap model simulations were done using parameters representing a number 

of different elevations, and the results from the gap model runs were used to determine 

state transition probabilities for different elevations on the mountain landscape.  

Urban et al. (2000) and Urban (2000) took the sampling approach and applied 

the gap model FM, a modified version of FACET, to a Sierra Nevadan landscape with 

simulated plots representing different positions on the landscape. The landscape 

contained large ranges in elevation, slope, aspect, and soils. In this Mediterranean-type 
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climate, almost no precipitation occurred during the summer months, so water was 

considered a driving factor for vegetation patterns. Supply and demand on water varied 

spatially, and there were different reasons for the variation at different spatial extents. At 

the landscape scale, temperature and precipitation, determined primarily by elevation, 

were the key factors on water balance. At a basin-level scale within any limited range of 

elevation, topographic position, and aspect largely influenced soil moisture availability 

and demand from solar radiation respectively. At finer scales within a forest stand, soil 

depth played a big role in water availability. Field studies were analyzed at multiple 

scales. Simulation runs of FM were done for numerous possible landscape facets, with 

the key parameter differences being elevation, slope, aspect, and soil depth, and results 

were compared with the field studies. An important conclusion reached was that the 

different physical processes affecting water supply operated at different scales, and 

forest vegetation patterns were explained by different factors at different scales. While 

Urban et al. (2000) acknowledged the importance of topography in this application of 

FM in the Sierra Nevada, the hydrological affects of topography were not simulated or 

mimicked. However, topography was used as a measure of uncertainty of the model 

results for specific portions of the modeled landscape.  

 Seidl, Rammer, Scheller, and Spies (2012) discussed the need for an integrated, 

multi-scaled modeling approach to forest landscapes. Forests are complex systems with 

processes and interactions occurring across scales, and in order to make predictions 

and effectively manage forest resources in a world with changing climatic and 

environmental conditions, there is a need to understand these multi-scale interactions. 

Forest ecosystem complexity can be divided into different dimensions such as 
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structural, functional, or spatial complexity. These different dimensions of complexity 

have traditionally been modeled using different families of forest models. Forest gap 

models have been used to simulate forest composition and structure and study 

structural complexity. Physiological models have been used to get a glimpse into 

functional complexity by studying ecosystem processes such as photosynthesis, 

respiration, and nutrient cycling. Spatial complexity of ecosystems across broad 

landscapes has been modeled using forest landscape models such as the first two 

types discussed by Shifley et al. (2007). From a complex systems point of view, 

traditional forest modeling approaches have been reductionist (Seidl et al., 2012). 

Recently, hybrid approaches have been developed to integrate some of these 

dimensions. Seidl, Lexer, Jäger, and Hönninger (2005) integrated structural and 

functional complexity by hybridizing a gap model, PICUS, with a physiological model, 

3-PG. In a similar integration, Peng, Liu, Dang, Apps, and Jiang (2002) developed the 

model TRIPLEX by hybridizing 3-PG with a forest growth and yield model called 

TREEDYN3. However, integrating the different aspects of ecosystem complexity and 

incorporating multiple levels of organization in such a way that can be scaled across a 

large spatial landscape remains a difficult task (Seidl et al., 2012). The model iLand was 

developed to integrate processes that occur across scales by using a spatially explicit 

IBM approach for simulating growth, regeneration, and mortality of individual trees. By 

modeling the availability of light, water, and soil nutrients as continuous fields 

determined by each individual tree’s ability to compete for them, resource availability is 

spatially dependent within the stand. Computational scalability that allows the simulation 

to be run across large landscapes is achieved in part by using a modular approach for 
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light interference patterns of individual trees based on height and crown shape. Light 

interference patterns are predetermined for a library of different tree species and 

heights, and these patterns are assigned to individual trees at each time step in the 

simulation. The approach used in iLand models processes at the individual, community, 

and landscape levels; integrates aspects of functional, structural, and spatial 

complexity; and is scalable to larger landscapes. However, it does not incorporate 

differences in topography or hydrology across the modeled landscape. 

FACETA used in this research takes a modeling approach that is similar to the 

simpler sampling approach discussed by Urban et al. (1999) while still preserving some 

of the hydrological spatial relationships of the landscape by simulating the effects of 

topographic position on soil moisture. It integrates aspects of structural and spatial 

complexity, and it can be extended across a landscape of heterogeneous terrain. In that 

sense, it is similar to the approach taken with the gap model FM as applied to the Sierra 

Nevada landscape, but with a factor incorporated to account for the hydrological effects 

of topography. It shares similarities to the polygon-based forest landscape models 

described by Shipley et al. (2007) in that the terrain type units the landscape is 

partitioned into are essentially polygons that are treated as patches with homogeneous 

conditions. Since the terrain type map is generated from a raster digital elevation model 

(DEM), there is flexibility with the spatial resolution and the shape of these polygons. 

The hydrological spatial relations between the terrain units are pseudo-simulated 

through a hydrologic model parameter based on topographic position. This approach 

therefore does not result in a true spatial model, but it has the advantage of avoiding the 
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complexities of the brute force approach while still simulating some of the spatial 

variability due to topography. 

Topography and Topographic Indices 

The terrain attributes considered key in the variation of vegetation patterns in this 

research are topographic position and soil conditions. In general, the topography of a 

watershed largely affects the hydrology and geomorphological processes, such as soil 

formation, and impacts biological processes as well (Moore, Grayson, & Ladson 1991). 

Altitude, slope, aspect, curvature, flow direction, and specific catchment area are all 

known as primary topographic attributes because they can be calculated directly from 

elevation data. Altitude can affect temperature and precipitation, in turn affecting 

vegetation. Aspect affects sun exposure, and slope affects sun exposure and both 

surface and subsurface water flow. Slope, in combination with soil conditions such as 

depth to bedrock and drainage, is often used as the primary topographic attribute for 

classifying land capability. Specific catchment area, a topographic attribute that can be 

calculated for every contour line segment, is defined as the upslope contributing area 

draining across a unit width of a contour line (Moore et al., 1991). The specific 

catchment area at any point within a watershed is a quantification of the potential of 

surface and shallow subsurface water flowing to that point. Zaslavsky and Sinai (as 

cited in Moore et al., 1991) found that soil moisture within an experimental catchment 

was correlated with curvature, and Moore, Burch and Mackenzie (as cited in Moore et 

al., 1991) found relationships between soil moisture and slope, aspect and specific 

catchment area. Secondary topographic attributes, also called compound attributes or 

compound indices, are calculations that combine two or more primary attributes. 
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Compound indices are often used to characterize variability of specific landscape 

processes such as soil moisture.  

The compound index most used in characterizing soil moisture and hydrology 

combines specific catchment area together with slope. The compound topographic 

index was first developed for a terrain-based hydrology and runoff model, TOPMODEL 

(Lanni, McDonnell, & Rigon, 2011; Sørensen, Zinko, & Seibert, 2006). TOPMODEL is a 

physically based hydrological model applied at the watershed-level scale that was 

developed in the 1970s by Bevin and Kirby (1979). It was developed at a time when 

research trends and increasing computing power were driving models of natural 

phenomena, including hydrological models, to become more physically based and more 

complex. However, given the complexity of any individual watershed and the number of 

parameters required to model its hydrology accurately, increasing the fidelity and 

physical basis for watershed hydrology models can become exceedingly problematic. 

These complex hydrology models became difficult to apply objectively and lacked a 

basis from field measurements (Kirkby, 1997). Some hydrologists felt a need for simpler 

models that could still be based on physical processes and tied to field observations. 

The rationale behind the development of TOPMODEL was to create a model that 

incorporated a physically based spatial structure and aspects of the effects from flow 

networks and variable contributing areas, while at same time maintaining the simplicity 

of a lumped parameter model using parameters directly measurable in the watershed.  

The concept of variable contributing areas is based on the idea that precipitation 

within a watershed can produce runoff and discharge with both spatial and temporal 

variability. There are at least four different ways that runoff might be produced across a 
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uniform watershed (Beven & Kirkby, 1979). One possibility is for runoff to be generated 

uniformly throughout the watershed from precipitation that exceeds the surface 

infiltration rate or soil storage capacity. However, in areas with vegetation cover or with 

high infiltration capacities, a uniform response is not likely. A second possibility is that, 

due to spatial variability in infiltration and in soil moisture content, runoff is generated 

across a variable area dependent on where the soil is at or near saturation. A third way 

runoff and stream flow is generated is by precipitation falling directly into or on saturated 

soils near stream channels. A fourth runoff factor is from downslope lateral subsurface 

flow, either in the unsaturated or saturated zones. This kind of subsurface flow, known 

as shallow subsurface storm flow when occurring in the unsaturated zone, is typically 

much slower than surface runoff and is more of a factor in stream baseflow than in peak 

channel flow during or after storms. In general, these runoff processes are called 

infiltration-excess overland flow if generated when the precipitation rate exceeds the 

instantaneous infiltration rate, or saturation-excess overland flow if the runoff is 

generated from precipitation falling on saturated soils. Saturation-excess overland flow 

is generally more likely to occur in low-lying areas adjacent to stream channels. 

TOPMODEL tries to capture the spatial variability of both infiltration-excess and 

saturation-excess overland flows. 

The primary underlying assumption of TOPMODEL is that topography is the 

dominant factor in the spatial variability of flow. For any segment of the watershed, the 

size of the upslope contributing area is proportional to the inflow rate, and the outflow 

rate increases with local slope. Thus, the size of the contributing area and the local 

slope are assumed to be to two topographic quantities that control the water balance for 
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that segment. TOPMODEL relies on a few underlying assumptions of the physical 

conditions and hydrological response of the watershed. One assumption is that the 

hydraulic gradient is the same as the slope of the land surface (Beven, 1997). Another 

is that saturated zone dynamics can be approximated by uniform subsurface runoff 

production across the area and draining through a point. This assumption is interpreted 

as the steady state per unit area contribution to base flow, or the steady state recharge 

rate. Through water balance accounting of the total flow coming in to any hillslope 

segment and the subsurface flow transmitted downslope from that segment, together 

with the steady state assumption that these two quantities are equal, the compound 

topographic index used in TOPMODEL can be derived. The basic form of this 

topographic index is ( )






=

βtan
ln1

SATI , where A is the specific catchment area and tanβ 

is the local surface slope of the watershed segment. This topographic index is assumed 

to represent the hydrology of different parts of the watershed (i.e., different points 

having the same topographic index will behave hydrologically similarly). 

There are a number of variations of this index, the most common one being the 

one defined above. It is referred to by a few different names, often called the wetness 

index, steady-state wetness index, topographic wetness index (TWI), topographic 

convergence index, compound topographic index (CTI). While many sources use the 

term CTI to refer specifically to the wetness index, this may create confusion with the 

generic concept of a compound topographic index being the combination of any 

topographic attributes, so this index will be referred to as either the wetness index 

(generically for all formulations) or TWI (for a specific formulation). 
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The wetness index has been applied in fields ranging from soil science to forestry 

to human health. A study conducted in the southern part of the California Coast Range 

physiographic province on a hillside landscape containing a range of soil conditions and 

topographic positions found strong correlations between the wetness index and soil 

depth, A-horizon depth, soil organic carbon content, and net primary productivity (NPP; 

Gessler, Chadwick, Chamran, Althouse, & Holmes, 2000). The wetness index explained 

between 71%–84% of the variation of soil depth, organic carbon and A-horizon depth, 

and it accounted for 58% of the variation of NPP. In a study conducted in a forested 

area of Ohio, soil moisture was measured at a number of locations at various depths 

over a 2-year period (Iverson, Prasad, & Rebbeck, 2004). Iverson et al. found a 

significant but weak correlation between soil moisture and the wetness index. 

Equipment problems noted in the study may in part explain the weak correlation. Soil 

moisture sampling rate also was low–measured 18 times over two growing seasons–

and there was no indication in the study of when the sampling times occurred relative to 

rain events. A detailed study was conducted in a forested watershed in central 

Pennsylvania that compared soil moisture measurements with soil type, soil depth, 

wetness index, slope, precipitation, and stream discharge (Lin, Kogelmann, Walker, and 

Bruns, 2006). Using a fine-scaled soil type map generated from an Order I soil survey 

(most USDA soil maps are generated from coarser-scaled Order II surveys, and the 

coarsest scale is Order V), the study found a very good relationship between the 

classified soil series and soil moisture. The wetness index worked to separate sites into 

groups with relatively different surface moisture. The wetness index, slope, and depth to 

bedrock were all correlated with surface and subsurface soil moisture; however, none of 
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these variables completely explained soil moisture variation. Taken together, a 

combination of certain terrain and soil attributes yielded a good predictor of soil moisture 

both spatially and temporally. Cluster analysis of the wetness index, slope, and depth to 

bedrock (a numeric variable that to some degree differentiated the soil series) was used 

to separate 30 monitored sites into four different wetness categories, which accurately 

reflected differences in moisture measurements at varying depths taken over time. The 

ways that topography and soil conditions combined to impact soil moisture were 

complex and difficult to separate. Yang, Chapman, Young, and Gray (2007) used a 

wetness index map together with a soil type map to delineate soil landscape facets, 

which were then used as the base units for creating land capability and feasibility maps. 

The term facet in Australian soils science refers to an area of land within a soil 

landscape, typically less than 5 km2, which is identified by particular land-formed 

elements, landscape position, parent material, or natural vegetation community. This 

process was determined to be an automated, low-cost alternative to facet delineation 

through field studies and was successful at dividing about 60% of the soil landscape 

into facets. In applying the gap model FACET (FM) in a Sierra Nevada landscape, 

Urban et al. (2000) and Urban (2000) computed a wetness index map that was 

interpreted as a map of hydrologic uncertainty. The model did not simulate the 

hydrologic contribution from upslope areas, so it underestimated moisture for places on 

the landscape that received substantial run-on. The map was used to devise a 

monitoring and sampling plan, with sampling locations chosen from areas in the 80th 

percentile of wetness index values. In a study done in the boreal forest in Sweden, 

vascular plant species richness increased with wetness index values up to a point, after 
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which species richness stayed the same or even declined (Zinko, Seibert, Dynesius, 

and Nilsson, 2005). This study found that the relationship was sensitive to plot size, and 

the positive correlation was stronger in larger plots. This sensitivity to plot size may be a 

reflection of the accuracy of the elevation data used to derive the wetness index. In a 

human health study conducted in the Kenyan highlands, Cohen et al. (2008, 2010) 

found that distance of households to areas with high wetness index values was 

significantly associated with malaria risk. The study found that proximity to high wetness 

index areas was a better predictor of malaria risk than elevation or satellite-derived 

land-cover and land-use variables. 

The TWI has clearly been useful in a variety of applications involving soil, 

landscape attributes, and ecology, but strong correlations between the wetness index 

and soil moisture measurements have not always been found. Several issues related to 

the derivation and calculation of the wetness index may play a role in this. One problem 

may be the accuracy and resolution of the digital elevation data used to calculate the 

wetness index. Much of the available elevation data is at a 30-m grid, or horizontal, 

resolution, which may be too coarse to identify the microtopographical effects on water 

flow and collection. Elevation data at 10-m grid resolution is now freely available 

through the U.S. Geological Survey’s National Elevation Dataset (NED) for all of the 

contiguous United States, and 3-m data are available for limited parts of the country 

(United States Geological Survey [USGS], n.d.). This is not true for all places; for 

example, the best resolution data for most of Alaska is 60 meters. One-meter resolution 

elevation coverage does exist for some places, but not through the NED or other freely 

distributed source. High-resolution (3 m or better) and moderate-resolution (some 10 m) 
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digital elevation data are typically derived from either light detection and ranging 

(LiDAR) data or digital photogrammetry. The bulk of the NED data uses a 10-m grid 

resolution, but it is derived from cartographic contours and is therefore not considered 

high or moderate resolution. Vaze, Teng, & Spencer (2010) examined the affects that 

both grid resolution and vertical accuracy of digital elevation data have on various 

topographic indices. The study found that digital elevation data derived from LiDAR 

yields a much better representation of the topographic surface than elevation data 

generated using cartographic contours. When comparing elevation data derived from 

LiDAR originally sampled at 1-m resolution and then resampled to 2-m, 5-m, 10-m, and 

25-m resolutions, the different grid resolutions yielded hillshade views with essentially 

no differences. Small differences were found between the different LiDAR-derived grid 

resolutions in the delineated watersheds stream networks. Comparing hillshade views, 

watersheds, and stream networks, the differences between the 25-m resampled LiDAR 

derived data and the 25-m contour derived data were very large and obvious.  

Zhang, Wu, Chang, Elliot, and Dun (2009) used six different digital elevation 

datasets from three different sources (NED, LiDAR, and Shuttle Radar Topography 

Mission or SRTM) and three different grid resolutions (30, 10 and 4 meter) as input into 

a hydrology and erosion model (the Water Erosion Prediction Project or WEPP) that 

was applied to two forested watersheds in Idaho. Model outputs were then compared to 

field measurements and observations. One of the watersheds was more topographically 

complex with steeper slopes, and it lay immediately upstream of the other one. Due to 

the forested cover of the watersheds, which characteristically yielded little surface 

runoff, model estimates for water discharge differed little between the six different input 
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elevation datasets. Comparing model estimates of discharge to field measurements, 

within each watershed the model produced consistent estimates for all six different 

elevation datasets. However, the upstream watershed consistently resulted in significant 

overestimates (greater than 65%), and the downstream watershed resulted in small 

underestimates (about 6%). These differences in discharge were thought to result from 

model not accounting for groundwater baseflow. There were also large differences in 

the model estimates for soil erosion from the different elevation datasets. The SRTM 

30-m resolution data resulted in a 10-fold overestimate of soil erosion in the more 

topographically complex watershed, and more than a two-fold overestimate in the 

smoother one. The 10-m LiDAR data yielded model results of erosion field 

measurements off by 12% in one watershed and 9% in the other, making it the most 

accurate across the two watersheds. The 10-m NED produced slightly closer estimates 

in the more topographically complex watershed, and the 4-m LiDAR produced slightly 

closer results in the smoother one. Taking into consideration the accuracies in 

watershed area, number of hillslopes, and number of channels as compared to field 

observations, the 10-m LiDAR generally yielded the best results for both watersheds. 

The 4-m LiDAR data yielded similar results; however, they did not improve model 

accuracy over the 10-m LiDAR and were in fact substantially less accurate for soil 

erosion in one of the watersheds. 

The specific formulation of the wetness index also may have been an issue. The 

typical formulation of the wetness index had slope in the denominator, which created a 

calculation error when measured slope was zero. The Terrain Analysis Using Digital 

Elevation Models (TauDEM) geographic information systems (GIS) toolbox for 
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analyzing digital elevation data gets around this problem by flipping the ratio and putting 

slope in the numerator and specific catchment area in the denominator (Tarboton, 

2012). In this reciprocal formulation, zero was the lower limit of index values, and 

decreasing values indicated wetter conditions. This formulation has a different problem 

in that all areas with measured slope of zero have a wetness index value also equal to 

zero, regardless of whether the land is a flat spot on top of a hill or flat and at the bottom 

of a valley. The potential divide-by-zero problem can be avoided if no cells have 

calculated slopes of zero, and there are DEM processing tools or algorithms that ensure 

that result. An example of such tool, the PDEM, assigns a slope to a flat area through 

linear interpolation between the highest and lowest elevations surrounding the area 

(Pan, Stieglitz, & McKane, 2012). The PDEM tool is used to process DEMs to make 

them depressionless and to eliminate any flat cells. Making a DEM depressionless is 

often referred to as filling the sinks. This process ensures that there is a defined flow 

path out of every cell. There are a number of algorithms available for filling sinks in 

DEMs; however, the PDEM tool has the added effect that no cells have a zero slope, 

which is not the case in general for depression filling techniques. 

Algorithms used for determining either the slope or the specific catchment area 

can impact the calculation of the wetness index, and the choice of algorithm used can 

be another issue to consider. Calculating specific catchment area requires first 

determining the flow direction (the way water flows from each cell to its neighbors) from 

the digital elevation data. There are numerous algorithms for determining flow direction, 

and they yield different results. The most commonly used algorithms are single flow 

direction in that water flow from each cell is restricted to only one of its neighboring 
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cells, but numerous multiple flow direction algorithms have been developed. Kopecký 

and Čížková (2010) analyzed wetness indices calculated using 11 different flow 

direction algorithms and compared them to more than 500 vegetation plots in three 

different regions to determine if the algorithm used mattered in applications to plant 

ecology. They used soil moisture and plant composition measurements to compare the 

performance of the different wetness indices. While all 11 indices were significantly 

correlated with soil moisture and plant composition in all three regions, the choice of 

flow direction algorithm made a considerable difference in the performance of the 

wetness index. Some algorithms resulted in wetness indices that performed more poorly 

across all regions, including the one most widely available in most GIS (single-direction 

D8). One algorithm (multi-direction FD8) performed substantially better than the other 

algorithms.  

As with flow direction, there are also numerous algorithms for calculating slope. 

Rodriguez and Suárez (2010) compared slopes calculated from 10-m resolution 

elevation data of a watershed characterized by gullies and steep slopes using nine 

different mathematical algorithms. Field measurements of slope were taken at 32 points 

within the watershed, and an error term was calculated between the measured and 

calculated slopes. The resulting slope maps were not significantly different from one 

another. However, the error terms calculated for the various slope algorithms were 

different, particularly for steep slopes greater than 36%. It should be noted that the 

digital elevation data used in this study were generated from cartographic contours, and 

error with the elevation data itself is not discussed.  
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In a comparison of how different flow direction algorithms and slope calculation 

methods affect calculation, Pan, Peters-Lidard, Sale, and King (2004) examined the 

performance of six different variations of the TWI. The flow direction algorithms used 

included a single flow direction (SFD), a bi-flow direction (BFD), and a multiple flow 

direction (MFD) algorithm. Two different methods were used to calculate slopes in flat 

areas, the tracking flow direction (TFD) and Wolock and McCabe methods. The 

calculations were performed on different idealized hillslopes. Three hillslopes with 

constant slopes – one planar, one convergent, and one divergent – were used. Nine 

different slope values were tested for the constant-slope idealized hillslopes. 

Additionally two divergent hillslopes with varying slopes were tested – one concave and 

one convex. To measure the performance of the different index variants, root-mean-

square errors between the calculated and the theoretical topographic index values were 

determined. Several conclusions were reached: (a) In all cases the MFD flow direction 

algorithm together with the TFD method for slope calculation in flat areas yielded the 

smallest error, (b) scenarios with larger slopes resulted in smaller error, and (c) slopes 

below a certain threshold resulted in no difference in between SFD and BFD. 

Sørensen et al. (2006) calculated multiple variations of the wetness index from 

20-m resolution elevation data by using different combinations of algorithms and 

parameters. Using two different algorithms each for specific catchment area, stream 

delineation, and slope, combined with 6 to 8 different parameter values for each, they 

computed 2688 different variations of the wetness index. The results were then 

compared to field studies from two boreal forest watersheds to determine if computation 

method affects the correlation between the wetness index and four different field-
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measured variables: plants species richness, soil pH, groundwater level, and soil 

moisture. The study sought to determine if calculation method affected correlation, 

which methods yielded the best correlations, and if there was a best overall method. 

Different calculation methods yielded high variability in the correlations between 

wetness index values and the measured variables, so for any one measured variable 

the calculation method did matter. No single calculation was found to be the best in that 

no calculation yielded the highest correlation for all four variables in both sites. Certain 

methods were identified to be generally best overall for all variables, but these methods 

did not produce the highest correlations for any single variable. In general, the multi-

direction flow algorithms produced higher correlations than the single-direction 

algorithms.  

Pei et al. (2010) compared relationships of wetness index values calculated 

using a common single-direction flow algorithm with those from a multi-direction flow 

algorithm to soil organic matter. Soil organic matter was measured at 54 locations in 

various topographic positions in a low relief study area, and the data were compared to 

both the multi- and single-direction wetness index values generated from 10-m 

resolution, contour-derived elevation data. The multi-direction wetness index correlated 

better with soil organic matter than the single-direction. Soil organic matter maps were 

generated from the study area using ordinary kriging and three other kriging methods 

that incorporate wetness index values as a secondary variable. Two of these kriging 

methods were somewhat incompatible with the both sets of wetness index values, and 

the ordinary kriging map outperformed the maps produced by them. The third method, 

called collocated cokriging, benefited from the use of the wetness index as a secondary 
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variable. The soil organic matter map produced using collocated cokriging and the 

single-direction wetness index outperformed the ordinary kriging map, and the 

collocated cokriging, multi-direction map outperformed the single-direction one.  

Before calculating slope or flow direction, different algorithms can be used in the 

processing of the elevation data that can lead to differences in the calculation of 

topographic indices. One of the requirements to calculate flow direction is that the sinks 

in the elevation data must be filled; that is, depressions and flat areas must be adjusted 

so that a flow path from each cell can be calculated. Sinks in elevation data may be 

artifactual, errors in the data, or representations of true depressions. Nevertheless, they 

must be filled to allow the calculation of flow direction. If the TWI is to be calculated, flat 

grid cells with zero slopes must also be adjusted to avoid division by zero. There are 

numerous algorithms and techniques to fill sinks, but they all can be problematic or 

introduce uncertainty in some circumstances (Pan et al., 2012). The algorithm to fill 

sinks in the most commonly used GIS software is the Jenson and Dominque (JD) 

method, which tends to produce unrealistic parallel flow patterns in flat and flow 

accumulation areas. Pan et al. proposed a new algorithm, PDEM, using linear 

interpolation to fill sinks in a DEM in a way that avoids many of the problems that can 

arise in hydrological modeling. By using linear interpolation between the high and low 

elevation cells around the sides of a sink, the technique ensured that all cells have at 

least one downward slope in the outflow direction. The algorithm was applied to two 

virtual landscapes and one real one, and the results were compared with those using 

the JD method and with another common method called TOPAZ. In the two virtual 

landscapes, PDEM produced more hydrologically coherent drainage patterns through 
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the flat accumulation areas then either of the other two methods. In the real landscape 

(an area within the Big Swamp watershed in North Carolina), PDEM produced more 

realistic flow accumulation patterns than the JD method. The stream channel network 

produced using the PDEM method matched the stream network indicated on the USGS 

topographic map more closely than TOPAZ, and the stream network produced by the 

JD method was less consistent with the USGS topographic map than with both PDEM 

and TOPAZ. 

Other variations of the wetness index have been formulated to improve its 

predictive power for soil moisture, wetlands, species richness, or other important 

variables. One common variant of the wetness index includes a soil transmissivity factor 

(Moore et al., 1991; Kirkby, 1997). This factor causes the wetness index value to 

increase as saturated hydraulic conductivity decreases, for example with depth. 

Goodwin (2003) discussed a wetness index developed to account for the effects that 

urbanization in a forested watershed has on the spatial distribution of soil moisture. 

Urbanization increases impervious surface area, which decreases soil infiltration, 

groundwater recharge, and stream baseflow. Reduction in baseflow can reduce the 

length of perennial streams. On the other hand, removal of forest or other vegetation 

can decrease evapotranspiration and the loss of soil moisture. This index is similar to 

the common wetness index in that it includes the ratio of specific catchment area and 

slope, but it also includes terms for steady-state recharge rate and soil transmissivity. 

Recharge rate increases the index value while transmissivity decreases it. Applying this 

index to a suburban Atlanta watershed as a model of soil saturation and perennial 

stream flow yielded the prediction that 19% impervious surface area in the formerly 
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forested watershed reduced saturation extent and stream length by 15%. Field 

verification of this model result was not done.  

A number of variations of quasi-dynamic and dynamic wetness indices have 

been developed, as compared with the steady state or static wetness index discussed 

so far. The wetness index is based upon several underlying assumptions. These 

assumptions include that soil hydrology is dominated by lateral subsurface flow, and 

that this subsurface flow is in a steady state (Grayson, Western, Chiew, and Blöschl, 

1997). This steady state assumption is manifested in the wetness index in that it uses 

the entire upslope contributing area, implying that the soil moisture at any point in the 

watershed is affected by that entire area. In wet climates, wet seasons, or during 

prolonged periods of rainfall this steady state assumption might be realistic. However, in 

dry climates or during dry times of the year lateral flow may become nonexistent, and 

when precipitation does occur the moisture will soak into the soil and subsequently be 

removed through evapotranspiration. To ease this steady state assumption, Barling, 

Moore, and Grayson (1994) developed a quasi-dynamic wetness index. The quasi-

dynamic index was time-dependent in that it uses an effective specific catchment area, 

where the effective size of the upslope contributing area depended on the duration of a 

rainfall event as well as soil properties. In wet conditions, the specific catchment area 

and the effective specific catchment area were the same. The interesting conclusion in 

the Grayson et al. (1997) study was that the hydrologic state of the soil could switch 

from a state dominated by lateral flow to a state dominated by vertical fluxes, and vice 

versa, quite suddenly. The implication to this was that two different wetness indices 

should be used, one for wet times when lateral flow dominated and one for dry times. A 
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two-index modeling approach would also require criteria or a mechanism to switch 

between the two states.  

Another assumption of the steady-state wetness index is that the hydraulic 

gradient is parallel to the surface slope. In order to ease this assumption of parallelism, 

Lanni et al. (2001) developed an index that took the quasi-dynamic wetness index 

developed by Barling et al. (1994) and replaced the local slope term in the equation with 

a downslope wetness index (DWI).  Comparing this and five other wetness index 

variants calculated from 2-m, LiDAR-derived, high-resolution elevation data to the 

results of a process-based hydrologic model, Lanni et al. (2011) found this index 

produced the best results for patterns of soil moisture deficit for rainfalls lasting up to 

three hours. However, using the DWI instead of local slope reduced the index’s ability to 

predict groundwater levels, and the other indices outperformed this index in longer 

duration rainfalls. Additionally, because the DWI depended on a parameter based on 

the micro-topographic relief of the watershed, Lanni et al. found the DWI difficult to 

apply. Another index examined in this study took the quasi-dynamic wetness index and 

ran it through a 3x3 low-pass filter in order to smooth out the effects of local topography. 

The smoothed quasi-dynamic wetness index was generally performed the best in this 

study, and the smoothing was found to be important when using a high-resolution grid.  

Fully dynamic wetness indices have also been developed in order to address 

some of the limitations of the static wetness index. Kim and Jung (2003) proposed 

extending the quasi-dynamic wetness index to a fully dynamic index by integrating the 

convolution of the upslope contributing area with the time series of effective rainfall, 

yielding a model of spatial and temporal patterns of soil moisture. In cases where 
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meteorological and hydrological data were available, Grabs, Seibert, Bishop, and 

Laudon (2009) developed a technique of using dynamic simulations of a distributed 

hydrological model to derive a model-based wetness index (MWI). The intent of the 

MWI was to account for the dynamic influence of both upslope and downslope 

conditions, whereas the traditional wetness index only accounted for static upslope and 

local conditions. 

The choice of topographic index and the algorithms used to calculate them all 

matter when it comes to interpreting hydrological, ecological, or pedologic information 

from elevation data. In some situations, an entirely different topographic index may be 

more appropriate. For example, in certain mountainous terrains, slope aspect and 

insulation may play a much greater role in soil moisture than upslope contributing area 

does. Generally, the use of multi-direction flow algorithms seems to be gaining 

preference over single-direction ones, and the use of dynamic and quasi-dynamic 

variations of the wetness index are becoming more common. These variations have all 

been developed to overcome valid criticisms and limitations of the steady state TWI and 

the algorithms used to derive them. However, there are a number of variations and 

parameterizations of all these indices, and usefulness of any topographic index 

depends on the application and the physical terrain to which it is applied. While a certain 

variant of the wetness index may have greater predictive ability in certain situations, it 

may not in others. More investigation into the differences can help bring about better 

utilization of geographic information system tools to ecological applications. The grid 

resolution of the elevation data is also important. One might generally conclude that 

finer resolution, when accurate, is desired. However, this may not be the case. The best 
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resolution to use depends upon the scale of the process of interest and the scale of 

topographic variation within the terrain.  

Gap Models and Weather 

Forest gap models typically incorporate stochastic weather generators to input 

variables such as temperature and precipitation used in tree growth response. In many 

models such as FACET, weather is simulated with monthly time steps (i.e., total 

monthly precipitation and average monthly temperature are generated for each 

simulated month, and tree growth is modeled using annual time steps). Weather is then 

scaled down to sub-monthly steps using linear interpolation. Tree growth response to 

the simulated weather is based on an aggregate of weather generated during the 

growing season for the entire year. Modeling weather and soil water balance using time 

steps greater than a day makes it difficult to account for water infiltration and surface 

runoff during rain events. In hot climates and sandy soils, moisture from the upper 

layers can be depleted through evapotranspiration in a matter of a few days after being 

soaked. Using coarse time scales for weather and soil moisture simulation may not fully 

capture stress caused from short-term dry spells. Forest gap models have been 

criticized for not always accurately simulating the impacts of droughts (Bugmann & 

Cramer, 1998). To improve the performance of the gap model FORCLIM (Bugmann, 

1996) in predicting the impact of droughts to species composition, Bugmann and 

Cramer (1998) considered increasing the accuracy of the drought tolerance parameters 

of the modeled tree species and increasing the fidelity of the soil water balance model. 

They found that with both these refinements together the model performance did 

improve along a drought gradient. They did not investigate refining the temporal scale of 
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the weather or soil moisture simulations, and most gap models still use monthly time 

steps for these. The forest landscape model iLand did incorporate refined time scales 

using daily time steps for both its soil water balance calculations and its tree growth 

environmental response functions (Seidl et al., 2012). While iLand was not technically a 

forest gap model, it shared similarities in how it models individual tree growth. However, 

iLand did not use a weather generator for simulated weather; rather as input, it used a 

time series taken from real daily weather data. The weather generator and soil water 

balance subroutine were refined for the gap model FM when it was applied to a 

landscape where soil moisture was deemed a critical factor in vegetation patterns 

(Urban, 2000; Urban et al., 2000). The soil water subroutine was changed to a daily 

time step, and the precipitation portion of the weather generator was altered to produce 

precipitation amounts on a daily timescale. However, the weather generator was 

described as being based on both monthly and daily timescales. The model used 

average monthly total precipitation amounts and generated precipitation events on daily 

time steps. Precipitation event amounts and frequencies were based on long-term data. 

While details on the daily precipitation model, how it was connected with the monthly 

total precipitation amount, or an analysis of its performance were not included, 

presumably it followed the interpolation scheme of FACET. Similarly, one of the 

refinements implemented in FACETA to improve the fidelity of the hydrological 

response was to change the time scale of the soil moisture subroutine to a daily time 

step, which in turn necessitated changing the weather generation time scale to daily.  
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Weather Generators 

Weather generators are algorithms that use random number generators based 

on probability distributions to generate time series of artificial weather variables. 

Probability distributions are selected and parameterized to match observed weather 

data. Weather generators are used in applications of agriculture, hydrologic 

engineering, climate change simulations, and ecological models (Wilks & Wilby, 1999). 

While it is not the case with forest gap models, daily weather generators are commonly 

used in most applications. The greatest effort in developing weather generators has 

been given to simulating precipitation. In part, this is because precipitation is a key 

variable in many applications. Simulating precipitation patterns probabilistically poses 

some difficulties. Many days will have zero precipitation, and on days when precipitation 

occurs, the amount can range from a trace to a deluge. This results in a discontinuity in 

the probability distribution for precipitation on dry days and rainy days. Depending on 

the climate, the distribution of precipitation amounts on rainy days are usually strongly 

skewed right, with many days having small amounts of rain and very large amounts 

occurring on a small number of days. One pattern that is fundamental to weather 

generators is that dry days and rainy days tend to have a degree of serial 

autocorrelation. Most weather generators use a two-part process for simulating 

precipitation, with the first part determining whether precipitation occurred, and the 

second part determining the amount of precipitation, if it did occur.  

Gabriel and Neumann are often attributed to developing the first stochastic daily 

rainfall model in 1962. In their model, they used a first-order Markov chain to simulate 

the sequence of wet and dry days. With a Markov chain model, the probability that it 
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rains on any given day is conditioned on whether or not it rained on the previous day. 

Being a first-order Markov chain means that the probability of precipitation is 

conditioned only on the previous day’s precipitation state and not on any days prior to 

that. Determining the conditional probabilities from daily weather data for this kind of 

model is straightforward, the resulting model simulates the persistent patterns of wet 

and dry days well, and it produces long-run relative frequencies of wet and dry days that 

match the fitted data. However, it has been noted that in some climates it may not 

produce enough long dry spells. One possible refinement is to use a higher-order 

Markov chain, where the probability of precipitation on any given day is conditioned on 

the previous two, three, or more days.  

Another approach that has been used is to generate a sequence of spell-lengths 

(i.e., lengths of consecutive dry days or wet days). If a geometric probability distribution 

is used to generate the spell lengths, this approach is equivalent to using a Markov 

chain. In climates where the first-order Markov chain does not produce sufficiently long 

dry spells, distributions other than geometric can be used to generate spell lengths with 

improved results. The second part is the precipitation amount that occurs on wet days. 

For most climates, the distribution is very right skewed. Various distributions including 

the exponential distribution have been used for precipitation amounts, but the most 

common has been to use the gamma distribution. The exponential and to a lesser 

degree the gamma distribution sometimes underestimate the frequencies of large 

precipitation events. A mixed exponential distribution, which is a combination of two 

exponential distributions, sometimes improves simulating the large amount events; 

however, this approach has been used infrequently. Other weather variables often 
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simulated are daily high and low temperatures and solar radiation. These variables are 

often conditioned on whether or not precipitation occurred. Temperature variables are 

often modeled using a normal distribution, but other distributions have also been used. 

Parameters for all the weather variables are typically determined for each month, but 

not always.  

In a semi-arid climate in southern Arizona where rainfall patterns exhibited a 

large amount of spatial and temporal variability, Hsieh, Stone, Guertin, and Slack (2003) 

found that using semi-monthly rather than monthly periods to determine the wet day and 

dry day Markov chain transition probabilities was more appropriate. To address the 

spatial variability throughout the watershed of rain events, the authors incorporated an 

interesting approach. On wet days, a spatial distribution model was used to determine 

location of storm center, rainfall depth at center, size and shape of storm, and a 

calculation of rainfall depth throughout the storm area based on the depth at the center. 

Simulating this kind of spatial variability of rainfall events may be important in distributed 

hydrologic modeling, especially in semi-arid climates, but horizontal spatial variability of 

weather is not commonly incorporated into forest models. One general problem with 

weather generators is that the interannual variability of the simulated weather tends to 

be smaller than in the real observed weather data.  

Most models do not take into account strings of consecutive wet or dry years 

(Srikanthan & McMahon, 2001). One approach to incorporate interannual variation is to 

use a two-stage model similar to daily rainfall generation with the first stage being a 

Markov chain determining if each given year is wet or dry. The second stage determines 

the total annual rainfall from a normal distribution with a different mean depending on if 
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the year is wet or dry. To incorporate interannual variation with this kind of approach 

into a daily rainfall generator, the daily model has to be coupled with the annual model. 

Another general problem for daily rainfall generators is that when the synthetic daily 

amounts are summed into monthly and annual totals, these totals often do not preserve 

the statistical properties of the real world monthly and annual totals (Piantadosi, Boland, 

& Howlett 2009; Srikanthan & McMahon, 2001; Wang & Nathan, 2007). Wang and 

Nathan (2007) proposed a model that produced two time series, one at the daily scale 

and the other at the monthly scale, with each preserving the statistical real world 

properties of their respective scales. The daily time series was then adjusted to fit the 

monthly time series. This produced results that matched the data well at the daily and 

monthly time scales, and preserved some of the annual statistical properties. Piantadosi 

et al. (2009) proposed an approach that coupled all three timescales. Annual rainfall 

total was first generated using one of two normal distributions depending on if the year 

was wet or dry. For each year, many monthly total time series were generated, and the 

monthly time series that best matched the annual total generated was chosen. A similar 

process was then incorporated at the daily timescale, with many daily time series being 

generated for each month, and the one that matched the monthly total best was chosen. 

This method, while a bit convoluted and computationally costly, produced results that 

matched statistically across all three timescales 

Cross Timbers as a Case Study 

Using the Cross Timbers ecoregion as a case study for FACETA is a somewhat 

natural choice as the University of North Texas campus and much of the City of Denton 

are located within it. Conditions in the Cross Timbers are also ideal for testing FACETA, 
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the intent of which is to predict how hydrology, soil, and topography impact forest 

growth. While often thought of as a post oak forest, the Cross Timbers ecoregion is a 

mix of post oak forests, woodlands and savannas, bottomland hardwood forests, and 

patches of prairie (Francaviglia, 2000). Positioned between the temperate deciduous 

forest and humid climate of the East and the tall grass prairies and semiarid climate of 

the Midwest, the Cross Timbers is a transition zone between the two. It has long been 

recognized that the underlying geology and subsequent soil that develops from it plays 

a critical role in the development of either post oak forests or prairies, and topography is 

the driver between bottomland hardwood forest and upland forest or prairie. Robert Hill 

(1887), sometimes referred to as the father of Texas geology, documented in an early 

description of the Cross Timbers within Texas how closely the vegetation patterns were 

linked to the geology and topography. The Greenbelt, a protected area of land located 

within the Cross Timbers, is the site of a number of research studies by faculty and 

students from the University of North Texas and is at the center of the landscape used 

in this case study. In a phytosociological description of the Greenbelt, tree surveys were 

conducted in 128 plots, and forest composition was analyzed (Barry & Kroll, 1999). In a 

study on avian communities, Barry (2000) conducted tree surveys, forest structure and 

composition analysis, and habitat evaluations in 62 plots. In an historical and ecological 

examination of the area, Holcomb (2001) included a characterization of the forest and 

parameterized the gap model ZELIG for parts of the Greenbelt. Komperad (2009) 

conducted a study examining relationships between climate and flooding and tree 

growth, which included tree ring analysis of numerous green ash (Fraxinus 

pennsylvanica) trees from the Greenbelt. Rijal (2011) examined the relationship 
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between forest composition, soil, and topography through the analysis of tree surveys 

and 2-m deep soil cores from 30 plots located at different topographic positions within 

the Greenbelt. Soil moisture data at various locations and soil depths and weather data 

were collected in the Greenbelt as part of the ongoing Texas Environmental 

Observatory project (Texas Environmental Observatory, 2012). Vegetation and soil data 

from the Greenbelt from these previous studies are valuable resources in estimating 

and calibrating parameters and validating FACETA results. 
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CHAPTER 3 

METHODOLOGICAL OVERVIEW 

The underlying research objective is to develop a method of extending the plot-

scale forest gap model FACETA to a watershed-scaled landscape. This objective acts 

as an umbrella to a number of finer but interesting objectives that branch into a few 

distinct directions, for example topography and hydrology, silvics, and weather 

simulation. A brief overview of the methodological approach used in some of these 

different objectives is provided here. Specific methods pertaining to each of these 

branches are discussed in the subsequent chapters covering them. 

Defining the study area to be modeled was the first step necessary. For this 

research, a nearby state park containing a relatively large area of bottomland forest 

within a floodplain, as well as small areas of upland forest and grassland, offered a 

good starting point. As the modeled study area covered a hydrologically based 

landscape, watershed delineation was performed to define the boundary of the 

watershed containing the state park. This watershed defined the study area landscape. 

The watershed delineation as well as all the topographical and hydrological analysis 

was done using digital elevation models (DEMs) and geographic information systems 

(GIS). GIS was also used for soil type mapping, delineation of terrain types, and for 

visual analysis of aerial photographs and other remote sensing data. Each of the 

different parts of this research started with a review of existing literature and of previous 

approaches taken. The range of topics covered and knowledge needed to achieve the 

research objectives was quite broad; therefore, gathering information and applying 

ideas from previous research and approaches was an important component to the 
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methodologies behind them all. The idea of applying a particular topographic index as a 

hydrological input to a forest gap model came out of the review of literature, mostly in 

the context of hydrological and soil modeling. A review of literature revealed some 

examples of such topographic indices being used in plant studies and within the context 

of applying a forest gap model, but not as a hydrological input to a gap model. With the 

idea planted to try to implement a topographical index as an input to represent 

hydrology in a scaled-up gap model, the remaining pieces of the research included 

defining landscape terrain types for the gap model, incorporating necessary model 

changes, and estimating model parameters. The methods used in defining the 

landscape terrain types primarily involve GIS. For the topographic component of 

defining terrain types, digital elevation data were obtained from two sources and with 

multiple grid resolutions, and were then processed using different algorithms. 

Delineating the soil type component of the terrain types was also done using GIS and 

the digital version of the USDA soil survey. Both a review of the historical vegetation of 

the Cross Timbers ecoregion as well as tree surveys conducted within the study area 

were used in determining the tree species to be included in the model. Determining 

values for all of the biological model parameters started with a survey of published 

information, but silvics information can be quite variable and is often more qualitative 

than quantitative. Therefore, measurements on local trees were included as much as 

possible in estimating these parameters. Parameters involving tree geometry were 

determined exclusively from local measurements, and growth rate parameters were 

estimated using a combination of local measurements and published information that 

was largely qualitative. Some of the biological parameters such as tolerances to drought 
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or flooding were difficult to measure for, and for those it became necessary to 

extrapolate model parameters from qualitative descriptions. Required environmental 

model parameters included ones for soil conditions and for weather simulation. Soil 

parameters were determined using two methods. In one method, parameters were 

estimated from the soil series descriptions in the USDA soil survey. This was done for 

all of the soil series included in the model. For some of the soil series, model 

parameters were also estimated from soil samples taken from the Greenbelt and 

analyzed. Weather parameters were determined using statistical techniques applied to 

an approximate 100-year record of daily weather. FACETA simulation was performed 

on selected terrain types that were representative of the range of different soil and 

topographic conditions found within the study area. 

Each of the subsequent chapters covers a thematically grouped set of objectives, 

with the methodologies and results for each group of objectives included within the 

chapter. The process of defining the landscape terrain types through a combination of 

soil and topographic position is described in Chapter 4. Chapter 5 discusses the 

measurements and estimates of FACETA biological parameters. Environmental 

parameters for FACETA, which include weather, soil and topographic parameters, are 

covered in Chapter 6. Chapters 7 and 8 discuss the model results and final research 

conclusions, respectively. A description of the study area is provided before going into 

each of these chapters. 

The study area used for terrain analysis and application of the forest model 

FACETA was the Ray Roberts Lake and Lake Lewisville Greenbelt Corridor in Denton 

County, TX, referred to from here on simply as the Greenbelt. The Greenbelt was a 
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state park, part of the Texas Parks and Wildlife system, located within a watershed of 

the Elm Fork Trinity River, which flowed from Ray Roberts Lake to Lake Lewisville. For 

the purposes of determining the relevant landscape factors and defining terrain types, 

the study area was extended to the entire watershed; however, parameterization and 

simulation of FACETA was limited to the Greenbelt (Fig. 3-1). 

 
Figure 3.1. The study area location. The Greenbelt runs along the Elm Fork Trinity River from the Lake 
Ray Roberts dam to the headwaters of Lake Lewisville. Landscape factors and terrain types for FACETA 
are determined from the Elm Fork Trinity watershed; however, FACETA simulation is limited to terrain 
types found within the Greenbelt. 
 

Denton County lies within the Prairie Parkland subtropical ecological province, an 

area composed of a mix of prairies and savannas (Fig. 3.2; Bailey, 1995). Low rainfall 

and probably wildfire historically have kept the natural vegetation in this province 

dominated by grasses and a few drought tolerant tree species, with soil being a key 
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factor in vegetation distribution. Fine textured soils have supported grasslands while 

savannas and woodlands have developed on coarser soils. 

 
Figure 3.2. Denton County within its ecological province. Denton County and the study area watershed lie 
within the Subtropical Prairie and Parkland Ecological Province, a grassland-forest transition area. 
Provinces make up Level II in the Environmental Protection Agency’s (EPA) hierarchy in the ecological 
classification of different regions. The Prairie Parkland province contains a mix of prairies and savannas. 
The ecoregion base map is from the EPA (Griffith et al., 2004). 
 

The western portion of Denton County lay in the ecological subregion known as 

the Cross Timbers and Prairies, which contained a mixture of prairies and upland oak 

woodlands and savannas (Fig. 3.3). The eastern side of the county lay in the Texas 

Blackland Prairie ecological subregion. Under the EPA ecoregion hierarchy scheme, 

these two ecoregions were designated as Level III ecoregions.  
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Figure 3.3. Denton County within its level III ecoregions. At the Level III Ecoregion scale, Denton County 
is split between the Cross Timbers and Prairies ecoregion and the Texas Blackland Prairies ecoregion. 
Grasslands historically dominated the Texas Blackland Prairies vegetation, and the Cross Timbers and 
Prairies was a mix of grasslands and post oak dominated woodlands and savannas. These two 
ecoregions are a part of the Prairie and Parkland ecological province. The ecoregion base map is from 
the EPA (Griffith et al., 2004). 
 

At Level IV of the ecological classification hierarchy, the western half of the 

county was in the Grand Prairie subregion of the Cross Timbers and Prairies, and a 

strip down the middle of the county ranging from 10 to 20 km wide belonged to the 

Eastern Cross Timbers subregion (Fig. 3.4; Griffith et al., 2004). Three natural 

vegetation types found in the county were tallgrass prairies, upland oak woodlands, and 

bottomland hardwood forest. The Cross Timbers have been often described as a post 

oak savanna ecosystem, and the original character likely was a mosaic of savannas, 

grasslands, oak thickets, and dense woodlands shaped by frequent fires on a 

landscape having a combination of fire-prone topographic features and natural fire 

barriers (Engle, 1997). At the time of this study, few undisturbed large tracts of Eastern 
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Cross Timbers vegetation remained, and more suitable land had been cleared for 

pasture, cropland, and in recent decades rapid development. This together with wildfire 

suppression have resulted in the remaining natural wooded Cross Timbers vegetation in 

Denton County to be small and more like oak thickets or dense woodlands than open 

savannas. The upland areas of the Grand Prairie ecoregion part of Denton County have 

been characterized as naturally developing into grasslands and having deep, dark 

clayey soils overlying calcareous clay, marl, and limestone (Ford & Pauls, 1980). 

 

 
Figure 3.4. The study area within Texas ecoregions. The Greenbelt lies within the Eastern Cross Timbers 
Level IV ecoregion. While primarily a floodplain of the Elm Fork Trinity River, bottomland hardwood forest, 
wet shrubland, upland oak forest, and upland prairie vegetation types can all be found within the 
Greenbelt. The study area watershed is within both the Grand Prairie and Eastern Cross Timbers 
ecoregions. The ecoregion base map is from the Environmental Protection Agency (Griffith et al., 2004). 
 
Topography was mostly level with some moderately steep slopes. The Cross Timbers 

ecoregion consisted of upland areas having deep sandy loam to shallow, rocky, sandy 

loam soils with clayey lower layers and sandstone bedrock. The topography was rolling 
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with some steep slopes. Bottomland hardwood forests occurred along the floodplains of 

rivers and creeks with soils of deep clay or silty clay to sandy loam, with nearly level 

topography.  

The study area watershed was over 28,000 ha lying within the Grand Prairie and 

Eastern Cross Timber ecoregions. The Greenbelt was just under 2000 ha and was 

contained within the Eastern Cross Timbers; however, all three vegetation types were 

present. Much of the Greenbelt was within the floodplain of the Elm Fork Trinity River, 

and approximately 500 ha of it consisted of bottomland hardwood forest (Barry, 2000). 

While much smaller in area, the Greenbelt also contained areas of upland oak forest 

and upland prairie. Most of the remaining Greenbelt consisted of frequently flooded 

shrubland used as part of the flood control pool for Lake Lewisville and an old-field that 

was converting back to either forest or prairie. Not long ago much of the Greenbelt was 

privately owned and was used for grazing and crops. In the 1980s, prior to the 

construction of Ray Roberts Lake, the U.S. Army Corps of Engineers began purchasing 

the land to manage lake levels and flood control for Ray Roberts and Lewisville Lakes. 

At the time of this study, the Texas Parks and Wildlife Department managed the land, 

and the areas once used for agriculture were returning to a natural vegetation cover. In 

addition to flood control, the Greenbelt was used for recreation such as canoeing and 

trails for walking, bicycling, and horseback riding. Some parts of the Greenbelt were still 

grazed by cattle coming from adjacent private land. 
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CHAPTER 4 

LANDSCAPE TERRAIN TYPES 

A primary objective of this research was to develop a method of partitioning the 

study area into smaller terrain type units that were suitable for FACETA 

parameterization and simulation. Topographic parameters for slope and upstream 

catchment area were added to FACETA to incorporate the effects of the flow of water 

across the landscape onto simulated plots. This movement of water, together with soil 

conditions that influenced the storage of water, differentiated upland positions from 

hardwood forest development in the bottomland positions. The most important factor for 

differences in vegetation types within the upland areas of the Cross Timbers and 

Prairies ecoregion was the soil type. Oak woodlands or savannas were found on sandy 

upland sites, while grasslands occur on clayey upland soils. Therefore, the terrain 

features considered for partitioning the landscape were topographic position, 

represented by upstream catchment area and slope, and soil type. 

Methods: Soils and Terrain Types 

A soil survey of Denton County, TX, provided by the U.S. Department of 

Agriculture’s Soil Conservation Service, together with its current electronic version 

available from the Natural Resources Conservation Service (NRCS), formed the basis 

of soil information in the study area (Ford & Pauls, 1980; NRCS, 2006). The system 

used to classify soils had six hierarchical categories. Soil order was the broadest 

category, which differentiated the dominant soil formation processes and the degree of 

formation. Soil series, which consisted of soils having similar soil horizons in their 

profile, was the finest category. Since FACETA required soil parameters for depth, 
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fertility, infiltration rates, and hydraulic properties, the soil series classification level was 

used to differentiate between soil types in the study area. The soil survey map was used 

in defining terrain type boundaries within the study area. Denton County soil data were 

prepared from an Order II soil survey and mapped at a scale of 1:24000. Using this 

level of soil survey data to derive hydraulic properties for hydrological modeling may 

have produced unrealistic soil moisture pattern results (Lin et al., 2006). Therefore, 

some locations within the study area were parameterized using higher fidelity soil core 

data collected from within the Greenbelt. Soil core data were collected from different 

topographic and soil conditions within the Greenbelt in a study by Rijal (2011) which 

looked at relationships between topography, soil, and forest development. Both the 

derived soil parameters and model results for the high fidelity plots were compared with 

the corresponding information derived from the Denton County soil survey. Soil model 

parameters are discussed in Chapter 6. 

Results: Soils and Terrain Types 

There were 44 different soil map types within the study area watershed (Fig. 4.1). 

Soil map type as used here was not the same as a soil series. While most map types in 

the Denton County soil survey represented a single soil series, some map types were 

complexes of two or more soil series contained within an area too small for the scale of 

the soil survey map to represent individually. For example, a soil map polygon labeled 

as Birome-Aubrey-Rayex complex may have consisted of soils classified in all three of 

these soil series. Other map types were associations of two or more soil series, where 

the soils were grouped together because the present or anticipated land use made it 

impractical or unnecessary to map them separately. Still other map types were 
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undifferentiated groups of two or more soil series that were not separated because the 

soil properties for the anticipated land use were considered similar enough not to 

require separation. Other map types, such as water and arents, did not represent a soil 

series at all.   

 
Figure 4.1. Soils of the study area sub-watershed. There were 44 soil map types indicated in the study 
area, but some such as Arents (colored red) and water (blue) do not represent a soil series. The urban 
land complexes (gray) were soils with substantial urban development and were not appropriate terrain for 
FACETA simulation. The soil base map was from the NRCS (2006). 
 
Arents were soils that had been deeply disturbed by plowing, mining, or other human 

activity, and thereby were variable in physical characteristics and did not possess a 

diagnostic horizon. A more descriptive name used by some is anthroposols, but arents 

is the official term used in the U.S. soil taxonomic system. Arents found within the 

Greenbelt were primarily former sand and gravel pits. There were also soil map types 
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classified as urban land complexes. These areas comprised one or more soil series that 

had a concentration of human development on the surface. At its most detailed level, 

the Denton County soil survey partitioned these soil map type polygons into smaller 

polygons defined by a combination of a map type and a range of slopes. For example, a 

map unit labeled Altoga silty clay, 5% to 8% slopes consisted of soils classified in the 

Altoga series with surface slopes ranging from 5% to 8%. The Altoga series was also 

grouped into other slope ranges of 3% to 5% and 5% to 12%. For this study, all soils of 

the same type were grouped together, regardless of the slope range. The reasons for 

this were twofold: (a) The detail level needed to parameterize the FACETA soil survey 

did not give any different information about the soil types in different slope ranges, and 

(b) slope was already used in FACETA as a topographic parameter that was 

determined from digital elevation data. 

In this research, FACETA simulations were limited to terrain types found within 

the Greenbelt, so those soils found within its boundaries were given focus. The 

Greenbelt contained 21 different soil map types, including water, Arents, an 

undifferentiated group, and a soil complex (Fig. 4.2). Areas of water and arents were not 

considered for FACETA simulation. Areas identified as arents within the Greenbelt were 

in fact becoming reforested; however, the Denton County soil survey did not have any 

soil property information for these areas, so it was not possible to determine FACETA 

parameters from it. 

Soil complexes, associations, and undifferentiated groups contained mixtures of 

soil series, and each generated different FACETA parameters if considered separately. 

In this case, that was determined to be unnecessary.  
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Figure 4.2. Soil types of the Greenbelt corridor. Soil types were identified using the USDA soil survey. 
Identified categories within the Greenbelt corridor included 21 soil map types, including water. Water and 
Arents were omitted, the Gasil and Konsil group was lumped together with Gasil, and the Birome-Rayex-
Aubrey Complex was parameterized as Rayex, leaving 18 soil types for FACET simulation. The soil base 
map was from the NRCS (2006). 
  

The Greenbelt contained one small, approximately 3.5-ha area of the Gasil and 

Konsil soils undifferentiated group. In general, soils belonging to an undifferentiated 

group had similar properties. This particular area of Gasil and Konsil soils was adjacent 

to and downslope of a larger area of Gasil soils and was not adjacent to any Konsil 

soils; therefore, it was lumped with and parameterized as Gasil. No other areas of only 

Konsil soils occurred within the Greenbelt. The soil complex found within the Greenbelt 

was Birome-Rayex-Aubrey. This complex was described as typically being composed of 

roughly equal parts of each of the three soil series, with the soils so intricately mixed 

making separation impractical at the scale mapped. They occurred on sandstone 

outcrops with Rayex developing on convex benches, with Aubrey forming above and 
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Birome forming below the Rayex. Rayex was rockier than either Birome or Aubrey and 

was shallow, while Birome and Aubrey were both moderately deep. The largest Birome-

Rayex-Aubrey polygon within the Greenbelt was in a sandstone hill area locally referred 

to as Wildcat Hill. Much of this hill area was quite rocky. As part of a soil-forest survey 

done in 2007, an attempt to sample a soil core using an auger was made at several 

different spots on the top of Wildcat Hill, but due to the amount rocks in the soil, no core 

was removed. Within this same soil map polygon but on the slope towards the bottom of 

Wildcat Hill, a soil core was successfully removed. At this site, the soil was much less 

rocky and deeper, with gravel appearing at about 1.5 m depth. Of the three soil series, 

the area on the top of the hill best fit the description of Rayex, while on the slope where 

a core was removed the soil was more like Birome. There were several other polygons 

of Birome-Rayex-Aubrey complex within the Greenbelt, but they were all much smaller 

and were not field surveyed for this research. Because of the seemingly rocky and 

shallow nature of much of the largest polygon, the entire complex was treated as Rayex 

soils. However, as seen in the differences between the soil on top of Wildcat Hill and 

towards the bottom of its slope, there was no doubt that areas within these Birome-

Rayex-Aubrey complex polygons would more appropriately be treated as Birome or 

Aubrey. There were no polygons of pure Rayex or Aubrey soils within the Greenbelt, but 

there were some small areas of Birome soils. With this reassignment of the complex, 

two of the three soil series in the complex were still simulated in FACETA. The 

reassignments resulted in 18 soil series for which FACETA parameters were 

determined. 
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A large majority of the Greenbelt was covered with bottomland soils; however, 

the 18 soil series selected for FACETA parameterization represented the range of 

different soil types and associated vegetation covers found throughout the study area 

watershed. Together they made up approximately 55% of the total area of the 

watershed, and they included the soils of its larger floodplains as well as several upland 

post oak, savanna, and prairie grassland soil types (Fig. 4.3).  

 
Figure 4.3. Soils of the Greenbelt. The 18 soil types selected for FACETA parameterization covered 
approximately 55% of the study area sub-watershed and were a good representation of all the different 
soil types it contains. The soil base map was from the NRCS, (2006).  
 

A question that arose at this point was why parameterize a forest model for soil 

and topographic characteristics that in the real world were associated with prairie 

grasslands. Historically fire plays a large role on maintaining the prairie grasslands, and 
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in the absence of fire, the grasslands start to be taken over by certain tree species. 

Additionally, FACETA is not programmed to simulate grasses, only trees. If 

parameterized correctly, then FACETA simulations on these prairie terrain types should 

result in forests filled with small trees of species that are both drought tolerant and 

tolerant to clay soils. Some of the general properties of the soil series modeled in the 

Greenbelt are summarized in Table 4.1. Details of the FACETA parameters estimated 

from both the soil types described in the county soil survey as well as from the 

measurements made on soil cores sampled from the Greenbelt are discussed in the 

section on FACETA soil parameters in Chapter 6. 

The digital version of the USDA’s soil survey map for Denton County was used to 

delineate the soil component of the FACETA terrain types (USDA, 2010). With over 40 

different USDA soil types found within the study area watershed, FACETA terrain type 

definition was limited to the 21 soil map units found within the Greenbelt. Most of these 

soil map units represented a single soil series, and the two map units that included 

groups of soil series were each interpreted to be one of the soil series in the group 

based on context of their locations within the Greenbelt. The two non-soil series map 

units, arents and water, were removed from the soil component of the FACETA terrain 

type map. With the restrictions, reassignments, and removals, 18 different USDA soil 

series were used in defining terrain types and estimating model parameters. These 18 

soil series together made up approximately 55% of the study area watershed and fully 

represented soils associated with all three of the Cross Timbers vegetation cover types–

sandy upland post oak woodlands, clayey upland grasslands, and alluvial soils that 

produced bottomland hardwood forests. 
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Table 4.1 
Characteristics of Soils in the Greenbelt 

Soil Series General 
Description Topography Ecological Site Name; Historic 

Climax Plant Community 
Altoga silty 
clay (Al) 

Deep soils on 
upland 
prairies  

Sloping to strongly sloping, on 
old, high terraces of major 
streams 

CLAY LOAM 28-40’’ PZ; Fire-
influence tallgrass prairie 
sparsely interspersed with pecan, 
hackberry, elm, oak, sumac 

Bastrop 
fine sandy 
loam (Ba) 

Deep loamy 
soils on 
upland 
savannas 

Gently sloping, on high stream 
terraces above flood plains of 
major streams 

SANDY LOAM 32-40’’ PZ; Post 
oak, blackjack oak savanna 

Birome fine 
sandy loam 
(Bi) 

Moderately 
deep soils on 
upland 
savannas  

Gently sloping, on convex ridges 
and lower side slopes 

SANDY LOAM 32-40’’ PZ; Post 
oak, blackjack oak savanna 

Bunyan 
fine sandy 
loam (Bun) 

Deep soils on 
bottomlands  

Nearly level, on narrow 
floodplains of streams draining 
sandy and loamy soils 

LOAMY BOTTOMLAND 32-40’’ 
PZ; No plant community data 
available 

Burleson 
clay (Bur) 

Deep soils on 
upland 
prairies 

Nearly level to gently sloping, on 
ancient upland terraces, edges 
of terraces and valley fills 

BLACKLAND 28-40’’ PZ; Fire-
influence tallgrass prairie 
interspersed with occasional 
forbs and woody species 

Callisburg 
fine sandy 
loam (Ca) 

Deep soils on 
upland 
savannas  

Gently sloping, on sides of 
ridges, foot slopes and valley 
fills of uplands 

SANDY LOAM 32-40’’ PZ; Post 
oak, blackjack oak savanna 

Frio silty 
clay (Fr) 

Deep soils on 
bottomlands  

Nearly level, on floodplains of 
major streams 

LOAMY BOTTOMLAND 30-38’’ 
PZ; Fire-influenced tallgrass 
prairie with few shrubs and trees 

Gasil fine 
sandy loam 
(Ga)  
 
Gowen clay 
loam (Go) 
 
 
Kaufman 
clay (Ka) 
 

Deep soils on 
upland 
savannas  
 
Deep soils on 
bottomlands 
 
 
Deep soils on 
bottomlands 

Gently sloping to sloping, on 
convex ridges and side slopes  
 
 
Nearly level, on floodplains of 
major streams 
 
 
Gently sloping, on plane to 
convex high terraces of major 
streams 

SANDY LOAM 32-40’’ PZ; Post 
oak, blackjack oak savanna  
 
 
LOAMY BOTTOMLAND 30-38’’ 
PZ; Fire-influenced tallgrass 
prairie with few shrubs and trees 
 
CLAY LOAM 30-38” PZ; Fire-
influenced tallgrass prairie with 
very few shrubs and trees 

 
(table continues) 
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Table 4.1 (continued) 

Soil Series General 
Description Topography Ecological Site Name; Historic 

Climax Plant Community 
Lewisville 
clay loam 
(Le) 

Deep soils on 
upland 
prairies  

Nearly level, on outer edges of 
floodplains of major streams 
draining from clayey areas 

CLAYEY BOTTOMLAND 28-40’’ 
PZ; Fire-influenced 
tallgrass/hardwood savanna 
interspersed with occasional 
forbs, dense woodlands in the 
absence of fire 

Navo clay 
loam (Na) 
 

Deep soils on 
upland 
prairies 

Nearly level to gently sloping, in 
valley fills, terraces, and on side 
slopes along and above drains 
and low hills 

CLAYPAN PRAIRIE 28-40" PZ; 
Fire-influence tallgrass prairie 
interspersed with occasional 
forbs and woody species 

Ovan clay 
(Ov) 
 

Deep soils on 
bottomlands 

Nearly level, on floodplains of 
major streams 

CLAYEY BOTTOMLAND 28-40’’ 
PZ; Fire-influenced 
tallgrass/hardwood savanna 
interspersed with occasional 
forbs, dense woodlands in the 
absence of fire 

Rayex fine 
sandy loam 

Shallow soils 
on upland 
savannas  

Gently sloping to moderately 
steep, on convex benches of 
sandstone outcrops 

SANDSTONE HILL 32-40’’; 
Savanna 

Silawa 
loamy fine 
sand (Sila) 

Deep soils on 
upland 
savannas  

Gently sloping, on high convex 
ridges 

LOAMY SAND 32-40" PZ; Post 
oak, blackjack oak savanna 

Silstid 
loamy fine 
sand (Sils) 

Deep soils on 
upland 
savannas 

Gently sloping, on gently 
undulating ridges and sides of 
ridges 

SANDY 32-40" PZ; Post oak, 
blackjack oak savanna 

Trinity clay 
(Tr) 
 

Deep soils on 
bottomlands 

Nearly level, on low floodplains 
of major streams 

CLAYEY BOTTOMLAND 28-40’’ 
PZ; Fire-influenced 
tallgrass/hardwood savanna 
interspersed with occasional 
forbs, dense woodlands in the 
absence of fire 

Wilson clay 
loam (Wi) 

Deep soils on 
upland 
prairies 

Nearly level to gently sloping, on 
low part of landscape along 
drainage ways, in concave 
areas and side slopes 

CLAYPAN PRAIRIE 28-40" PZ; 
Fire-influence tallgrass prairie 
interspersed with occasional 
forbs and woody species 

Note. The table is derived from the hardcopy soil survey (Ford & Pauls, 1980), the Soil Survey 
Geographic database SSURGO (NRCS, 2010) and the Web Soil Survey (NRCS, 2012). The “ecological 
site” classification system has replaced the “range site” system used in the 1980 soil survey. Ecological 
site descriptions are not all complete (e.g., LOAMY BOTTOMLAND 32-40’’ PZ, SANDSTONE HILL 32-
40’’ PZ), and information on them differs some between the various soil survey resources. Ecological 
sites are defined by soil and physical characteristics that produce distinctive vegetation patterns and 
disturbance responses. Vegetation patterns are thought of as dynamic with various states and transitions 
between them. In contrast, the range site system characterized sites as a single climax vegetation 
community with a focus on grazing. Ecological site names are formal, and in the case of Texas, the 
naming format includes a soil description and annual precipitation range (“PZ” stands for precipitation 
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zone). The 2- to 4-letter abbreviations in parentheses after the soil series names are used to identify soil 
series in the graph in Fig. 4.40. 
 

Methods: Topographic Position and Terrain Types 

Topographic position was the second component of defining terrain types for 

FACETA. The topographic parameters used by FACETA were elevation, aspect, slope, 

and flow accumulation. Flow accumulation, a geographic information systems (GIS) 

calculation that counts the number of upstream cells in a raster elevation map that 

drains onto a cell, was used to calculate the upslope contributing area. Specific 

catchment area was a topographic measurement defined to be the area of land upslope 

of a width of a contour line, divided by that contour width. With digital elevation data in a 

raster format of grid cells rather than contour lines, the specific catchment area for any 

one cell was calculated as its upslope contributing area divided by the width of the grid 

cell. Flow accumulation was dependent on the flow direction output, and subsequently 

the specific catchment area depended on flow direction. Therefore, the results for 

specific catchment area and the topographic wetness index (TWI) were dependent on 

the choice of algorithm used to determine the flow direction. A digital elevation model 

(DEM) was a GIS-ready digital grid of cells representing the topography of an area of 

land, with the value assigned to each cell representing the elevation at the center of the 

cell. DEMs determine values for slope, aspect, flow accumulation, and many other 

topographic parameters. This section discusses how DEMs of the study area were used 

to determine the topographic characteristics that, together with soil types, defined the 

landscape terrain types. Determining the parameter values for the terrain types used in 

the forest model is discussed in Chapter 6 in the section on FACETA landscape and 

terrain parameters. 
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Elevation can impact floristic composition through its effect on temperature and 

rainfall, and impacts can be dramatic in mountainous terrain. In this study area, the 

highest and lowest points were 247 m and 155 m above sea level, respectively. With a 

total difference of less than 100 m, elevation was not considered a factor in species 

composition within the study area, and therefore was not used in the determination of 

terrain types. Aspect can play an important role in species composition in hilly terrains 

where differences in aspect lead to differences in insulation, shading, or rainfall. 

However, the terrain of much of the study area was generally flat, and it was located at 

approximately 33.2º N latitude, which was not high enough for aspect to become a large 

factor in insulation. Thus, for this research aspect was not assumed to have a significant 

effect on species composition and therefore was not considered in terrain type 

definition. Both topographic parameters were still required as input for FACETA, but 

they remained constant for the simulation of all terrain types.  

The two other topographic parameters required by FACETA were slope and flow 

accumulation. One possible approach to partitioning the landscape into terrain types 

that used both of these topographic parameters was to use combinations of different 

slope classes, flow accumulation classes, and soil types. Using this approach for the 

Greenbelt, with the landscape partitioned into only three slope classes and three flow 

accumulation classes, would result in possibly as many as 3 x 3 x 18 = 162 different 

terrain types. In addition to the large number of terrain types the three factors yielded, 

there were problems using flow accumulation to categorize the landscape. Flow 

accumulation by itself and likewise specific catchment area would work well for 

delineating stream networks but not so well for predicting soil moisture patterns. 
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Different versions of TWI, which combined some quantification of run-on potential 

together with accumulation or runoff potential, correlate with soil moisture and 

vegetation patterns, albeit with varying strengths depending on the landscape, elevation 

data, topographic index, and the computer algorithm used to generate it. The approach 

taken in this research used TWI together with the soil series to partition the landscape 

into different terrain types.  

Results: Topographic Position and Terrain Types 

Topographic terrain analysis using GIS was a multi-step process that started with 

a DEM. A DEM could be derived from a variety of sources such as aerial photographs, 

contour maps, and light detection and ranging (LiDAR). Regardless of what kind of 

terrain analysis was to be done on a DEM, there were some initial processing steps 

required. Once the DEM was processed, it could be analyzed for slope, flow 

accumulation, or any other topographic feature or measurement. In this research, the 

final product of the terrain analysis was TWI. The results of the topographic terrain 

analysis are described for each of the steps of DEM processing. 

Digital Elevation Model  

All topographic analysis starts with a base DEM. Both the source data for 

deriving a DEM and the grid resolution can impact the accuracy and the output from the 

calculations of topographic indices. This research examined DEMs with three different 

grid resolutions, derived from two different sources. Two DEMs, a national elevation 

dataset (NED) 1 arc second and a NED 1/3 arc second, were downloaded from the 

United States Geological Survey (USGS, n.d.) National Map Seamless Data Distribution 
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System. Both were derived from cartographic contours. The seamless system was 

retired in July 2012, and the NED was transferred to the National Map Viewer system.  

The NED is assembled by the USGS from a variety of source DEMs and is 

updated on a bimonthly basis. At each update cycle, the best available DEMS are 

pieced together to obtain national coverage, where best available is described as being 

the most detailed and current data that can be freely distributed. The grid size in meters 

is a little less than 29 m for the 1 arc second and 10 m for the 1/3 arc second DEMs, 

respectively. Vertical accuracy is required to be within +/- 7 to 15 meters for the 29-m 

DEM, and +/- 7 meters for the 10-m DEM; however, the actual accuracy varies with the 

source DEM (USGS, n.d.). While the 10-m DEM has better vertical accuracy 

specifications than the 29-m DEM, it is not clear how much more accurate, if at all, it is. 

When comparing the two sources, more than 90% of the cells differ by less than 1 

meter, the median difference is approximately 13 cm, and the mean difference is just 

under 29 cm. Additionally, it must be kept in mind that elevation can change over a 30-

m horizontal distance, or even over a 10-m distance, so it is difficult to say just exactly 

what vertical accuracy means. 

LiDAR-derived DEMs have yielded better results regardless of grid resolution 

(Vaze et al., 2010). Three LiDAR-derived DEMs were examined and compared to those 

derived from cartographic contours. All three DEMs were derived from the same LiDAR 

dataset, but with different grid resolutions: approximately 29 m, 10 m, and 5 m. The 

exact grid resolutions for all of these DEMs, both the LiDAR-derived and the 

contour-derived ones from the NED, were actually a little smaller than the rounded 

whole numbers just stated. For example, the grid resolution for the NED 29-m DEM was 
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actually 28.75 m, and it was 28.79 m for the LiDAR-derived DEM. The grid resolutions 

of the two DEMs from the NED were already set in the downloaded product. For 

simplicity, the resolutions were referred to by the rounded up whole numbers. The grid 

resolutions of the 10-m and 29-m LiDAR-derived DEMs were set to match the two 

corresponding contour derived resolutions; however, the final grid sizes differed slightly. 

With differences of less than 1%, further resampling to force the grid sizes to match 

exactly was determined unnecessary. The point spacing of this LiDAR data, where point 

spacing was the average horizontal resolution of the LiDAR data points, was between 

0.5 m and 1 m. The grid resolution used in relationship to the LiDAR point spacing was 

important. If the cell size were too small, there would be cells containing no measured 

elevation points resulting in holes of missing data within the DEM. This could potentially 

be rectified through interpolation, but that would introduce more uncertainty and error. 

However, larger grid sizes may contain multiple measured elevation points, with the 

number of points increasing with cell size, and the result would be a loss of detail 

through the averaging of those multiple points. A good guideline followed for minimum 

grid size when converting LiDAR data to a DEM was multiplying the cell width by four 

times the point spacing. Since portions of the LiDAR dataset used had an average point 

spacing of 1 m, the grid size should have been no smaller than 4 m by that guideline.  

Vertical accuracy of 1 m LiDAR data is typically within 10 cm; however, once the 

LiDAR data are converted to the grid format of a DEM, accuracy can again become 

questionable. Elevation can change by more than 10 cm over even small horizontal 

distances. While it may seem on the surface obvious that a finer grid resolution would 

yield better results, this may not always be the case. For some applications, a coarser 

72 



resolution may perform better (Zhang et al., 2009). The most appropriate grid resolution 

depends on the complexity of the topography and the spatial scale of the processes of 

interest. Another issue related to grid resolution is resampling. Resampling refers to the 

process of creating a new grid from an existing one, often to increase or decrease the 

grid resolution or when performing map algebra with two grids. There are multiple 

methods for resampling grid data; e.g., nearest neighbor or bilinear interpolation. In the 

case of continuous data such as elevation, some resampling methods result in a 

smoother surface while others reveal artifacts such as periodic lines. Resampling was 

required in this research for converting LiDAR point data into an elevation grid. A 10-m 

resolution, all five contour-derived DEMs obtained from NED appeared the same, and 

from a broad perspective, there was little difference between them (Fig. 4.4).  

When comparing distributions of elevations, the three LiDAR-derived DEMs were 

nearly identical. Since all three LiDAR DEMs were derived from the same data source, 

that was expected. The distributions of elevations of the two contour-derived DEMs 

were also very similar to each other. They may also have been derived from the same 

source data; however, it was not possible to determine that from the information 

provided through the NED. The distributions of elevation values of the contour-derived 

DEMs differed a little from those of the LiDAR-derived DEMs (Fig. 4.5).  

Summary statistics of elevation values from the five base DEMs are given in 

Table 4.2. The contour-derived DEMs had a larger range of elevation values than the 

LiDAR-derived DEMs, including having substantially smaller minimum and slightly 

higher maximum values. There was very little difference in quartile values between the 

three LiDAR DEMs or the two contour-derived DEMs.  
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Figure 4.4. DEM of study area watershed. Elevations of a continuous surface are represented by square 
grid cells, or pixels, with value of each cell representing the elevation of the land contained in it. The cell 
value is typically interpreted as the elevation of the center of the cell; however, depending on how the 
data was generated, that may not be the case. This particular DEM has grid cells with a 10 m horizontal 
resolution, and was derived from cartographic contours and obtained from the NED. 
  

 
Figure 4.5. Distribution of elevations for LiDAR and contour-derived DEMs. Histograms of elevation 
values differed slightly between the contour- and LiDAR-derived DEMs, with the LiDAR DEMs having a 
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smaller range in elevation values and a larger proportion of its cells with lower elevations. These 
examples were from the two 29-m resolution DEMs, but there was little difference in the distributions 
between the different grid sizes within the same DEM source. 
 
Table 4.2  
 
Summary Statistics of the Elevations from the Five Base DEMs 

DEM 
Source 

Grid Size 
(meters) 

Five Number Summary of Elevations 
Min.    1st Qu.    Median    3rd Qu.    Max. 

Average 
Elevation 

LiDAR 5 158.0      176.7     191.3      204.6      246.8 191.1 
LiDAR 10 158.1      176.7     191.3      204.6      246.7 191.1 
LiDAR 29 158.3      176.7     191.3      204.6      246.6 191.1 

Contour 10 154.8      176.9     191.7      204.9      247.2 191.3 
Contour 29 155.5      177.0     191.7      204.9      247.2 191.3 

Note. Five number summary and average elevation values from the five different base DEMs: LiDAR-
derived with 5-m, 10-m, and 29-m grid resolutions, and contour-derived with 10-m and 29-m grid 
resolutions. There is very little difference in the distributions of the three LiDAR-derived DEMs, and very 
little difference between the two contour-derived DEMs. Elevations are in meters above mean sea level. 
 

Filling Sinks 

Terrain analysis with digital elevation data requires generating a series of new 

data grids, ultimately calculated or derived from the DEM. When doing hydrological 

analysis with the DEM, it must first undergo a procedure known as filling the sinks in 

order to create a depressionless DEM. Sinks in a DEM are any cell or group of cells out 

of which a hydrological flow direction cannot be calculated. Filling the sinks ensures that 

in the context of hydrological modeling with the DEM, water in any one cell will flow to 

another cell. Sinks within a DEM may be from errors in the data or artifacts from the 

derivation of the DEM. However, there are also true sinks in the real world (e.g., lakes, 

ponds, or depressions, which show up as sinks in a DEM). There are methods for 

selectively filling sinks to avoid filling true ones, but any sinks, whether real or from data 

errors, will prevent calculating flow direction for those cells. Almost all topographic and 
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hydrological calculations that can be done on a DEM require flow direction, so not filling 

sinks will result in incomplete grids and could potentially isolate portions of the grid.  

The method for filling sinks in the DEMs used here was a flooding approach that 

raised the elevation of sink cells to the minimum elevation of the neighboring cells with 

an outflow direction. The specific algorithm, Pit Removal procedure implemented in the 

Terrain Analysis Using Digital Elevation Models (TauDEM) version 5.1.2 toolbox, was 

adapted from the Planchon-Darboux algorithm. Many different algorithms are available 

for filling sinks, but these were not compared or examined in this research. All base 

DEMs underwent the sink-filling process, and the filled DEMs were then used for all 

further terrain analysis. Since calculating flow direction was required before finding the 

sinks and comparing the output from two different flow direction algorithms was one of 

the research objectives, each of the depressionless DEMs was processed using the 

same flow direction algorithm that was used again later for the hydrologic terrain 

analysis (Fig. 4.6).  

 
Figure 4.6. Flow for processing DEMs for terrain analysis. Prior to any hydrologic analysis of a DEM, the 
DEM is typically processed to fill in any depressions and ensure that hydrologic flow can be modeled 
throughout the DEM. While different algorithms and methods exist for generating a depressionless DEM, 
they all follow the same basic flow: Flow Direction is calculated, Sinks are found, and then Sinks are filled. 
The second flow direction grid calculated from the depressionless DEM is then used in further terrain 
analysis. In this research, the two flow direction algorithms used are D8 and D∞, and the sink filling 
method was adapted from the Planchon-Darboux algorithm, all as are implemented in the TauDEM 
version 5.1.2 toolbox. 
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Flow Direction 

A flow direction grid, derived from a DEM, is a raster grid in which the value of 

each cell indicates the direction of water flow (i.e., which neighboring cell or cells that 

running surface water would move to). While the flow direction grid is not directly useful, 

it is an important precursor to all other hydrological GIS calculations and operations 

such as upslope contributing area and delineating stream networks, as well as any 

secondary calculations that rely on them such as the TWI. There are numerous 

algorithms for determining flow direction, all resulting in somewhat different outcomes. 

The choice of flow direction algorithm has been found to affect the performance of the 

wetness index in ecological applications (e.g., Kopecký and Čížková 2010). 

Performance may also depend upon the ecological application and characteristics of the 

terrain. Flow direction algorithms are broadly grouped into two categories: single-

direction (SDF) and multi-direction (MDF). The number of directions refers to the 

number of different neighboring cells into which water could flow. Any cell has eight 

immediate neighboring cells, and an SDF algorithm restricts flow from any cell to only 

one of its neighbors (Fig. 4.7). Sometimes the MDF group of algorithms is split into two 

subgroups: bi-directional (BDF) algorithms, where the flow is restricted to no more than 

two neighboring cells, and true MDF algorithms.  

This research examined two flow direction algorithms: deterministic-eight (D8) 

and deterministic-infinity (D∞; Fig. 4.8). The D8 algorithm was an SDF, was probably 

the most commonly used algorithm, and was the one implemented in the most popular 

commercial GIS software product. The eight in the name referred to the flow going to 

exactly one of the eight neighboring cells. The flow direction was towards the cell with 
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the steepest descent, which was calculated as the slope between the centers of the 

cells. The D∞ algorithm was an MDF, but with the flow from any cell limited to no more 

than two contiguous neighboring cells; more, specifically it was a BDF algorithm. 

 
Figure 4.7. Single directional flow. SDF algorithms such as the deterministic 8 (D8) restrict flow from each 
cell to only one of its eight neighboring cells. This algorithm calculates the slope of the line segments 
connecting the centers of the cells and then assigns the flow direction to be in the direction of the 
steepest slope. Left: Numbers assigned to the eight different directions are successive powers of 2, 
starting with 20=1 towards the east direction and then going clockwise to 27=128 towards the northeast 
direction. Center and right: An example of an elevation grid and the resulting D8 flow direction grid. 
 

 
Figure 4.8. SDF and BDF flow directions. Results from two different flow direction algorithms: the SDF D8 
algorithm (left) and the BDF D∞ algorithm (right). Differences in the flow direction results were carried 
over through all the remaining GIS hydrological calculations. Both these examples were calculated from 
the 29-m resolution LiDAR derived DEM. 
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Infinity referred to the infinite number of values between 0 and 2π the calculation can 

take on. The value represented the angle of the direction of steepest descent from the 

center of the cell. If the steepest descent line lay exactly on a cardinal or ordinal 

direction, then that line went into exactly one of the cell’s immediate neighbors, and all 

of the flow was assigned to that one neighboring cell. Otherwise, the steepest descent 

line passed through exactly two of its neighbor cells, and the flow was assigned 

proportionately between these two adjacent cells, with the proportioning based on the 

angle. There are many other SDF and BDF algorithms, and there are MDF algorithms 

that allow for flow to as many as all eight adjacent cells. For example, a cell that 

represents the top of a hill could have flow that diverges down all sides of the hill, and 

some algorithms attempt to capture this. In this research, the DEMs were processed 

using the D8 and D∞ flow direction algorithms, and the impacts the algorithms had on 

the resulting grids were compared and analyzed to determine which of these two was 

most appropriate for application to FACETA terrain types. 

Slope 

Slope is a required input parameter for FACETA; however, in its current 

implementation, slope is not used by the model for hydrologic purposes. FACETA only 

uses the input for slope, together with aspect, in the solar radiation component of the 

model. Slope is of course important to hydrology and needs to play a role in the terrain 

analysis and in defining the FACETA terrain types. In order to incorporate slope into the 

hydrological and terrain aspects of FACETA, it is used in the calculation of the TWI, 

which is used in defining FACETA terrain types. Slope is one of the few topographic or 

hydrologic characteristics that can be calculated from a DEM without first filling the 
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sinks; however, in this case the slope grids were all calculated from the depressionless 

DEMs. Since filling the sinks required first determining a flow direction, each of the 

slope grids was associated with one of the two flow direction algorithms. Grid size and 

DEM source were the other two variables behind the different slope grids. The ranges 

and distributions of slope values generated from the different DEM grid resolutions, 

sources, and flow direction algorithms were compared (Table 4.3). 

One expected trend that was apparent in the different slope calculations was that 

finer grid resolutions lead to higher slope values. This trend held true for every quartile 

when compared within a DEM source and a flow direction algorithm. 

Table 4.3  
 
Five Number Summaries of Slopes from Different DEMs 

DEM Source Grid Size 
(meters) 

Flow 
Direction 

Five Number Summary of Slopes (in %) 
Min.    1st Qu.    Median    3rd Qu.    Max. 

LiDAR 29 D8 0.00       0.92      1.99        3.73       38.37 
LiDAR 29 D∞ 0.00       0.92      2.08        4.00       49.91 

Contour 29 D8 0.00       0.87      1.96        3.85       40.40 
Contour 29 D∞ 0.00       0.81      1.97        4.09       55.19 

LiDAR 10 D8 0.00       1.03      2.23        4.34       65.15 
LiDAR 10 D∞ 0.00       0.99      2.29        4.57       71.25 

Contour 10 D8 0.00       0.86      2.00        4.11       77.30 
Contour 10 D∞ 0.00       0.83      2.00        4.18     107.70 

LiDAR 5 D8 0.00       1.07      2.35        4.67       81.30 
LiDAR 5 D∞ 0.00       1.03      2.42        4.90     138.04 

Note: Five number summaries for slopes were derived from different DEM sources, grid resolutions and 
flow direction algorithms. While the distributions for all these slope grids were similar, they differed some 
at the largest slope values. General trends across these slope grids included finer grid resolutions leading 
to higher slope values, within a DEM source and a grid resolution the D∞ algorithm resulting in a larger 
maximum and third quartile values than the D8 algorithm, and within a grid size and a flow direction 
algorithm the contour-derived DEMs had higher maximum slopes than the LiDAR derived DEMs. 
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This result was expected because increasing the grid size had the effect of smoothing 

out the microtopography of elevation changes occurring within a grid cell. Smaller grid 

cells captured finer resolutions of microtopography, thereby capturing a larger range of 

slopes. Another trend when comparing a DEM source and a grid resolution was that the 

D∞ algorithm resulted in a larger maximum, third quartile, and in most cases median 

slope value than the D8 algorithm. Within a grid size and a flow direction algorithm, the 

contour-derived DEMs had higher maximum slopes than the LiDAR-derived DEMs; 

however, that trend did not hold true in general for the other quartiles (Fig. 4.9 and Fig. 

4.10). At this broad perspective, the maps and distributions of the different slope 

variations looked similar with the main difference being the tail length of the histograms.  

Two areas chosen within the study area visually examined slope differences from 

a closer perspective, with each area containing different topography (Fig. 4.10). Area A 

was in the uplands with hills and a large variation in slopes. A large part of the area was 

dominated by a hilltop, but it also included some smaller hills, the hillslope down to the 

Elm Fork Trinity River, and some smaller drainage channels from the hills down to the 

river. Area B was in the heart of the bottomland floodplain and was mostly flat. The 

larges slopes within area B occurred along the banks of the Elm Fork. 

Examining area A closer revealed more differences in the various slope maps 

(Fig. 4.11; Fig. 4.13). Comparing the four contour-derived slopes with each other 

(Fig. 4.11), the D8 algorithm generated a smaller range of slopes and produced a 

smoother map with fewer contrasting differences in slopes.  
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Figure 4.9 Greenbelt study area slope histogram. Distribution of slope values from the Greenbelt study 
area watershed as calculated from the contour-derived, 29-m resolution, D8 flow direction grid. The 
distribution for all the slope variants had similar shapes, with the only apparent difference being in the 
length of the tails of high slope values. 
 

 
Figure 4.10. Greenbelt study area slopes. Slope map resulting from the 29 m, contour-derived DEM 
processed using the D8 flow direction algorithm. At this perspective, all slope maps and distributions 
looked similar, with the only apparent difference being the maximum slopes. Areas A and B were chosen 
to visually examine differences in the variants of slope more closely. Area A was in a hilly upland location, 
while area B was in the mostly flat floodplain. 
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Figure 4.11. Slope maps of upland area A from contour-derived DEMs. Each of the images is a close-up 
of the slope map generated from one of the contour-derived DEMs of the hilly upland area A. The images 
are arranged by columns for grid size and rows for flow direction algorithm. The color scale is the same 
for all four maps in that it goes from the low slope of 0 displayed in green to the highest slopes displayed 
in red, but the highest slope values differ for the maps. The high slope values can be seen in Table 4.3. 
For both grid sizes, the D8 algorithm generated a smaller range of slopes and produced a smoother map 
with less sharp contrasts. The 10-m grid, D∞ derived slope revealed a series of parallelogram-forming 
lines that crisscrossed the map (as indicated by the black arrows on the image). These lines were striping 
artifacts, which were systematic and spatially structured errors known to result from certain DEM 
production methods such as deriving DEMs from contour maps. 
 
While not visible in the 29-m grid or the D8-derived slope maps of area A, the 10-m grid, 

D∞ derived slope map revealed a very unnatural series of parallelogram-forming lines 

that crisscrossed the map. These lines were striping artifacts, which were systematic 

and spatially structured errors that were known to result from certain DEM production 

methods such as deriving DEMs from contour maps. There are filters for removing such 

artifacts (Albani & Klinkenberg, 2003), but no such filters were investigated as part of 

this research. 
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Artifacts were not apparent in the 10-m, D8-derived slope map of area A. 

However, the error was not in the flow direction algorithm; rather it lay hidden within the 

DEM, and the algorithm simply made it visible. In the flatter, bottomland area B, striping 

artifacts were visible in both the D8 and D∞ generated, 10-m slope maps (Fig. 4.12). 

Left unfiltered, these artifacts may have made the 10-m, contour-derived DEM 

unacceptable for defining a terrain type map. While not apparent in these two particular 

areas, striping artifacts were visible in other parts of the contour-derived, 29-m grid 

slope map, more so in the D∞ derived slope map than the D8-derived slope map. 

Striping artifacts existed in all contour-derived DEMs, but they were more apparent in 

the 10-m grids than the 29-m grids and became more apparent through application of 

the D∞ flow direction algorithm than the D8 algorithm.  

 
Figure 4.12. Slope maps of bottomland area B from contour-derived DEMs. Each image is a close-up of 
the slope map generated from one of the contour derived DEMs of the flat bottomland area B. The 
images are arranged by columns for grid size and rows for flow direction algorithm. The color scale is the 
same for all four maps in that it goes from the low slope of 0 displayed in green to the highest slopes 
displayed in red, but the highest slope values differed for the maps. The high slope values can be seen in 
Table 4.3. As with area A, the D8 algorithm generated a smaller range of slopes and produced a 
smoother map with fewer contrasts in slopes. Striping artifacts are revealed in area B in both 10-m slope 
grids, as indicated by the black arrows on the image. 
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Some differences were also seen in the different LiDAR-derived DEMs (Fig. 4.13;  

Fig. 4.14). Consistent with the difference noted in the contour-derived DEMs, both 

smaller grid resolutions and the D∞ flow direction algorithm resulted in a larger range of 

slopes. With the LiDAR DEMs, the differences that resulted from the different flow 

direction algorithms were more subtle as the striping artifacts were not an issue with the 

LiDAR DEMs. In some cases, it appeared the D∞ algorithm captured a more realistic 

image of the topography, including the two small streams (one flowing down the hill 

towards the southwest, and the other flowing towards the southeast; Fig. 4.13) These 

streams had steep banks and steep gradients. These differences were more apparent 

in the larger grid size DEMs.   

 
Figure 4.13: Slope maps of upland area A from LiDAR-derived DEMs. Each image is a closeup of the 
slope map generated from one of the LiDAR-derived DEMs of the hilly upland area A. The images are 
arranged by columns for grid size and rows for flow direction algorithm. The color scale is the same for all 
four maps in that it goes from the low slope of 0 displayed in green to the highest slopes displayed in red, 
but the highest slope values differed for the maps. These high slope values can be seen in Table 4.3. For 
all grid sizes, the D8 algorithm generated a smaller range of slopes than the D∞ algorithm. The D∞ 
algorithm appeared to highlight changes in slope more realistically, as with the two small streams within 
the black ovals. The striping artifacts apparent in the contour-derived DEMs were not present in the 
LiDAR-derived DEMs. 
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Figure 4.14. Slope maps of bottomland area B from LiDAR-derived DEMs. Each of the images is a close-
up of the slope map generated from one of the LiDAR-derived DEMs of the flat bottomland area B. The 
images are arranged by columns for grid size and rows for flow direction algorithm. The color scale is the 
same for all four maps in that it goes from the low slope of 0 displayed in green to the highest slopes 
displayed in red, but the highest slope values differ for the maps. These high slope values can be seen in 
Table 4.3. For all the grid sizes, the D8 algorithm generated a smaller range of slopes than the D∞ 
algorithm. The D∞ algorithm appeared to highlight changes in slope more realistically, as with the two 
small streams seen within the black ovals. The striping artifacts apparent in the contour-derived DEMs 
were not present in the LiDAR-derived DEMs. 
 

 Within area B, differences in slopes resulting from the different LiDAR-derived 

grid resolutions were most notable along the stream channels where the slopes were 

greatest. Particularly notable in area B was the stream channel in the southwest corner 

(bottom-left) of the area. This channel was almost imperceptible in the 29-m slope grids, 

but became very visible with apparently very steep channel walls. 

 There were some general differences in the slope maps resulting from the 

various DEMs within the context of different topographic conditions. These included the 

expected difference that a finer grid resolution leads to a larger range in slope values, 

higher maximum slopes, and a more detailed impression of the changes in topography  
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over smaller spatial scales. The increased accuracy that the LiDAR-derived DEMs 

provided over the contour-derived ones yielded slope maps with more topographical 

changes as well, although this was more apparent in the 10-m grid than the 29-m grid. 

A major difference seen between the LiDAR- and contour-derived DEMs was the 

appearance of striping artifacts in the contour DEMs. While the striping artifacts existed 

in all four contour DEMs, they were more apparent in the 10-m grid than the 29-m grid, 

were highlighted more by the D∞ than the D8 flow direction algorithm, and were more 

apparent in the flat bottomland topography than in the hilly upland terrain. 

Aspect 

Aspect impacts the incident solar radiation, or insulation, received at any 

location. Aspect is used in FACETA to calculate the incident solar radiation and is a 

required topographic input parameter. In certain terrains, such as in mountainous areas 

at high latitudes, aspect may be one of the most important factors in plant growth. In 

some hot, dry climates, a sun-facing aspect can have much drier soil. The Greenbelt 

study area was located on subtropical latitude of approximately 33˚ N, and most slopes 

within the study area were less than 5%. As can be seen from the maximum slopes in 

Table 4.3, places in the study area had steep slopes, but the slope lengths were 

typically not very long. Because of the hot, dry summers, aspect undoubtedly was a 

significant factor in tree growth rates in the study area with steep south-facing slopes. 

Personal observations suggested that aspect did not play a significant role in the 

composition of tree species found in the study area or in the development of the three 

different vegetation patterns of the Cross Timbers ecoregion. Because of these 

observations of the study area together with the focus on the hydrological aspects of 
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topography, the assumption was made that aspect was not a significant factor in forest 

development in the study area and thus was not included as a factor in defining terrain 

types. However, it should be emphasized that this was an untested assumption that was 

made in order to simplify the number and complexity of the landscape terrain types. 

Although not used as an input parameter, differences in aspect resulting from the 

different DEMs were explored (Fig. 4.15).  

 
Figure 4.15: Aspect of the study area. Only rudimentary differences in aspect maps resulting from the 
different DEM grid sizes and sources were examined. The basic spatial patterns and distributions of 
aspects between the four DEMs were very similar. One difference was that the contour-derived DEMs 
resulted in a significant proportion of the watershed with a flat aspect, whereas the 29-m LiDAR DEM had 
no flat aspects, and the 10-m LiDAR DEM had only a very small proportion. The example shown here 
was derived from the contour-derived 29-m grid DEM. 
 

Aspect was calculated for the unfilled DEMs from both LiDAR and contour 

sources at both 29-m and 10-m grid resolution. There was little difference in both 

distribution of values and the maps of aspect from these four DEMs. One difference of 

note was that both of the contour-derived DEMs resulted in a significant number of cells 

with aspect determined as flat (Fig. 4.15), while the 2- m LiDAR DEM had zero cells 

calculated as flat, and the 10-m LiDAR DEM had only a very small proportion of such 
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cells. Between the two grid resolutions examined, the differences in aspect were limited 

to differences in the granularity. The overall pattern and distribution of aspect values 

differed little with grid size. 

Flow Accumulation and Specific Catchment Area 

The specific catchment area, As, was defined as the ratio of the upslope 

contributing area to the length of the contour line segment that area drained to it: 

l
AAS = . When using a raster DEM, the contour length was assumed equal to the 

raster cell width. Flow accumulation (FA) in a GIS was defined for any raster cell to be 

the number of cells that eventually drain onto it, and therefore, it was affected by flow 

direction. Flow accumulation was used to estimate the size of As for a cell by calculating 

the product of the cell’s width with the flow accumulation plus one: As = (cell width) x 

(FA+1). To clarify a subtle GIS point, multi-directional flow (MDF) direction algorithms 

such as D∞ may bypass calculating flow accumulation and calculate specific catchment 

area directly. Since the D∞ algorithm used a proportional assignment in flow direction, 

counting flow accumulation cells amounted to counting and adding together parts of 

cells. In those cases, the language of catchment area fit better than speaking of number 

of cells. However, the difference was semantic and the two concepts were considered 

interchangeable. Flow accumulation, and subsequently specific catchment area, was 

itself not a good predictor of soil moisture. The vast majority of cells within a DEM had 

very small flow accumulation values (Fig. 4.16). A very small number of cells had a very 

large flow accumulation. These cells with large flow accumulation values were typically 

interpreted as belonging to a stream channel, and in fact, flow accumulation was useful 

in determining stream channel networks. Similarly, slope alone was not a good predictor 
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of soil moisture by itself. Because of the interactive effects of slope and specific 

catchment area on the flow and collection of water, hydrologists and soil scientists have 

combined the two attributes into a compound TWI. The output map of the flow 

accumulation calculation, and subsequently the wetness index, depends on the flow 

direction algorithm used.  

 

 
Figure 4.16. Flow accumulation for the Greenbelt study area. This example of flow accumulation is from 
the contour-derived, 29-m grid, D8 flow direction DEM. The distribution of values for all the flow 
accumulation variations was similar. Most DEM cells had small flow accumulation values. In this example, 
the 35th percentile was 1, meaning no other cells drained onto those cells. The median value was 3. Cells 
with high values (usually in the 102 order of magnitude) were interpreted as belonging to a stream 
channel. The highest values in this example belonged to the watershed’s two largest streams and their 
tributaries, which all came together in the southern part of the Greenbelt State Park (boundary drawn on 
map), which consisted mostly of floodplain of these streams. 
 

The various flow accumulation results from the different DEM sources, grid resolutions, 

and flow direction algorithms were compared. Since most of the watershed consisted of 

cells with very small flow accumulation values, the best areas to compare different flow 

accumulation results, at least visually, were where these accumulation numbers were 

highest. Two areas were selected to compare flow direction (Fig. 4.17). Area C 

contained the confluence of the Elm Fork Trinity River and Clear Creek. This area had a 
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large amount of flow accumulation but was mostly concentrated within the stream 

channels, making a good location to compare how well the different flow accumulations 

identified stream channels. Area D was in the lowest part of the Greenbelt floodplain 

where a lot of flow accumulated, but it was spread out over the low, flat plain. Flow 

direction algorithms typically have great difficulty accurately depicting flow in these kinds 

of low, flat areas, and flow accumulation output can be unreliable in them, which is why 

area D was selected for comparing flow accumulation results.  

 

 
Figure 4.17. Areas for closer examination of flow accumulation. In order to examine differences in flow 
accumulation resulting from the different DEMs, two areas were selected to zoom in on. Area C contained 
convergence of the two largest streams in the watershed. Area D included the lowest part of the 
floodplain consisting of very flat land. 
 

Flow accumulation maps calculated from the various DEMs were compared 

within each area to a high-resolution aerial image taken in the winter of 2005 (Fig. 4.18). 

Areas with standing water bodies, stream channels, sloughs, and wetlands that could 
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be identified in the aerial image were compared with the flow accumulation outputs. 

Some specific issues of note occurred in the flow accumulation outputs from the two 

flow direction algorithms applied to the contour derived, 29-m grid DEM (Fig. 4.18). 

 

 
Figure 4.18. Flow accumulation using contour-derived, 29-m grid DEMs. Flow accumulations were 
calculated from contour-derived, 29-m DEMs using both the D8 (left column) and D∞ (right column) flow 
direction algorithms. The center column is an aerial image of the areas taken in the winter in 2005. 
Stream channels, sloughs, wetlands, and areas with visible standing water are highlighted in blue on the 
aerial images. Area C (top row) includes the confluence of the two largest streams in the watershed, and 
area D (bottom row) is in a flat, low-lying part of the floodplain. The two streams are Elm Fork, which is 
the main stream that flows from the top of the image to the bottom, and Clear Creek, which comes into 
the image on the top-left side and joins Elm Fork. Locations of note within area C are: (1) Both algorithms 
defined the shape of the two main streams fairly well, although they both missed at times, such as the 
small bend just before the confluence. (2) Neither algorithm did a good job detecting the upper part of this 
small stream, but both algorithms picked it up a little further down. (3) This small tributary was detected 
more clearly by the D∞ algorithm and was only barely detectable under the D8 algorithm. (4) The wetland 
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was constructed and replenished in part from diversion from the little stream (#2) with a berm and from 
the westward flow of water downslope towards the river. (5) Both algorithms picked up the two little 
streams coming together, but neither detected that the stream then continued southeast towards the 
constructed wetland. (6) Rather, both algorithms detected that flow as going westward in what appeared 
as stream channels, but there was not a channel along that path. (7) From the shapes displayed in the 
flow accumulation maps, the D∞ algorithm appeared to resemble the surface hydrology a little better.  
However, there was a problem with the D∞ output. While the shapes looked similar to the stream 
channels, grid cells colored white in the image were actually cells with no data (i.e., the algorithm failed to 
calculate values for these cells). These no data cells were also seen in the D∞ flow accumulation output 
within area D. The complexity of the flow paths in flat topography such as within area D made accurate 
hydrological calculations difficult. Locations of note within area D are: (8) Flow accumulation was not a 
good tool to detect wetlands (e.g., the vast majority grid cells within this wetland area had a flow 
accumulation value of zero for both flow direction algorithms). However, the D∞ algorithm gave a better 
indication of the accumulated water being spread over a wider area. (9 and 10) D∞ picked up the 
accumulation in these wetlands better. (k) Both algorithms picked up this stream network, but it was 
clearer with D∞. (11) Neither algorithm picked up this cannel, but both picked up the general flow 
accumulation occurring around it. 
 

Generally, both algorithms applied to the 29-m, contour-derived DEM did a good 

but not perfect job defining the shape of the two largest streams, Clear Creek and Elm 

Fork (Fig. 4.18). Detecting smaller stream channels was hit or miss, but in general, the 

D∞ algorithm did a better job detecting these. Both algorithms did poorly in flat areas 

and tended to concentrate the flow accumulation into what appeared as channels, when 

in reality the flow was spread over a wider area, with the D8 algorithm having a stronger 

tendency to do so than the D∞ algorithm. Neither algorithm was good at outlining or 

detecting wetlands, but D∞ was a little better in that some wetlands showed up as a 

cluster of channels. In general, D∞ located more channels throughout the watershed. 

Striping artifacts did not show in the flow accumulation maps calculated through either 

flow algorithm in the 29-m contour-derived DEM. The biggest problem occurred with the 

D∞ algorithm where a number of cells were not successfully assigned a value, resulting 

in gaps of missing values within the map. Missing data values occurred all around the 

outer perimeter of the watershed and in the interior of the watershed in areas of high 

flow accumulation, particularly in stream channels (Fig. 4.19).  

93 



 
Figure 4.19. Missing data cells on D∞ specific catchment area. Cells around the perimeter and in areas of 
high flow accumulation resulted in missing data when calculating specific catchment area using the D∞ 
algorithm implemented in the TauDEM version 5.1.2 extension under ArcMap version 10.2.1. In the 
interior of the watershed, missing data cells primarily occurred in stream channels. 
 

Larger channels in the D∞ flow accumulation grid eventually become no data as 

the accumulation increased going down the stream. Missing data cells did not occur in 

either the D∞ flow direction or slope maps. The specific implementation of the D∞ 

algorithm and corresponding flow accumulation algorithm used here was the TauDEM 

version 5.1.2 extension running under ArcGIS version 10.2.1. It was not clear what 

caused the error. Previously, missing data cells occurred using TauDEM version 3.x 

and ArcGIS 9.x on the same 29-m and 10-m contour-derived DEMs but in a small 

enough number to be almost imperceptible. It was not believed the error resulted from 

the D∞ flow direction algorithm in general, so the use of the algorithm in determining the 
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TWI for FACETA terrain types was still evaluated. However, missing data cells in the 

flow accumulation map were also missing data cells in the TWI map and subsequently 

in the terrain type maps. For purposes of this research, it was considered a problem, but 

not one so severe to prevent proceeding with the maps produced by the D∞ algorithm. 

One surprising finding was that between the flow accumulation map, produced 

through the D8 algorithm from the 29-m LiDAR DEM, and the flow accumulation map 

calculated from the 29-m contour DEM, the LiDAR-derived map looked worse (Fig. 

4.20). Clear Creek was barely visible in this map. In general, the shape of the stream 

channels were simplified, straightened, and fit poorly to the true locations of the 

streams; at least this was the case for the two areas zoomed in on. When zooming out 

and comparing the two flow accumulation maps across the entire watershed, that 

comparison was not true in general. Neither of the 29-m, D8-produced flow 

accumulation maps accurately located small stream channels, and both were poor in 

very flat terrain. However, the contour-derived map was for some reason more accurate 

in locating this part of these two major streams, Elm Fork and Clear Creek. Comparing 

the D∞ 29-m LiDAR and D∞ 29-m contour flow accumulation maps, the map derived 

from LiDAR was generally an improvement. Stream channels were located more 

accurately, and the output resulted in fewer no data cells. Between the two 29-m LiDAR 

derived maps, D∞ located more small channels and did a much better job locating the 

position of Elm Fork and Clear Creek going through the Greenbelt than did the D8. 
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Figure 4.20. Flow accumulation using LiDAR-derived, 29-m grid DEMs. Flow accumulations were 
calculated from LiDAR-derived, 29-m DEMs using both the D8 (left column) and D∞ (right column) flow 
direction algorithms. The center column is an aerial image of the areas taken in the winter in 2005. 
Stream channels, sloughs, wetlands, and areas with visible standing water are highlighted in blue on the 
aerial images. The D8 algorithm produced a worse flow accumulation map from the LiDAR DEM than it 
did from the 29-m, contour DEM, whereas the D∞ map was an improvement over its contour-derived 
counterpart. Locations of note: (1) Clear Creek was barely visible under the D8 algorithm. (2) The D8 
algorithm, especially in flat areas, artificially straightened the flow accumulation paths. (3) The D∞ 
algorithm applied to LiDAR DEM did a better job finding the bend in Clear Creek than it did with the 
contour DEM. (4) Compared to the contour DEM, the D∞ algorithm resulted in fewer no data cells (e.g., 
Clear Creek). (5) The small stream was better detected with this DEM than with the contour DEM under 
both algorithms. (6) The channel network was better detected from the LiDAR DEM under the D∞ 
algorithm. (7) With the LiDAR DEM, the small channel was picked up by the D∞ algorithm. 
 

Comparing the 10-m flow accumulation maps to their 29-m contour-derived 

counterparts, the increased grid resolution did not improve the result by much 

(Fig. 4.21). Stream channel positions were nearly identical between the two D8-derived 
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flow accumulation maps, although there were some minor improvements in locations of 

bends and smaller channels. Generally, that was the case in comparing D∞ produced 

output from the 10-m contour DEM with 29-m contour DEM. Comparing two 10-m flow 

accumulation maps, the D∞ produced map found more small channels, located the 

position of the channels slightly better, but again had the problem of missing data cells. 

 
Figure 4.21. Flow accumulation using contour-derived, 10-m grid DEMs. Flow accumulations 
were calculated from contour-derived, 10-m DEMs using both the D8 (left column) and D∞ (right 
column) flow direction algorithms. The center column is an aerial image of the areas taken in the 
winter in 2005. Stream channels, sloughs, wetlands, and areas with visible standing water are 
highlighted in blue on the aerial images. Comparing the 10-m flow accumulation maps to their 
29-m contour-derived counterparts, the increased grid resolution did not improve the result by 
much. While some of the stream channels appeared a little closer to the actual paths, most of 
the patterns between the two grid resolutions were very similar. Some differences included: (a) 
The small stream and flow about the constructed wetland improved a little under the D8 
algorithm. (b) Both algorithms started to pick up the bend in Clear Creek, but not very well. 
(c) The path of the small bottomland stream fit the real path a little closer than it did in the 29-m 
grid. (d) The bottomland no data areas enlarged under the D∞ algorithm compared with the 
29-m DEM. 

97 



 
Figure 4.22: Flow accumulation using LiDAR-derived, 10-m grid DEMs. Flow accumulations were 
calculated from LiDAR-derived, 10-m DEMs using both the D8 (left column) and D∞ (right column) flow 
direction algorithms. The center column is an aerial image of the areas taken in the winter in 2005. 
Stream channels, sloughs, wetlands, and areas with visible standing water are highlighted in blue on the 
aerial images. Regarding accuracy of stream channel locations and shapes, the 10-m LiDAR derived 
DEM was mostly an improvement over both 29-m DEMs and the 10-m contour-derived DEM. Locations of 
note include: (1) Both algorithms detected the bend in Clear Creek with this DEM. (2) The network of 
small channels was detected better using this DEM. (3) The small channel in the flat bottomland came out 
better with the contour-derived DEMs than with this LiDAR DEM. 
 
Compared to the 10-m LiDAR-derived DEM, the 5-m DEM did not improve the accuracy 

when using the D8 algorithm (Fig. 4.23). Most of the channel positions were the same 

when comparing the two 5-m accumulation maps with their respective 10-m 

counterparts. There were some minor improvements in locating some of the smaller 
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channels using D∞; however, surprisingly the areas of missing data were larger with the 

5-m grid than the 10-m grid, and most of the missing data areas around the perimeter of 

the watershed returned. 

To summarize the flow accumulation results, differences in flow accumulation 

outputs from five different DEMS and two flow direction algorithms were examined and 

the outputs were compared with surface water features as detected from an aerial 

image. The general shape and position of large streams was accurate for most of these 

outputs, but accuracy improved with resolution, source (LiDAR-derived was more 

accurate than contour-derived), and flow direction algorithm (D∞ was more accurate 

than D8). There were some exceptions to this general statement. For example, the 29-

m LiDAR-derived D8 map was no better than the 29-m contour-derived D8 map. 

Additionally, there were some caveats. The D∞ algorithm resulted in cells without any 

data. Within a particular grid resolution, there were more missing data cells resulting 

from the contour-derived DEMs than from the LiDAR-derived DEMs, and for both DEM 

sources, there were far fewer missing data in the 10-m grids than in the 29-m grids. The 

5-m grid surprisingly had more missing cells. Accuracy did not improve with the 5-m 

flow accumulation grids as compared to their 10-m LiDAR counterparts. The striping 

artifacts seen in the contour-derived slope maps were not become apparent in any of 

the flow accumulation maps. 
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Figure 4.23: Flow accumulation using LiDAR-derived, 5-m grid DEMs. Flow accumulations were 
calculated from LiDAR-derived, 5-m DEMs using both the D8 (left column) and D∞ (right column) flow 
direction algorithms. The center column is an aerial image of the areas taken in the winter in 2005. 
Stream channels, sloughs, wetlands, and areas with visible standing water are highlighted in blue on the 
aerial images. Compared to the 10-m LiDAR-derived DEM, the 5-m DEM did not improve accuracy when 
using the D8 algorithm; however, it did improve some with the D∞.  Of note: (a) the path of the small 
stream was less accurate using the 5-m DEM than the 10-m LiDAR DEM with the D8 algorithm, (b) the 
small channel in the flat bottomland was detected in the 5-m DEM using D∞, and (c) when using the finer 
grid resolution, the accumulation in the flat wetland area became more spread out. 
 

Most of the cells were either on the perimeter of the watershed or in channels with high 

flow accumulation, so this was not considered a problem bad enough to prevent the 

algorithms’ use in determining terrain types. Between the increased accuracy of the bi-

directional flow algorithm over the single directional algorithm and the missing data 

100 



problem resulting from the D∞ algorithm, a recommendation and potential future 

improvement would be to compare these results with output generated with a true MDF 

algorithm. 

Topographic Wetness Index 

Slope and specific catchment area are both primary topographic attributes. 

These two attributes interacting together, along with soil depth and texture, significantly 

impact soil moisture patterns. Specific catchment area impacts the potential for upslope 

water contribution, and slope impacts accumulation and the flow of water. However, 

neither topographic attribute by itself makes a good predictor of soil moisture. By 

combining the two primary attributes, the TWI is a better predictor of soil moisture. 

Although it has limitations, the TWI is often used as a measure of hydrological similarity 

within a watershed. In FACETA’s current formulation, there are input parameters for 

flow accumulation and slope, and a third parameter referred to as the run-on coefficient 

is a multiplicative coefficient applied to flow accumulation. Flow accumulation together 

with the run-on coefficient is encoded in the model to simulate run-on water from the 

upslope portion of the surrounding watershed. Slope is currently not implemented into 

the hydrological component of the model. By using the TWI to define terrain types for 

FACETA parameters, the goal is to incorporate the combined hydrological component 

of both slope and upslope catchment area into the terrain units and then calibrate the 

run-on coefficient to the terrain units. The issues involved in TWI implementation 

considered here included the specific TWI formulation to be used, DEM source, DEM 

grid size, and flow direction algorithm. 
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Many different formula variations are used for calculating a wetness index from 

slope and contributing area, two of which are examined here: 

( )






=

βtan
ln1

SA
TWI , and 

( )
SA

TWI βtan
2 = . 

The angle of the local slope is β, so tan(β) is the local slope expressed as a ratio of the 

change in elevation to the change in horizontal distance. The problem with the formula 

most often used, TWI1, is that a slope of zero is mathematically undefined. Especially 

within the topography of a floodplain, having land so flat that a GIS determines it to have 

a slope of zero is likely. The second formula gets around this problem by putting the 

non-zero specific catchment area term in the denominator of the fraction. While the two 

formulations highlight similar features, they are very different (Fig. 4.24).  

A major difference between the two indices was that their interpretations were 

inverses of each other. Higher values of the first index corresponded to wetter terrain, 

while higher values in the second index corresponded to drier terrain. While it avoids the 

divide-by-zero problem, the second formula had the problem that any slope of zero 

ended up with a TWI of zero regardless catchment area size. Because any cell with a 

small slope would result in an index value of almost zero, there was much more 

clustering around zero in the frequency distribution of TWI2 (Fig. 4.24). While both 

distributions were positively skewed, the skew was much greater for the second 

formula. This seemed to imply that the results of the two formulas were very different, 

and numerically they were. However, with an appropriately chosen display method, the 

two results were more equivalent than they might seem.  
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Figure 4.24. Results from two different TWI formulas. The results across the study area watershed using 
the formula ( )( )βtanln1 SATWI =  are on the top row, and the results from the formula 

( ) SATWI βtan2 = are on the bottom row. The first formula can have the problem of dividing by zero on 
flat terrain. The second formula avoids this problem by inverting the fraction, but it results in a clustering 
of values close to zero and is not capable of differentiating between flat upland and bottomland sites. 
These examples were calculated from the 29-m, contour-derived DEM processed with the D8 flow 
direction algorithm. 
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A histogram equalization method was used, which is a good method to use when 

a large number of cell values are clustered close together. However, the clustering 

made mathematically differentiating cells into groups a bit more complex. Additionally, 

one of the general known problems with the wetness index was that it became less able 

to differentiate soil moisture in flat landscapes with low topographic relief, and it seemed 

that the second formula had the potential to highlight that problem. This could potentially 

have been a problem using TWI2 in flat and dry upland areas, but it could have been a 

benefit within a flat floodplain. This research used a variation of TWI1, but further 

investigation using TWI2 to define terrain types should be considered as a next step. 

The TWI formula used here was modified by adding a small constant to the slope 

in the denominator, thus avoiding division by zero: 

( )( )( )00001.0tanln += βSATWI . 

While the vast majority of the landscape had a non-zero slope in all of the DEMs, there 

were still a significant number of cells with a zero slope, particularly within the 

bottomland areas. For example, there were thousands of grid cells just within the 

bottomland Ovan clay soil series with a calculated slope of zero. Adding a number to 

the calculated slope in the denominator was not the best solution, and the number 

added was in some ways an arbitrary choice. The value was chosen simply because it 

was small. Adding this number to the denominator amounted to adding .0001% to the 

slope of each cell as determined from the DEM, which was equivalent to a vertical 

change of one meter over a horizontal distance of 100 km. 

Another way to avoid division by zero when calculating the wetness index was to 

ensure no cells had with a calculated slope of zero. There are algorithms that eliminate 
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flat slopes from the DEM. PDEM uses an iterative process of linear interpolation across 

sinks and flat areas between the high elevation cells and low elevation cells that 

surround the flat area (Pan et al., 2012). This algorithm results in a DEM that is both 

depressionless and has no zero slope cells. Algorithms eliminating flat areas were not 

examined in this research; however, they should be as a follow up to this study. 

To get a sense of the landscape surface features that the TWI highlights, three 

areas were selected to zoom in on (Fig. 4.25). Two of the areas, C and D, were the 

same as those used in the examination of the flow accumulation maps. Area E was 

added to include an upland location with post oak forest. 

Figure 4.25. Areas for closer examination of TWI. To examine the TWI maps closer, three areas were 
chosen to focus in on. Areas C and D were the same as those used in the examination of the flow 
accumulation maps. Area E was added to include a distinctly upland location. Area E was just an 
enlargement of area A used in comparing slope outputs. The area was enlarged to include the transition 
from upland to bottomland forest. 
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This area was almost the same as area A that was used in comparing the slope 

maps, but it was enlarged to include the transition from upland to bottomland forest 

(Fig. 4.26, Fig. 4.27, & Fig. 4.28). The color scale in the TWI maps had the lowest 

values represented with red and the highest represented by blue, with yellow in the 

middle. This particular TWI map was calculated from the 10-m grid LiDAR-derived DEM 

that was processed using the D∞ flow direction algorithm, but all of the TWI maps 

highlighted similar surface features to varying degrees. 

Area C included the confluence of Clear Creek and Elm Fork (Fig. 4.26). 

Similarities were seen between the TWI patterns and surface hydrological features.  

 
Figure 4.26. Area C aerial image and TWI map. Area C shows the confluence of Clear Creek and Elm 
Fork. The TWI was calculated from the 10-m grid LiDAR-derived DEM that was processed using the D∞ 
flow direction algorithm. The color scale of the TWI map was set with red representing low values and 
blue representing high values. Note that in the TWI map, the shape of the major stream channels 
included their banks (1) as well as the constructed wetland and its berm (2). The TWI map also picked up 
the floodplain wetlands located between the two streams and to the east of Elm Fork (3). The small pool 
in that wetland area was clearly visible (4). The area with low TWI values in the southwest corner, which 
is now covered in residential properties and agricultural land, was an upland area with soils associated 
with grassland vegetation, while most of the remainder of the frame would historically be covered in 
bottomland hardwood forest. 
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The shape of the major stream channels including their bends and banks were visible in 

the TWI map. The constructed wetland could be seen, and its artificial berm was clearly 

visible. While difficult to see in the image at this zoom, wetland areas in the floodplain 

between the two streams and to the east of Elm Fork were visible in the TWI map. The 

area in the southwest, or bottom-left, corner map with the high TWI values, covered in 

residential properties and agricultural land, was an upland area with soils associated 

with grassland vegetation. Most of the land to the northeast of that corner was 

historically covered in bottomland hardwood forest. 

 
Figure 4.27. Area D aerial image and TWI map. Area D shows the flat, bottom floodplain of Elm Fork. The 
TWI was calculated from the 10-m grid LiDAR-derived DEM that was processed using the D∞ flow 
direction algorithm. The color scale of the TWI map is set with red representing low values and blue 
representing high values. The TWI map correctly shows the shape of the little stream channel coming in 
from the west side of the image (1). The entire southwestern section of the map (2), which is dense with 
high values of TWI, is a wetland. The wetlands or sloughs in the northwest corner are also visible in the 
TWI map (3). The north-south road on the east side of the frame shows up as a bright red line of low TWI 
values (4). The wetland areas and ponds that are in the northeastern portion of the frame fit well to the 
shapes of high TWI values (5). The southeastern corner of low TWI values, along with all the land 
immediately to the east of the road, is an area of upland post oak forest (6). 
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The TWI map (Fig. 4.27), which was a close up of the flat floodplain area D, 

correctly showed the shape of the little stream channel coming in from the west side of 

the image. The entire southwestern swath of the map was a wetland, and that area was 

covered in high values in the TWI. The wetlands or sloughs in the northwest corner, 

none of which were visible in the flow accumulation maps, were visible in the TWI map.  

A road running north-south road along the east side of the frame showed up as a line of 

low TWI values. The wetland areas and ponds in the northeastern portion of the frame 

fit the shapes of the blue areas with high TWI values nicely. The southeastern corner of 

low TWI values, along with all the land immediately to the east of the road, was an area 

of upland post oak forest. 

Area E was mostly composed of an upland, post oak forest hill, but it also included a 

transition down into bottomland forest closer to the river (Fig. 4.28). The large stream 

channel on the east side of the image is Elm Fork, and it along with its banks is clearly 

visible in the TWI map. All of the red area in the eastern portion of the TWI map 

corresponds to hilly upland covered historically by post oak forest. Small streams are 

often easier to see in the TWI map than they are in the aerial image. In addition to 

stream channels, the TWI map can pick up places with evidence of sheet flow and 

surface runoff. Roads show up as lines of low TWI values, while ponds show up as 

spots of high TWI. 
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Figure 4.28: Area E aerial image and TWI map. Area E was mostly composed of an upland, post oak 
forest hill but also included a transition down into bottomland forest closer to the river. The TWI was 
calculated from the 10-m grid LiDAR-derived DEM that was processed using the D∞ flow direction 
algorithm. The color scale of the TWI map is set with red representing low values and blue representing 
high values. The large stream channel on the east (left) side of the frame, which is Elm Fork, is clearly 
visible in the TWI map along with its banks (1). All of the red area in the eastern portion of the map is hilly 
upland covered historically by post oak forest (2). The little stream channels coming down the hills are 
easier to discern in the TWI map than in the aerial image (3). The evidence of surface runoff and sheet 
flow going towards the stream channel at the top of the frame is also picked up in the TWI map (4). Some 
of the roads in the image appear as lines of low TWI values (5). Ponds in the image show up as blue 
spots of high TWI values (6). 
 

It is clear that the TWI map can detect or correlate to surface features related to 

topography and hydrology, which is why it was chosen as the tool to partition the terrain 

types for FACETA. Before discussing how that was done, the most appropriate version 

of the TWI map for this task was determined. To accomplish this, the impacts that 

different DEM sources, grid resolutions, and flow direction algorithms have on the TWI 

map and its ability to determine terrain types were examined. The general spatial 

pattern of values was similar across the different TWI maps, at least at a broad 

perspective. The frequency distribution of values across the versions was also similar 

(Fig. 4.29). Frequency distributions from two different TWI maps were examined, using 
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the two most different versions as examples – those calculated from the 29-m grid 

contour-derived, D8 flow algorithm processed DEM and the 5-m grid LiDAR-derived D∞ 

processed DEM. Their frequency distributions were similar with the only notable 

difference being the unusual spike in frequency in the 5-m grid map at the TWI value of 

approximately 13. 

 
Figure 4.29. Frequency distribution of two TWI maps. The two frequency distributions of values of TWI 
maps are generated from the 29-m contour-derived DEM using the D8 flow direction algorithm (left) and 
the 5-m LiDAR-derived DEM using the D∞ flow direction algorithm. These were the two most different 
TWI maps, but their frequency distributions were still similar. The only notable difference in them was the 
unusual spike in frequency exhibited in the 5-m grid map at the TWI value of approximately 13. 
 

A broad examination of the summary statistics for the different TWI maps did not 

reveal any striking differences or trends (Table 4.4). There were no noticeable trends 

across DEM sources or flow direction algorithms. There was a trend across grid sizes in 

that the smaller the grid, the smaller the minimum and first quartile values of TWI were. 

However, this trend was just a consequence of the fact that approximately the first 

quartile of flow accumulation was typically zero, resulting in a specific catchment area 

equal to the width of a grid cell. Therefore, the smaller the grid resolution, the smaller 
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the minimum and first quartile would be. There were spatial differences between the 

various TWI grids that were not detectable in either the summary statistics or frequency 

distributions of values. Visual examinations of the TWI maps zoomed into the three 

focus areas were used to investigate those spatial differences. 

Table 4.4 

Five Number Summaries of TWI from Different DEMs 
DEM 

Source 
Grid Size 
(meters) 

Flow 
Direction 

Five Number Summary of TWI 
Min.   1st Qu.   Median   3rd Qu.   Max. 

Mean 
TWI 

LiDAR 29 D8 4.39      7.43      8.35      9.65      27.57 8.98 

LiDAR 29 D∞ 4.09      7.33      8.28      8.94      24.38 9.61 

Contour 29 D8 4.27      7.46      8.49      9.06      27.53 9.88 

Contour 29 D∞ 4.00      7.38      8.47      9.01      24.34 9.91 

LiDAR 10 D8 2.90      6.43      7.40      8.05     28.61 8.72 

LiDAR 10 D∞ 2.71      6.58      7.62      8.49     27.58 9.11 

Contour 10 D8 2.55      6.73      7.83      8.32      28.63 9.18 

Contour 10 D∞ 2.18      6.90      8.04      8.49      25.44 9.44 

LiDAR 5 D8 1.90      5.69      6.71      7.45      29.31 8.16 

LiDAR 5 D∞ 1.29      5.86      6.98      7.78      26.13 8.51 

Contour 29 Resampled D∞ 3.96      7.55      8.67     10.18     27.52 9.34 

Note. Five number summaries and arithmetic mean for TWI derived from different DEM sources, grid 
resolutions and flow direction algorithms. The distribution of values and summary statistics for all the 
different TWI grids are similar, and there are no clear trends across DEM source or flow direction 
algorithm. One trend across grid sizes is that the smaller the grid the smaller the minimum and 1st quartile 
values of TWI are, but this trend is just a consequence of the fact that approximately the 1st quartile of 
flow accumulation is zero, resulting in a specific catchment area equal to the width of a grid cell. There 
are spatial differences between the various TWI grids that cannot be seen in the summary statistics or 
distribution of values. The last grid listed in the table is generated from a 29-m grid that was resampled 
from the 10-m contour-derived DEM. 
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TWI maps of area C were derived from the two contour-derived 29-m resolution 

DEMs (Fig. 4.30). One map was processed with the D8 flow algorithm, and one map on 

was processed using D∞. The spatial pattern of the two TWI maps was very similar. 

The D8-generated map had a patchier appearance than the D∞ generated one. The 

primary difference between the two maps was the missing data values found within the 

stream channels and through the center of the D∞ generated map. These were the 

same missing data cells found in the corresponding flow accumulation grid, were a 

carryover from the flow accumulation grid, and were expected in the TWI map. The 

missing data cells that fall within stream channels did not cause a problem with defining 

terrain types, but the missing data cells on land did cause a problem. Without correcting 

or filling in the missing data, classifying land into terrain types was not possible.  

 
Figure 4.30: TWI maps of area C from contour-derived 29-m DEM. The spatial patterns of the two TWI 
maps derived from the contour-derived 29-m grid DEM at area C were very similar. The two TWI maps 
were processed with different flow direction algorithms, with the D8-generated TWI map on the left and 
the D∞ generated TWI map on the right. There were subtle differences in the values for some cells, and 
the D8-generated map had a patchier appearance. The only distinct difference between the two was the 
missing data values found within the stream channels and along a swath through the center of the image 
in the D∞ generated map. These no data values were carried over from the flow accumulation grid and 
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were not a surprise. Missing data within the stream channels did not present a problem with defining 
terrain types, but the missing values on land through the center of this map made classifying the land into 
terrain types impossible without some correction. 
 

The two same TWI maps also focused on the flat bottomland area D (Fig. 4.31). 

The two TWI maps compared much the same in area D as in area C. The spatial 

patterns were much the same between the two maps, the D8 generated map was 

patchier, and the D∞ map had missing values. However, a characteristic seen in both 

maps was a pattern of crisscrossing diagonal lines running across the frame, although it 

was not as easy to see at this zoom. By viewing the maps a little more broadly, the 

pattern of lines became clear (Fig. 4.32). These striping artifacts were the same artifacts 

seen in the slope maps calculated from the contour-derived DEMs. 

 
Figure 4.31. TWI maps of area D from contour-derived 29-m DEM. As in area C, the spatial pattern of the 
two TWI maps derived from the contour-derived 29-m grid DEM at area D were very similar. The 
difference that the maps were processed with different flow direction algorithms, with the D8-generated 
TWI map on the left and the D∞ generated TWI map on the right. There were subtle differences in the 
values for some cells, and the D8-generated map had a patchier appearance. The only distinct difference 
between the two maps was the missing data values found in areas of high flow accumulation in the D∞ 
generated map. 
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In the broader perspective shown, the striping artifacts came out stronger in the 

D∞ generated TWI map (Fig. 4.32). The striping artifacts were also seen in the slope 

maps. Once slope was calculated, the error, which started in the elevation grid, was 

then manifested as subtle errors in slope. The likely explanation of why it appeared 

worse in the D∞ generated maps was that the algorithm was better at detecting subtle 

differences in slopes than was the D-8, or perhaps the algorithm overestimated subtle 

differences in slope. In both the D8 and D∞ maps, the artifacts were worse in the flat 

areas with low TWI values. 

 
Figure 4.32. Striping artifacts in 29-m contour-derived TWI maps. Striping artifacts were clearly visible in 
both the D8 and D∞ generated 29-m contour-derived TWI maps. The lines were more prevalent in the D∞ 
generated map (right) than the D8 map (left). 
 

When viewing continuous raster data, the display setting can make a tremendous 

difference in the visual interpretation of the data. In order to see how these striping 

artifacts impacted the delineation of terrain types, the maps needed to be displayed in a 

way that was meaningful to the terrain type definitions. The way the TWI map was used 

in terrain type definition in this study was through classification by percentiles. This 

approach was purposefully simple and should be considered a first try; the method of 
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partitioning terrain types can be refined in the future. In fact, at this time the cut off 

points for TWI categories should be considered like a model parameter that needs to be 

calibrated. The same two TWI maps were evaluated with the display setting set to 

correspond to terrain type definitions (Fig. 4.33).  

This particular classification scheme had three categories with the percentile 

breaks set at 20% and 80%. The categories were interpreted as being the wettest fifth 

of the land, the driest fifth, and the 60% majority in the middle. However, these 

percentile values should be further be calibrated to fit the characteristics of the 

watershed. While the striping artifacts were not as visible with this setting, they were still 

visible (Fig. 4.33). For both the 29-m grids and the 10-m grids, the artifacts were more 

pronounced under the D∞ flow direction algorithm, and they were more pronounced in 

the 10-m grids than the 29-m grids. 

When compared with aerial images and with the LiDAR-sourced TWI maps, it 

was clear that these lines were artificial and did not correspond to changes in the terrain 

on the ground. Without filtration or some other means of correcting the contour-derived 

DEMs, the TWI maps derived from them presented a problem in classifying terrain 

types that the LiDAR-derived grids did not. With LiDAR-sourced DEMs available for this 

research, there was no reason to continue the terrain delineation process with these 

grids. However, LiDAR data were not available for many places, and a contour-derived 

DEM might be the only available option. A new version of one of these DEMs was 

introduced at this time as an example of a workaround to the striping artifacts. 

Resampling performed on the 10-m contour-derived DEM to change the grid size 

to match the 29-m DEMs acted as a filter to most if not all of the artifactual lines. The 
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resampling method used was nearest neighbor. This particular grid was processed with 

the D∞ flow direction algorithm. Close up views of the southern portion of the study area 

watershed showed both the unclassified grid and the grid classified using the same 20% 

and 80% cut offs (Fig. 4.34).The striping artifacts were not apparent in either map. 

Different resampling methods were not tested for this study, and D8 flow direction was 

not used to process this resampled DEM. For investigation of terrain type delineation, 

this DEM acted as the sole replacement to the other four contour-derived DEMs. 

 
Figure 4-33. Artifacts in contour-derived TWI maps with quintile classification. All four TWI maps from the 
contour-derived DEMs showed striping artifacts, even after the TWI values were classified by terrain 
types. In this example, quintiles were used to partition the TWI values with the middle three quintiles 
grouped together as one category. The artifacts were more pronounced in the D∞ generated maps than 
the D8 maps for both grid sizes, and they were worse in the 10-m grids than the 29-m grids. Note identity: 
(top-left) 29-m D8-generated TWI classes, (top-right) 29-m D∞ generated TWI classes, (bottom-left) 10-m 
D8-generated TWI classes, and (bottom-right) 10-m D∞ generated TWI classes. 
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Figure 4.34. TWI from resampled contour-derived DEM. With striping artifacts apparent in the 
TWI terrain type classes in all four of the contour derived grids, the 10-m grid was resampled to 
a 29-m resolution using the nearest neighbor resampling method. This resulted in filtering out 
the artifactual lines. (Left) TWI from the resampled grid displayed using a stretched color 
scheme. (Right) TWI from the resampled grid classified into three groups using percentiles, with 
20% and 80% used as the cutoff points. 
 

With the rejection of the four contour-derived grids and their replacement with the 

resampled grid, seven TWI maps evaluated terrain type delineation. The seven maps 

were compared with each other and surface features were seen in the aerial image in 

the three areas, C, D, and E. In the comparisons, all of the TWI maps were displayed 

using a 2.5σ standard deviation stretch. Due to space limitations, a color ramp key was 

not included in the TWI figures. Figure 4.35 shows the color ramp used for all of the TWI 

maps. Table 4.4 lists the specific high and low TWI values for any particular TWI map. 
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Figure 4.35. Color ramp scale for TWI maps. All of the TWI maps are displayed using a 2.5σ standard 
deviation stretch with a color ramp going from red for low values to blue for high values. Specific high and 
low values for each TWI map are listed in Table 4.4. 
 

The three remaining 29-m TWI maps – contour-derived and resample, LiDAR-

derived and D8 processed, and LiDAR-derived and D∞ processed – of area C were 

compared with each other and the aerial image (Fig. 4.36). The general pattern for all 

three maps was similar, but there were some differences. The LiDAR-derived TWI maps 

were more accurate in outlining shapes and locating positions of wetlands and surface 

water, while the contour-derived resampled map had a smoother appearance due to the 

averaging effect of resampling the DEM. The two LiDAR-derived TWI maps were 

generally very close to each other, but the D∞ processed map was considerably 

patchier in the flat areas than the D8 map. There was not much difference between the 

two LiDAR-derived TWI maps in the more flat upland positions. 

The detail level for all four 5-m and 10-m LiDAR-derived TWI maps was much 

higher than the 29-m grids (Fig. 4.37). In flat areas, both the 10-m and 5-m D∞ 

processed TWI maps were patchier than the corresponding D8 processed maps, and 

they contained artificial crisscrossing lines. However, in the upland areas, the D8 

processed grids were patchier and more dendritic. The problems of patchiness and 

artificial lines were generally more pronounced in the smaller grid resolutions. The finer 

grid size maps showed more detail and changes in relief, but often over areas where 

the type of terrain and forest coverage did not vary much. 
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Figure 4.36. TWI calculated from 29-m grid DEMs at area C. TWI maps of area C were calculated from 
the three remaining 29-m DEMs. (Top-left) The aerial image was taken in the winter in 2005. (Top-right) 
Map calculated from the contour-derived DEM that was resampled from 10-m to 29-m due to the striping 
artifacts. (Bottom-left) Map was calculated from 29-m LiDAR-derived DEM processed using the D8 flow 
algorithm. (Bottom-right) Map was calculated from 29-m LiDAR-derived DEM processed using the D∞ 
flow algorithm. Locations of note: (1) The wetland area between the two streams showed up well in the 
two LiDAR-derived maps but was not apparent in the resampled contour-derived map. The flat, wet area 
was patchier in the D∞ derived map than in the D8 derived map. (2) The large constructed wetland did 
not appear in the resampled TWI map, but it was delineated in both LiDAR-derived TWI maps. Neither 
matched the surface water pattern as seen in the aerial image, but that may likely have been due to the 
wetland being constructed with an artificial berm. (3) All three TWI maps identified the upland area in the 
southwest corner well. (4) The general pattern of wetness found in this area was most apparent in the 
TWI map from the resampled DEM; however, the two LiDAR DEMs did a better job at detecting sloughs. 
This was likely due to the averaging effect of the resampling and the improved accuracy of the LiDAR 
data. (5) The Elm Fork River channel was too wide in the resampled, contour-derived TWI map, while the 
channel cells were missing in the D∞ derived TWI map. (6) The land within this bend of Clear Creek 
showed up with too high TWI values in the resampled, contour-derived TWI map, and to a lesser degree 
in the D∞ derived map. While the land within this bend was slightly higher than some of the surrounding 

119 



bottomland, it was still bottomland that was prone to flooding. (7) This wetland area and small stream 
showed up best in the D8 derived TWI map. The general shape of the area was captured well by both of 
the LiDAR-derived TWI maps, but was patchier and contained missing data cells in the D∞ map. 

 

 
Figure 4.37. TWI calculated from 10-m and 5-m grid DEMs at area C. TWI maps of area C were 
calculated from the two 10-m and two 5-m LiDAR-derived DEMs. (Top-left) TWI map calculated from 
the10-m D8 processed DEM. (Top-center) Aerial image of the area was taken in the winter in 2005. (Top-
right) Map was calculated from the 10-m D∞ processed DEM. (Bottom-left) Map was calculated from the 
5-m D8 processed DEM. (Bottom-center) Aerial image. (Bottom-right) TWI map from the 5-m D∞ 
processed DEM. Locations of note: (1) The wetland area between the two streams appeared in all four 
TWI maps; however, there was a patchy, crisscrossed line pattern reminiscent of the striping artifacts 
seen previously in the contour-derived DEMs. The 5-m D8 processed TWI map showed more detail of 
possible higher relief within the wetland area. There were changes in relief within this general area; 
however, all of this was wet bottomland forest. (2) The stream banks and channel walls were identified 
more as dry terrain in both D∞ processed TWI maps than in the D8 processed maps. They appeared drier 
in the 5-m D8 map than in the 10-m D8 map, and they appeared equally dry in intensity in the two D∞ 
processed TWI maps. However, the indicated dry area of the channel banks was wider in the 10-m D∞ 
map. (3) In this wetland area, both D∞ processed TWI grids were patchier and contained a larger range of 
values, including more and lower dry TWI values than the corresponding D8 processed grids. The 5-m D8 
processed grid was more accurate with surface water and indicated a larger wetland area with a 
smoother boundary than the 10-m D8 processed grid, but it also contained a larger range of values, 
greater contrast within the general bottomland area, and cells with lower and drier TWI values. (4) All four 
TWI maps indicated the location of the large constructed wetland well, but both D∞ processed maps 
again had the artificial crisscrossing lines in this flat area. (5) This upland area appeared as such in all 
four grids; however, the pattern was slightly patchier and more dendritic in the D8 processed TWI grids 
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than in the corresponding D∞ grids. Both 5-m grids were more dendritic in pattern in the upland area than 
their corresponding 10-m grids. At the same time, the values in the two 10-m grids ranged lower than the 
two 5-m grids. 
 
These finer grid resolutions made the stream channel banks appear as low TWI value 

land, implying dry terrain. While certainly there were differences between the banks, 

flats, and sloughs, having them designated in the driest category of terrain may have 

presented a problem in the model. While the stream bank areas had lower TWI values 

in the 29-m grids than in the adjacent bottomlands, the values did not fall into the lowest 

categories. 

In the very flat bottomland area D, the general pattern of values between the two 

LiDAR-derived 29-m grid TWI maps was quite similar, but it was much different in the 

resampled contour-derived map (Fig. 4.38). Locations of channels and wetlands were 

very inaccurate in the contour-derived grid, while both of the LiDAR-derived grids 

matched the aerial image fairly well. Flat areas and wetlands were patchier and 

contained lower and drier TWI values in the D∞ processed grid than in the D8 TWI 

maps. However, in the hilly upland areas, the pattern of values was slightly patchier in 

the D8 processed grid, but these differences were slight. 

In the wetlands of the low, flat bottomland area D, the D∞ processed 10-m and 5-m TWI 

grids both were very patchy, had artificial crisscrossing lines, and contained cells with 

values that were too low for their generally flat, wet nature (Fig. 4.39). 
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Figure 4.38. TWI calculated from 29-m grid DEMs at area D. TWI maps of the swampy bottomland area D 
calculated from the three remaining 29-m DEMs. (Top-left) Aerial image of the area was taken in the 
winter in 2005. (Top-right) TWI calculated from the contour derived DEM that was resampled from 10-m 
to 29-m due to the striping artifacts. (Bottom-left) TWI from the 29-m LiDAR-derived DEM processed 
using the D8 flow algorithm. (Bottom-right) Map calculated from 29-m LiDAR-derived DEM processed 
using the D∞ flow algorithm. Locations of note: (1) The two LiDAR-derived maps indicated the sloughs 
more accurately, while the contour-derived grid gave a more general, averaged wet image of the area. 
(2 and 3) Small channels such as these are very inaccurately indicated in the contour derived grid as 
compared to the LiDAR derived grids, probably due to a combination of errors in the source and the 
averaging that resulted from resampling. (4 and 5) These wetland areas show up as being too dry in the 
contour derived TWI map. They are patchier and contain lower and drier TWI values in the D∞ processed 
grid. (6) This hilly upland area shows up well in all three grids; however, the pattern of values is slightly 
patchier in the D8 processed grid. 
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Of these four grids, the 10-m D8 processed grid gave the best indication of flat and 

wetland areas. However, because the 29-m D8 map was less patchy and contained 

fewer misrepresentative low TWI values, it was better in flat and in wetland areas than 

the 10-m grid. In the hillier upland areas, the D∞ processed grids yielded a slightly 

smoother, less patchy pattern of TWI values than the D8 grids, and the 5-m D8 grid was 

patchier than the 10-m D8 grid. 

 
Figure 4.39. TWI calculated from 10-m and 5-m grid DEMs at area D. TWI maps of area D calculated 
from the two 10-m and two 5-m LiDAR-derived DEMs. (Top-left) TWI map calculated from the10-m D8 
processed DEM. (Top-center) Aerial image of area taken in the winter in 2005. (Top-right) Map calculated 
from 10-m D∞ processed DEM. (Bottom-left) Map calculated from 5-m D8 processed DEM. (Bottom-
center) Aerial image. (Bottom-right) TWI map from 5m D∞ processed DEM. Places of note include: (1) 
Wetland areas were generally well located in all four grids, but D∞ processed grids were patchy and 
contained artificial lines and values ranging too low. The range in values went lower, and more contrast 
was indicated in the 5-m D8 processed grid than the 10-m grid; however, the terrain in these areas was 
all fairly flat and similar. (2) In these lower, wetter bottomland areas, all four grids indicated wet terrain in 
general; however, they also all contained TWI values that were too low when compared to the terrain. 
The 10-m D8 processed grid gave the overall best impression of this wetland area out of these four grids. 
(3) While this area was drier than in location 2, both of the D∞ processed grids yielded values too low for 
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this generally low lying area. (4) In this hilly upland area, the D∞ processed grids yielded smoother 
patterns in TWI values than the D8 grids, and the 5-m D8 grid was patchier than the 10-m D8 grid. 
 

All three 29-m grids gave a good general representation of the hilly upland area 

E (Fig. 4.40). The contour-derived resample grid was the least accurate of the three.  

There was very little difference between the two LiDAR grids in determining the wettest 

locations.  While the D∞ processed algorithm was a little better than the D8 algorithm at 

indicating the locations of some of the ponds, it also had some missing data values. 

 
Figure 4.40. TWI calculated from 29-m grid DEMs at area E. TWI maps of the hilly upland area E were 
calculated from the three remaining 29-m DEMs. (Top-left) Aerial image was taken in winter 2005. (Top-
right) TWI map was calculated from contour-derived DEM resampled from 10-m to 29-m due to striping 
artifacts. (Bottom-left) TWI from the 29-m LiDAR-derived DEM processed using the D8 flow algorithm. 
(Bottom-right) Map calculated from 29-m LiDAR-derived DEM processed using the D∞ flow algorithm. 
Locations of note: (1 and 2) These flat but somewhat upland areas are old fields that have until now 
maintained grassland characteristics. They were appropriately indicated with mid-range TWI values with 
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the exception of the contour-derived grid in location 1, which inaccurately showed wet territory crossing 
through it. (3) This flat terrace area consisted of very heavy clay soil that stays dry for long periods of 
time, but that will occasionally get flooded and can remain saturated for extended periods. All three grids 
appropriately put it into the wetter side of the TWI range, except that the D∞ processed LiDAR- derived 
grid had missing values in this area. (4) This hilly area known as Wildcat Hill was the driest area within the 
Greenbelt and was appropriately indicated so with low TWI values in all three grids. (5) An upland post 
oak forest site, this location was towards the bottom of the Wildcat Hill area and contained soil that was 
deeper, loamier, and moister than in location 4. There were also small drainage channels that passed 
through this location. All three grids were a good representation of this location. (6) Only the LiDAR-
derived D∞ TWI grid indicated the location of this pond; however, the pond, while fed by natural surface 
flow, was artificially constructed. (7) All three grids indicated possible water accumulation at this location, 
but the LiDAR-derived D∞ map again gave the best indication that a pond was located in this spot. 
 

Compared with the 29-m grids, the 10-m and 5-m grids were more accurate in 

locating surface features (Fig. 4.41). In the flat areas, these finer grids indicated more 

contrasting differences and a lower range of TWI values than the corresponding 29-m 

grid. As these differences in TWI occurred over distances too small to see substantial 

changes in vegetation patterns, they were considered as a negative characteristic for 

defining FACETA terrain types. As with the other two areas examined, the D8 algorithm 

yielded less patchy results in flat areas, and D∞ produced less patchy or dendritic 

results in hilly areas. Smaller grid sizes yielded patchier results in all situations. 

After rejecting use of contour-derived DEMs because of the presence of striping 

artifacts, seven TWI grids were evaluated: the three LiDAR-derived grid resolution 

processed using either the D8 or D∞flow direction algorithm, and the contour-derived 

DEM resampled from a 10-m to 29-m grid size. The general spatial patterns of TWI 

maps were similar, but a number of differences were noted upon closer examination. A 

general trend under both flow direction algorithms was that the finer grid resolutions 

produced TWI maps that were more accurately able to predict the location of surface 

water features such as sloughs, wetlands, and stream channels than coarser grids.  
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Figure 4.41. TWI calculated from 10-m and 5-m grid DEMs at area E. TWI maps of the hilly upland area E 
were calculated from the two 10-m and two 5-m LiDAR-derived DEMs. (Top-left) TWI map calculated 
from the10-m D8 processed DEM. (Top-center) Aerial image of the area was taken in the winter in 2005. 
(Top-right) Map calculated from the 10-m D∞ processed DEM. (Bottom-left) Map calculated from the 5-m 
D8 processed DEM. (Bottom-center) Aerial image. (Bottom-right) TWI map from the 5-m D∞ processed 
DEM. Places of note include: (1) This flat terrace area consisted of very heavy clay soil that can stay dry 
for long periods of time but occasionally floods and can remain saturated for extended periods. All three 
grids appropriately put it into the wetter side of the TWI range, except the D∞ processed LiDAR-derived 
grid had missing values in this area. Compared with the 29-m grids, these finer grids indicated an area 
with more contrasting differences and lower TWI values than the general nature of this location should 
have. The D8 processed grids were a little better than the D∞ grids in this location. (2) This hilly area 
known as Wildcat Hill was the driest area within the Greenbelt. All four grids appropriately indicated this 
area as being on the dry end of the range; however, the D8 processed grids were patchier and had a 
more dendritic pattern than the D∞ grids. The 5-m grids were patchier than the 10-m grids. (3) This 
location towards the bottom of the Wildcat Hill area and contained soil that was deeper, loamier, and 
moister than in location 2, but it was still an upland post oak site. All four grids represented the slightly 
moisture area well and captured the presence of the small drainage channels in the vicinity. (4) At these 
finer grid resolutions, all four grids captured the presence of the small pond. The D∞ grids again had the 
problems of patchiness and artificial lines. (5) As with location 2, this upland location was best 
represented by the 10-m D∞ processed grid when compared to the other three grids. (6) All four grids 
overemphasize the TWI values of the channel banks, with the 10-m D∞ processed grid being the worst of 
the four. 
  
However, the finer grids also tended to have some common problems making them less 

desirable to use in FACETA terrain type definition. All of the finer grid resolutions could 

126 



result in increased patchiness in the TWI values that did not reflect changes in 

vegetation and terrain features on the ground. The D∞ processed grids could be very 

patchy, particularly in flat areas, and they resulted in many isolated pixels and patches 

with low TWI within the flat bottomland. The D8 processed grids had a tendency to be 

patchier and had a somewhat dendritic pattern in the hilly areas, resulting in numerous 

channels of higher TWI values within distinctively upland terrain. Under both flow 

direction algorithms, the finer grids over emphasized the stream channel banks as dry 

terrain. All of these problems were worse with the 5-m grids than the 10-m grids, and 

the most likely explanations included the sensitivity of the TWI to changes in slope and 

problems with both of the flow direction algorithms used. The fact that the two flow 

direction algorithms seemed to complement each other when comparing hilly areas 

versus flat ones suggested the possibility of a hybridized flow direction algorithm. The 

amount of patchiness apparent in any of the TWI grids was reduced if the TWI values 

were grouped into categories, but with the finer resolution grids, even a coarse grouping 

of three categories still yielded undesirably patchy areas in the TWI maps. 

Among the three 29-m grids, the contour-derived resampled TWI map resulted in 

too many inaccuracies when comparing locations of high or low TWI with surface 

features. Its general pattern fit fairly well when viewed from a broad perspective, but on 

closer examination the inaccuracies in predicting the locations of sloughs or even large 

wetland areas made this grid unacceptable for application in FACETA terrain types. The 

other two 29-m TWI grids were relatively similar to each other, and the accuracy in 

locating surface features for both was good, although they were not as good as their 

finer grid counterparts. The D∞ processed 29-m grid was patchier than the D8 

127 



processed map in flat areas, and it had more isolated pixels of low TWI values scattered 

within the wetlands. The D∞ processed grid also contained missing data cells in areas 

of high accumulation. However, the apparent advantage that the finer resolution D∞ 

processed grids had in the hilly areas over their D8 counterparts was diminished; the 

29-m D8 grid was not obviously more dendritic in the hilly areas. Because of its better 

representation of flat, bottomland areas, the D8 29-m grid was determined to be more 

appropriate than the D∞ 29-m grid. Due to their patchy and dendritic natures, the finer 

resolution grids often overemphasized changes in TWI when compared to the terrain 

and vegetation cover on the ground. Therefore, the 5-m and 10-m grids were less 

appropriate for this application of FACETA terrain types. From the different DEM 

sources, grid sizes and flow direction algorithms, the two LiDAR-derived 29-m grids 

were the only two that were really appropriate for terrain type definition at the spatial 

scale of interest. Of these two, the D8 processed grid was slightly favored because of 

problems the D∞ grid had in flat areas. 

Terrain Types 

One of the objectives of this research was to devise a way to combine soil and 

topographic characteristics in defining and delineating FACETA terrain types. The 

USDA soil types are nominal values represented as homogeneous polygons on a map, 

whereas the TWI is a continuous variable with each raster cell taking on a different 

value. One possible approach to the continuous TWI values is to partition them into 

different categories (e.g., high and low). This research devised a way of partitioning the 

TWI values into categories, combining them with the soil types so the watershed could 

be partitioned and FACETA parameters could be determined for the resulting terrain 
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types. The simplest and most logical way to incorporate the USDA soil map was to use 

the soil type polygons as part of the terrain type definition. The soil type polygons 

partitioned the landscape, and as discussed in the section on Soils and Terrain Types, 

the USDA classification level necessary for defining FACETA parameters was the soil 

series. An obvious problem with this approach was that, unlike the way it was depicted 

on the soil map, soil conditions were also continuous variables that could change rapidly 

with respect to horizontal distances. However, without an enhanced, finer resolution soil 

survey and soil map, the Order II survey supplied by the USDA was the best available 

source of information to partition the watershed by soil properties.  

To bring the TWI into the terrain type delineation, the continuous grid of TWI 

values first had to be discretized in some way to form categories. In this research, a 

simple approach was taken, which was to use percentiles to break the TWI values into 

categories of high, medium, and low. The reasoning behind this simple approach was 

that from a broad perspective, different areas within a watershed could be thought of as 

belonging to one of three categories: the relatively wet bottomlands, the relatively dry 

slopes and hilltops, and valleys and flat terraces with moisture levels somewhere 

between these other two conditions that make up large parts of many watersheds. For 

the initial categorization, the lowest 20% of cells made up the low, i.e. dry, category; the 

highest 20% made up the wet category; and the middle 60% were the medium group. 

To arrive at the 20% and 80% cutoffs, different values were tried and compared to the 

aerial images, and these values gave satisfactory representations of the wet 

bottomlands and dry post oak hills. However, much as any other model parameter, 
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these cutoff points could themselves be further calibrated to the landscape as well as to 

output from the forest model to improve performance. 

One problem with any systematic way to split the TWI values is that there will be 

some mixing of cells from different groups (i.e., the patchiness as described in the 

section discussing the TWI). For example, some stray-looking medium categories 

appeared in the middle of the bottomland or on top of a dry hill. A potential benefit of 

using the TWI together with the soil type to partition the landscape was that the soil 

types might further have separated the topographic wetness groups. To test this idea, 

the soil type map was intersected with the TWI map, and then summary statistics of 

TWI values were examined within each soil type (Fig. 4.42).  

A Kruskal-Wallis test was performed on TWI values separated by soil type. The 

resultant TWI values were not from the same distributions (p<10-15). Applying a Kruskal-

Wallis multiple comparison test yielded differences between distributions of TWI values 

from most pairs of soil types (α = 0.05). The only pairs where the hypothesis of the 

same distribution could not be rejected were Bastrop/Wilson, Birome/Silstid, 

Bunyan/Gowen, Gasil/Silstid, Gasil/Silawa, Birome-Rayex-Aubrey/Silstid, and 

Ovan/Silstid. Most pairs where the distributed TWI values could not be differentiated by 

the Kruskal-Wallis multiple comparison test were understandable. Birome, Silstid, Gasil, 

Silawa, and the Birome-Rayex-Aubrey complex were all similar, upland soils with sandy 

to sandy loam textures. All were associated with post oak and blackjack oak forest or 

savanna (Table 4.1). Bunyan and Gowen were both loamy bottomland soils associated 

with bottomland, hardwood forest growth. The two somewhat surprising pairs were 

Bastrop-Wilson and the far more surprising Ovan-Silstid.  
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Figure 4.42. TWI box-and-whiskers plots for Greenbelt soil series. The ranges of TWI values for the 
Greenbelt soil series are graphed in the box-and whiskers format. The horizontal lines of the boxes are 
the first, second, and third quartiles, and the ends of the whiskers are a distance of 1.5 times this 
interquartile range. Individual points outside of the whiskers can be thought of as outliers. Statistically the 
distribution of TWI values for each of the soil series was unique (Mann-Whitney U test, p < 10-8). The 
abbreviations used to identify the soil series are used in Table 4.1, except for BRA, which is the Birome-
Rayex-Aubrey complex. Information regarding this soil complex can be gleaned from the Birome and 
Rayex descriptions in Table 4.1. There is no box-and-whiskers plot for Rayex because no pure polygons 
of this series occurred within the Greenbelt. 

 
While Bastrop was a sandy soil associated with post oak growth and Wilson was a 

clayey soil associated with grasslands, both found in upland areas. Characteristic 

topography where these two soil series were found were different, but the range of their 

TWI values within the study area watershed, as seen in the box-and-whiskers graph, 

were close (Fig. 4.43). The fact that the Kruskal-Wallis multiple comparison test could 

not differentiate the TWI values of Ovan and Silstid was bewildering.  

131 



 
Figure 4.43. TWI box-and-whiskers plot for soils grouped by vegetation type. By grouping soil series of 
the Greenbelt by associated vegetation covers (upland post oak savanna, upland tallgrass prairie, and 
bottomland hardwood forest), the difference in the TWI distributions was clear. Bottomland, hardwood 
forest soils tended to have the highest TWI values, and upland post oak savannas had the lowest. 
 
These two soils were about as different as they can be in terms of topographic position, 

texture, and associated vegetation, not to mention that the hypothesis of similarity in 

TWI distribution could confidently be rejected simply by comparing their box-and-

whiskers graphs. Using the statistically more powerful one-tailed Mann-Whitney U test 

to compare these pairs alleviated any concerns. The distribution of TWI values in the 

Ovan series was shifted positively from that of Silstid (p < 2.2 x 10-16), and Wilson TWI 

values were shifted positively from those for Bastrop (p < 2.2 x 10-16). Applying the two-

tailed Mann-Whitney U test to all of the other pairs resulted in a rejection of the null 

hypothesis of a zero distribution shift with the largest of the p-values from all of these 

pair-wise tests being less than 10-8. Statistically, at least the soil types helped further 

separate the TWI values. By grouping the soils together into their associated vegetation 

types, the differences in the TWI distributions was more clear (Fig. 4.44). This raised the 
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consideration for another approach at defining terrain types, which was to use the 

ecological site designations rather than the soil series together with the TWI. 

 
Figure 4.44. FACETA terrain types. This figure shows the conceptual flow for partitioning the study area 
into terrain types. The soil map was converted to a raster grid, and the TWI map was classified into high, 
medium, and low categories. In this case, percentiles were used for the classification cutoffs, with low 
being the bottom 20% and high being the top 80% of TWI values throughout the watershed. The GIS 
combinatorial or function was used on the two grids to assign a new value to each unique combination of 
soil type and TWI category. Combining the 18 USDA soil types identified within the Greenbelt together 
with three TWI classes yielded 54 different terrain types. 
 

The method for partitioning the watershed map into terrain type units was the 

GIS combinatorial or function. This combined a raster version of the soil series map with 

the classified TWI map to create a new raster grid, where the value of each grid cell was 

a value that represented one of the unique combinations of soil series and TWI category 

that occurred. With the TWI grid grouped into three classes (low, medium, and high) 

and 18 different soil series, there was a potential for as many as 54 different FACETA 

terrain types, which was how many resulted in this case (Fig. 4.44). Each terrain type 
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was considered a unit that could be modeled in FACETA with one set of model 

parameters. Determining parameters for these terrain types is discussed in Chapter 6. 

Conclusions: Landscape Terrain Types 

Terrain types for FACETA were defined through a combination of soil and 

topographic characteristics. Soil series as defined in the Denton County soil survey 

provided by the Natural Resource Conservation Service (2010) within the USDA were 

used as the basis for partitioning the study area map by soil characteristics. The TWI 

topographic characteristic was used to partition the map. A number of issues behind 

developing the TWI map were considered and analyzed. Two different sources of 

elevation data–LiDAR-derived and contour-derived–were obtained, with the contour-

derived DEMs in two grid sizes of 10-m and 29-m. The LiDAR dataset was converted 

into DEMs of three different resolutions, 5-m, 10-m, and 29-m. After removing the 

depressions from all the DEMs, the DEMs were each processed using two different flow 

direction algorithms, the SDF D8 and the BDF D∞. Alternative methods or algorithms for 

making a depressionless DEM were not examined in this study. These 10 different 

DEMs were then processed through the steps required to produce the TWI grid and 

analyzed at various steps for quality in the application of FACETA terrain type definition. 

Problems were detected in slope grids calculated from the contour-derived DEMs 

in the form of striping artifacts. The striping artifacts existed in all four contour DEMs, 

but the artifacts were more apparent in the 10-m grid than the 29-m grid and were more 

apparent in the D∞ processed grid than the D8 processed grid. Another difference 

between the contour-derived slope grids and the LiDAR-derived slope grids was that the 

increased accuracy of LiDAR yielded slope maps with more topographical changes as 
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well, although this was more apparent in the 10-m grid than the 29-m grid. Between the 

different grid resolutions, the smaller grid size allowed for more of the 

microtopographical changes to be detected. 

Flow accumulation grids were compared with location and shape of surface 

water features. Generally, accuracy increased with the finer grid resolutions, the LiDAR-

derived grids were more accurate than contour-derived grids, and D∞ processed grids 

more accurately than D8 grids. However, the 29-m LiDAR-derived D8 map was less 

accurate than the 29-m contour-derived D8 map. An unexplainable problem was 

detected in the D∞ processed grids where a number of cells located in high 

accumulation areas or around the perimeter of the watershed did not have defined 

values. Between the increased accuracy of the bi-directional flow algorithm over the 

single directional algorithm and the missing data problem resulting from the D∞ 

algorithm, a potential future improvement might be to use an MDF algorithm. 

The striping artifacts that first became apparent in the contour-derived slope grids 

were enhanced through calculation of TWI grids. Even after reclassifying TWI grids into 

just three categories, the artificial lines were still apparent, and would have therefore 

become part of the terrain type delineation. Without using a filter to clean out the striping 

artifacts, the contour-derived DEMs were determined inappropriate. Since LiDAR was 

not available for many places, a new version of contour-derived DEM was added to the 

analysis. The 10-m DEM was resampled to 29 m, and the resampling acted as a filter. 

While successfully removing the artifacts, the resampling process only made 

inaccuracies in the original DEM worse, and this contour-derived DEM was determined 

to be unacceptable. Both of the finer grid resolution DEMs resulted in a great deal of 
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patchiness (i.e., individual pixels or patches of low TWI values isolated within the 

floodplain or channels of higher TWI values in the hills). The 5-m grids were patchier 

than the 10-m grids, and the D8 flow direction algorithm produced less patchiness in the 

flats and bottomlands while the D∞ algorithm was less dendritic in the hilly areas. Since 

patches were still apparent in all finer resolution grids, even after reclassifying the TWI 

grid, these grids also resulted in a patchy terrain type map. The patchiness did not 

correspond to changes in terrain or vegetation cover on the ground, and the smaller grid 

sizes were determined to be less appropriate than the 29-m grids. The two LiDAR-

derived 29-m grids were relatively similar to each other; however, the D∞ processed 

29-m grid was patchier than the D8 processed map in flat areas and had more isolated 

pixels of low TWI values scattered within the wetlands. The D∞ processed grid also 

contained missing data cells in areas of high accumulation. Because of its better 

representation of flat, bottomland areas, the D8 29-m grid was determined to be more 

appropriate than the D∞ 29-m grid. 

The study area map was partitioned through all combinations of soil series and 

TWI categories to create the FACETA terrain type map. The TWI map was reclassified 

into three categories–high, medium, and low–using the 20% and 80% TWI values as 

the break points. Break points were determined after comparing possibilities with 

topographic and vegetation features on the ground; however, they should be considered 

landscape model parameters that can be further calibrated for fit. Each soil series was 

determined to have statistically different distribution TWI values from the others, and 

soils grouped by vegetation cover types had distinct TWI distributions. Combining soil 

series together with TWI categories, FACETA terrain types were further separated. 
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CHAPTER 5 

FACETA BIOLOGICAL PARAMETERS 

Forest gap models such as FACETA model the growth of individual trees 

grouped in plots, with the trees individually responding to climatic conditions, available 

resources, and competition. The modeling approach to growth in FACETA as with many 

gap models is that each individual tree can grow each year up to some maximum, 

optimal growth increment that is a function of species and the tree’s diameter. The 

optimal annual growth is then decremented when environmental conditions are less 

than optimal, for example when soil nutrients or sunlight are reduced by competing 

trees, temperatures are warmer or colder than the species’ optimum range, or soil 

conditions are too dry or too wet. The different tree species simulated in FACETA have 

different optimal growth rates and respond differently to these conditions through a 

number of model input parameters that must be provided to describe the life history, 

growth, and stress tolerances for each species. Details of these parameters, how they 

are derived, and the values used in FACETA are discussed below. 

Methods: FACETA Biological Parameters 

One objective of this research was to set up FACETA for a watershed within the 

Eastern Cross Timbers ecoregion with parameters based as much as possible on 

measured data. Selecting and parameterizing tree species for FACETA involves 

determining an appropriate set of species to model and determining the necessary 

model parameters for those species. Model parameters are calibrated and tested for 

sensitivity. An appropriate set of species includes all the important species present as 

well as representative species for the relevant ecological niches and roles. At the same 
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time, each species has a required set of model parameter values that must be inputted. 

Determining or finding parameter values based on quantitative data is not always easy, 

especially for species that lack commercial importance. One problem is that species 

characteristics and tolerances are often described qualitatively, but the model requires 

quantitative, numerical input. There are also potential problems with the model 

assumptions when determining model parameters. In some cases, the data from a 

particular species may simply not fit assumptions of the model equations.  

The first step in determining the biological parameters was determining the 

species to be modeled. This was done in a two-step process. First a list of candidate 

species was determined based on a combination of the species prevalence in the study 

area, prevalence within the Eastern Cross Timbers ecoregion in general, and the need 

to have species that represented the different ecological niches. Local tree surveys 

conducted in the Greenbelt State Park were used to determine species importance 

within the study area. The second step in species selection was linked to parameter 

estimation. It was not always possible to estimate a complete set of model parameters 

for every species with sufficient level of confidence. A subset of candidate species with 

parameters based on the best available qualitative data was then selected for initial 

FACETA simulation runs. 

FACETA requires a set of parameter values for each modeled species that 

determines how individuals grow and respond to environmental conditions, competition, 

and stressors. These parameters fall into three general categories: growth, tolerances, 

and reproduction. Growth parameters include size and age limits, growth rate, and 

allometric parameters that describe the relationship between height and diameter. 
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Parameters for tolerances include responses to drought, flooding, temperature, shade, 

and soil nutrient deficiency. Reproduction parameters include values for seeding and 

stump sprouting. Many of the different parameters are linked with each other through 

the various equations used in the model, and mathematically they can be sensitive to 

each other. The maximum height parameter is used as a constant in the regression that 

determines the allometric parameters. The allometric, growth rate, maximum height, 

and maximum diameter parameters are all used in the equation that determines the 

optimal annual diameter growth increments for each species. According to the 

environmental conditions in any year, the tolerance parameters are used to reduce the 

optimal diameter growth increment to produce the realized modeled diameter growth 

increment. Larger trees in the model can have critical advantages in competition, so the 

ability for a species to grow determines its success, and a lack of growth of any 

individual species will lead to mortality. The growth parameters are also used in the 

algorithms that determine mortality. Ideally, all of the model parameters would be based 

on data collected from each of the species; however, some practical and philosophical 

questions on modeling assumptions and data measurements have to be addressed to 

achieve this. FACETA model parameters and the process of determining values for 

them are discussed in the following sections.  

Generally, growth parameters for the modeled tree species are estimated 

through a combination of measurements and surveys of published literature in forestry 

and ecology. Parameters for maximum height, diameter, and age were estimated from 

several sources of silvics information, including manuals and databases from the U.S. 

Forest Service (USFS), U.S. Department of Agriculture (USDA), a non-profit run 
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database of the nation’s largest trees, and local measurements. Modeling philosophy in 

this case typically has these maximum parameters set to ideal maximums, but because 

the various model parameters can be sensitive to each other, estimating maximum 

parameters becomes a bit of a balance between the ideal maximums and values that fit 

with the other parameters that may be based on local growth patterns. Growth 

parameters used in modeling the geometry of tree species were all estimated from local 

measurements. Growth parameters for growth rates were estimated from three tiers of 

sources: growth rings measured locally from trunk cross sections or tree cores, growth 

rings measured from tree cores that were not local and were available through a tree 

ring database run by the National Climatic Data Center, and a combination of qualitative 

and quantitative information published from some of the same sources used in 

estimating the maximum age and size parameters. The tolerance parameters were all 

estimated from a variety of published information sources such as the USFS and USDA, 

much of it qualitative in nature butt some also quantitative. Reproduction parameters 

were researched for the modeled tree species, but model runs made for this research 

were done without using the two reproduction parameters, one for seeding and one for 

sprouting. Specific details for each of these model parameters are provided in the 

following sections. 

Results: FACETA Biological Parameters 

The results from estimating the biological parameters for FACETA, along with 

descriptions and assumptions behind these parameters, are described in the following 

sections. Some of the parameters have dependencies on others, and the first four 

sections – species selection, maximum age and size, allometry, and growth rate – are 
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ordered based on those dependencies. Selecting species is described first, and then 

the maximum size and age parameters for those species are described. The allometric 

parameters depend on maximum height, and the growth rate depends on the allometric 

and maximum size parameters. The reproduction and tolerance parameters, which are 

discussed last, only depend on the species. 

Species Selection 

Tree species simulated in FACETA for the Greenbelt were selected based on a 

combination of factors including the prevalence of the species within the study area, the 

availability of data on the species to determine model parameters, and the goal of 

having a collection of species representative of the various ecological niches and roles. 

Species prevalence and having a full representation of the niches in the modeled study 

area should ideally dictate species selection for the model. However, quite a bit of data 

must be available in order to determine meaningful model parameters for any species. 

Species model parameters included maximum height, diameter, age, a parameter for 

growth rate, parameters for the allometric relationships between height and diameter, 

tolerances for temperature range, dry soil (drought), saturated soil (flood), shade, 

nutrient availability and deficiency, and seeding and sprouting capacities. Some 

plausible values for parameters such as maximum height and age were not difficult to 

find in forestry literature and silvics manuals, at least for the tree species that were 

commercially important. However, there are some species where very little information 

could be found in the published literature. For example, Forestiera acuminata (swamp 

privet) was the most dominant species found in the lowest lying parts of the Greenbelt. 

141 



However, swamp privet probably is short-lived, grows as a shrub more than a tree, and 

has no commercial value. Therefore, little literature or data exist on the species.  

For all species, information and data for determining parameters such as flood 

and drought tolerances were even more difficult to find. Information that did exist on 

these tolerances was typically qualitative and not quantitative. Determining flood 

tolerance of mature trees required long-term ecological observations, which was 

available for many species but in a qualitative form. Flood tolerance for a species might 

be categorized as moderately tolerant, which may be further described as being able to 

survive in flooded conditions for a few months during the growing season but with high 

mortality if flooding persists. However, these categories can be somewhat broad and 

contain varying degrees of tolerances if they were quantified to a finer scale. One 

example of this involved two bottomland species considered in this research. Fraxinus 

pennsylvanica and Acer negundo were both described as moderately tolerant to 

flooding in the USGS guide to bottomland hardwood restoration (Allen, Keeland, 

Stanturf, Clewell, & Keenedy, 2001). From personal observations within the Greenbelt, 

both F. pennsylvanica and A. negundo grew in the floodplain, but F. pennsylvanica was 

more likely to be found in low areas and sloughs than A. negundo, which seemed to 

prefer higher and sandier positions. Based on these observations, F. pennsylvanica 

should have a higher model parameter value for flood tolerance than A. negundo, but 

there was no available quantitative data on which to base those differences in 

parameter values. Often in situations like this, the modeler uses the relative differences 

known between the species to assign different parameter values and then uses the 

model output to adjust or calibrate the parameter values, but that is not the ideal way to 
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assign parameter values. Ideally, parameter values are based on data collected from 

the same biological or physical processes they represent in the model.  

Another problem with using forestry resources for determining parameter values 

is that the information found from different sources on any tree species does not always 

agree. For example, resources from three different offices within the USFS gave a 

range of 30-m to 52-m for the maximum height of Quercus macrocarpa (bur oak). The 

result was that determining a list of species to model became a struggle between the 

ecological importance and prevalence of the species, having a set of species that was a 

good representation of the study area and its ecological niches, and the ability to find 

enough quality data to parameterize the model for the species. Determining a species 

list to be modeled thus was split into two steps. The first step was to develop a list of 

desired candidate species and to gather as much information as possible on each for 

parameter estimation. The remainder of this chapter describes that process. The 

second step was to reduce the candidate list to a subset of species with the most 

reliable set of parameters for initial FACETA simulation runs. As more information was 

gained about candidate species and problems with the model and species parameters 

were resolved through model testing and calibration, more species could be included in 

the simulation. 

The landscape modeled here was within the Cross Timbers Level III ecoregion, 

and included parts of both the Eastern Cross Timbers and the Grand Prairie Level IV 

ecoregions. This area historically comprised upland forests, bottomland forest including 

wetlands, and upland areas that have historically developed as grasslands rather than 

forests. Any forest model of the Eastern Cross Timbers must include the characteristic 
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tree of the ecoregion, Quercus stellata, or the post oak. Other upland species of the 

Eastern Cross Timbers included Quercus marilandica (blackjack oak), Carya texana 

(black hickory), Juniperus virginiana (eastern red cedar), and Prosopis glandulosa 

(honey mesquite; Griffith, Bryce, Omernik, Rogers, & Harrison, 2007). However, upland 

Eastern Cross Timbers consisted primarily of post oak with some blackjack oak, 

especially in areas with very poor soils. Riparian species in the Eastern Cross Timbers 

included Carya illinoinensis (pecan), Salix nigra (black willow), Populus deltoides 

(eastern cottonwood), and Acer negundo (boxelder). The Grand Prairie ecoregion was 

historically mostly upland prairie grasslands, but the riparian areas in the Grand Prairie 

included Ulmus spp. (elms), pecan, Celtis spp. (hackberry), and Quercus macrocarpa 

(bur oak). The Society of American Foresters has a classification system that describes 

different forest types occurring in different conditions and seral stages, and while none 

of the forest type descriptions matched the Greenbelt bottomland exactly, Type 93, 

Sugarberry–American Elm–Green Ash, were the closest. Type 93 occurred in 

bottomlands throughout the Southeast from east Texas to the Atlantic and north to 

southern Illinois (Eyre, 1980). Denton County is a little to the west of that range, and the 

Greenbelt bottomland was more of a Sugarberry-Cedar Elm-Green Ash forest, but the 

Type 93 description still applied well. Common associates of Type 93 also common in 

the Greenbelt included cedar elm, boxelder, eastern cottonwood, red mulberry, and 

honeylocust. Variants found within Type 93 included stands of green ash on moist flats 

and sloughs, and stands of sugarberry on fronts and new land, both of which were 

found in the Greenbelt as well. The three species were all shade tolerant, as was cedar 

elm. Type 93 is considered a long-term seral stage. Generally, within the bottomland 
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hardwood forests that develop in alluvial floodplains of streams there were different 

species that tended to occupy different topographic positions (e.g., sandy high fronts 

versus low-lying clayey sloughs; Hodges, 1997). The Greenbelt State Park at the center 

of the modeled landscape contained a mix of bottomland topographic positions and soil 

conditions, as well as varying stages of reforestation, forest age, and development 

(Rijal, 2011). While the Greenbelt State Park contained only small areas of upland 

forest and upland prairie, the modeled landscape surrounding the State Park was 

historically composed of both these vegetation cover types. The area east of the 

Greenbelt was primarily upland Eastern Cross Timbers, and to the west it was primarily 

upland Grand Prairie with some riparian areas for tributary streams of the Elm Fork 

Trinity River. The modeled species should contain representatives of both upland and 

bottomland species for both ecoregions, and species within the different topographic 

positions and seral stages found in the bottomland of the Greenbelt. Since FACETA 

was not equipped to model grassland plants, slow growing stands of the most drought 

tolerant species that were also tolerant to heavy clay soils represented parts of the 

landscape where grassland communities would likely grow.  

Species prevalence was determined from two studies conducted in the Greenbelt 

with a time difference of nearly one decade. These were Rijal (2011) and Barry and 

Kroll (1999). In Rijal’s (2011) study, tree surveys were conducted at various topographic 

positions within the floodplain, including both young regenerating and older growth 

forest. Table 5.1 lists the species with the 15 highest importance values across all 

bottomland plots found in this study. Upland plots were essentially composed of four 

species (Table 5.2), greatly dominated by Quercus stellata (post oak), with a few other 
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species only present in small size or number. The other three species of significant 

importance in the upland plots were Ulmus alata (winged elm), U. crassifolia (cedar 

elm), and Q. marilandica (blackjack oak). Barry and Kroll (1999) focused on an area of 

the Greenbelt that contained the oldest patches of bottomland forest, and the resulting 

list of species by importance value was similar. Both studies found the same three 

species at the top of the list, although in different order and proportions. Barry and Kroll 

found Celtis spp. to have a much higher importance value than the other two species 

and Fraxinus pennsylvanica (green ash) a much lower importance. The Rijal (2011) 

study found the three species to have roughly equal importance values. Barry and Kroll 

(1999) also identified two different species of Celtis (hackberry), C. laevigata and C. 

occidentalis, while Rijal (2011) only identified C. laevigata. Hackberry species can be 

difficult to distinguish, and there was not complete agreement over the classification of 

some of the varieties. For example, netleaf hackberry, which was present in the 

Greenbelt study area in small numbers primarily as a small upland tree, has been 

classified both as its own species (Celtis reticulata) and as a variety of C. laevigata (var. 

reticulata). Classification of the Celtis taxon has generally been described as being 

complex and needing revision (Diggs, Lipscomb, and O’Kennon, 1999). However, North 

Texas is outside and to the south of the historic range of C. occidentalis (sometimes 

called northern hackberry), whereas it is in the latitudinal heart of the historic range of 

C. laevigata. The ranges of the two species overlap, and the historic range of 

C. occidentalis extends southward into Oklahoma, so it is possible that both species 

exist in the Greenbelt. There is little difference between the two species ecologically or 

in life histories, and for the purpose of FACETA modeling in this research, all 
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hackberries were assumed to be C. laevigata. Another notable difference between the 

two studies was that Barry and Kroll (1999) found the presence of some species not 

found by Rijal (2011) such as Juglans nigra and Q. shumardii, although with low 

importance values. It is not clear if the differences between the two studies are because 

of forest age or other reasons.  

Table 5.1 
 
Greenbelt Bottomland Species by Importance Value (IV-300) 

Species Common 
Name IV-300 

Relative 
Density  

(%) 

Relative 
Basal Area 

(%) 

Relative 
Frequency 

Fraxinus 
pennsylvanica 
 

Green ash 50.0 16.5 22.0 11.6 

Ulmus crassifolia Cedar elm 45.2  16.2 19.4 9.6 

Celtis laevigata Sugarberry 44.2 21.1 10.5 12.6 

Forestiera 
acuminata 

Swamp privet 27.3 15.1 5.3 7.0 

Acer negundo Boxelder 23.8 9.7 7.1 7.0 

Snag1 

 
 20.6 5.4 4.2 11.1 

Populus deltoides Eastern 
cottonwood 
 

17.7 1.3 13.9 2.5 

Ulmus americana American elm 15.5 2.6 5.8 7.0 

Morus rubra Red mulberry 12.2 3.7 1.4 7.0 

Quercus 
macrocarpa 
 

Bur oak 8.3 0.5 4.8 3.0 

Maclura pomifera Bois d’Arc 7.4 1.0 1.4 5.0 

Gleditsia 
triacanthos 
 

Honeylocust 7.0 3.0 0.5 3.5 

 
(table continues) 
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Table 5.1 (continued) 

Species Common 
Name IV-300 

Relative 
Density 

(%) 

Relative 
Basal Area 

(%) 

Relative 
Frequency 

Gleditsia 
triacanthos 
 

Honeylocust 7.0 3.0 0.5 3.5 

Carya illinoinensis Pecan 4.9 1.1 1.8 2.0 

Salix nigra Black willow 2.5 0.4 0.6 1.5 

Sapindus 
saponaria 
 

Western 
soapberry 

2.3 0.6 0.2 1.5 

Sideroxylon 
lanuginosum 

Chittamwood 2.3 0.2 0.5 1.5 

Note: Tree species found in the Greenbelt bottomland areas in 2007-08 with the 15 highest importance 
values. Data were collected by Rijal (2011) from 30 plots across different topographic positions within the 
floodplain. The plots were each 625 m2. Density was a measure of the number of stems, basal area was 
a measure of total cross-sectional area of the stems, and frequency was a measure of how frequently the 
species occurred in different plots. The relative form of these three metrics was a conversion of the 
absolute field measurements to a relative, 100-point scale, with each species measured relative to the 
other species present. Importance Value 300 (IV-300) was the sum of the three relative scores. 1Snags 
were standing dead trees, which were not identified by species in this study. 

 
Table 5.2  
Greenbelt Upland Species by Importance Value (IV-200) 

Species Common 
Name IV-200 Relative 

Density (%) 
Relative Basal 

Area (%) 
Quercus stellata Post oak 80.1 21.3 58.7 

Ulmus alata Winged elm 41.5 34.0 7.5 

Snag1 

 
 27.2 18.0 9.2 

Ulmus crassifolia Cedar elm 25.7 14.7 11.0 

Quercus marilandica Blackjack oak 17.0 6.0 11.0 

Crataegus spp. Hawthorn 3.3 2.0 1.3 

Juniperus virginiana Eastern 
redcedar 

2.5 2.0 1.3 
 

 
(table continues) 
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Table 5.2 (continued) 

Species Common 
Name IV-200 Relative 

Density (%) 
Relative Basal 

Area (%) 
Sideroxylon 
lanuginosum 
 

Chittamwood 1.3 0.7 0.7 

Gleditsia triacanthos Honeylocust 0.8 0.7 0.1 

Celtis laevigata Sugarberry 0.7 0.7 0.1 

Note: Tree species found in the Greenbelt upland areas. The data were collected from only two 625-m2 
plots in 2007. Relative frequency diminishes real differences between species if the survey involves a 
small number of plots, so it was not used here. IV-200 is the sum of relative basal area and relative 
density. Blackjack oak, while not dominant in this survey, can occur as the dominant species in patches of 
the Eastern Cross Timbers with poor soil quality. Eastern redcedar has become more dominant, and in 
fact, it is considered invasive within parts of the ecoregion, but only two individuals were found in this 
survey. The increase in eastern redcedar is widely thought to be due to fire suppression. Both winged elm 
and cedar elm were more dominant in this survey than would be expected in typical Eastern Cross 
Timbers upland, but this might be due to the close proximity of these survey sites to bottomland of the 
Elm Fork. 
 

Between the general ecoregion and forest type descriptions and the local 

surveys of trees from within the Greenbelt, the list of species desired to be modeled was 

formed. Each of the species considered in this research, their prevalence in the 

Greenbelt, ecological roles and niches, and potential benefits or difficulties in choosing 

them for simulation is briefly described in the following paragraphs. These species were 

the candidates for the Greenbelt FACETA model, and they were all investigated for their 

importance and feasibility to model and parameterize, but not all of the species ended 

up in the final model. 

Acer negundo (boxelder) is the only maple species native to the North Texas 

area. In two surveys of the Greenbelt, boxelder had low importance value in the old 

growth portions of the forest but had the fifth highest importance value of all species 

within bottomland plots generally. It is a small to medium sized tree, typically about 

15 m in height, and less than 50 cm in diameter. Its average lifespan is 60 years and 

usually lives less than 100 years (Burns & Honkala, 1990). It is categorized as 
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moderately tolerant to shade, flooding and drought, and is generally thought of having a 

wide range of tolerances to environmental conditions and soils types. Boxelder is a 

colonizing or pioneer species and can expand rapidly into open alluvial plains and old 

fields. Considered a bottomland species, it can also occupy drier upland sites and tends 

to favor deep, well-drained soils within the floodplain. Boxelder is a species with no 

commercial value, and there is accordingly little information about potential yields. Its 

growth rings can be somewhat nondescript, and there is no available source of growth 

ring data. 

Carya illinoinensis (pecan) is the very commercially important hickory tree that 

produces the pecan nut. It is the largest of the hickory species, is one of the largest and 

longest-lived species found in North Texas, and happens to be the official state tree of 

Texas. While numerous pecan seedlings were noted in both of the Greenbelt surveys, 

very few mature pecan trees were found. In Barry and Kroll’s (1990) survey, the number 

of mature pecans was so small that the importance value for the species was zero. In 

the Rijal (2011) study, pecans made up about 1% of the total number of individuals. 

While most of the trees in Rijal’s study were small to mid-size, some trees had a 

diameter at breast height (DBH) exceeding 100 cm. Pecan is classified as intolerant to 

shade. It is a bottomland species favoring well-drained, sandy, and loamy soils, but it 

can also grow in heavier soils. Problems with modeling pecan include a small local data 

set of measurements and no available source of growth ring data. 

Celtis laevigata (sugarberry) is a very common species in the Greenbelt, having 

the highest importance value in the Barry and Kroll (1999) study.  While C. laevigata 

had the third highest importance in value in the Rijal (2011) study, the value was only 
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slightly less than the two higher ranked species, Fraxinus pennsylvanica and Ulmus 

crassifolia.  It is a medium-sized tree and can grow very rapidly. This species is tolerant 

to shade, moderately tolerant to flood and drought, and a climax species for this forest 

type. Primarily a bottomland tree, it can occasionally be found in uplands, although with 

a stunted growth form. It can be difficult to distinguish between sugarberry and its 

similar and closely related species Celtis occidentalis and Celtis laevigata var. reticulata 

in the field. Being of little commercial importance, there is not a large amount of 

published data on sugarberry and no available source of growth ring data. 

Forestiera acuminata, or swamp privet, is one of the only native tree species that 

can tolerate completely wet conditions. While not mentioned in Barry and Kroll’s (1999) 

study, swamp privet ranked fourth in importance in value in Rijal’s (2011) study and 

dominated in the low flats and sloughs. It was absent in upland sites. The species is 

tolerant to shade, and it is a common associate and likely successor to the shade 

intolerant black willow. Swamp privet’s growth form is typically more shrub-like than like 

a tree, usually having multiple stems coming up from the base, with the stems bending 

and growing laterally. This type of growth form is not currently implemented in FACETA, 

and it is a poor fit for the model’s growth assumptions. The tree is unimportant 

commercially, has very little published data, and has no growth ring data. 

Fraxinus pennsylvanica (green ash) was one of the most important species in 

both Greenbelt surveys. Green ash thrives in moist soils and is tolerant to flooding, but it 

is also hardy in dry soils. It is moderately shade tolerant, a fast grower, and is 

considered a climax species for the forest type. Considerable published information is 
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available on the species, and an excellent data set of growth rings sampled from the 

Greenbelt in a previous University of North Texas student’ s research is available. 

Morus rubra (red mulberry) is a fast growing, small to medium sized tree found to 

be fairly abundant in the Greenbelt understory in the Rijal (2011) survey but appeared 

only rarely in the Barry and Kroll (1999) study. It is known to hybridize with the Asian 

imported white mulberry (Morus alba), and the species appears on some states’ 

threatened or species of concern lists. Generally, the species is not that abundant, and 

it is thought to occur only as scattered individuals (Burns & Honkala, 1990). However, 

some parts of the Greenbelt understory were thick with mulberries, and occasionally 

there were individuals of substantial size. There is little published data on the species 

and no available sources of growth data. 

Populus deltoides (eastern cottonwood) was the tree with the largest growth 

potential – height, diameter, and rate – in the Greenbelt. Cottonwood was not present in 

the Barry and Kroll (1999) study but was fairly important in the Rijal (2011) study, often 

appearing as very large trees. It is considered a pioneer species and is intolerant to 

shade, moderately tolerant to flooding, fast growing, and short-lived. It favors high 

banks and well-drained soils in the floodplain. There is some publicly available tree ring 

data through a dendrochronology database, but it is collected in South Dakota, which is 

at the limit of the species’ range.  

Quercus macrocarpa (bur oak) was potentially one of the largest in diameter and 

longest-lived species found within the Greenbelt. Bur oak showed up as a minor 

component in both Greenbelt studies, infrequently but often as large individuals. 

Seedlings too small to be included in these surveys were not uncommon in the 
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Greenbelt. Bur oak can be found in both uplands and bottomlands within its range, and 

it is one of the most important trees of the northern American prairie. It is considered 

very drought tolerant, weakly tolerant to shade, slow growing, and while it is considered 

intolerant to flooding, it is common in bottomlands; individuals do survive through 

periodic floods in the Greenbelt floodplain. As with cottonwood, there is some tree ring 

data available through dendrochronology resources for bur oak, but these data were 

sampled from locations near the western limit of the species’ range and not close to this 

study area. 

Quercus marilandica (blackjack oak) is a small to medium size tree. Blackjack 

oaks along with Quercus stellata (post oak) are only found on upland sites. The Barry 

and Kroll (1999) Greenbelt study focused exclusively on bottomland sites and 

subsequently found none of these two oak species. While the Rijal (2011) study also 

focused on bottomland sites, the surveys from the study did include two upland sites. 

Blackjack oak was absent in one of these two sites but made up a significant proportion 

of the other site with the second largest basal area and importance value. It was notable 

that the site with no blackjack oak had sandy loam soil with sites on a low slope.  The 

soil in the other site was on top of a ridge and had a considerably coarser texture that 

was very rocky. The species has a reputation for thriving on dry ridges and sites with 

poor soil. Generally, blackjack oak is considered the second most important tree 

species in Eastern Cross Timbers upland sites after post oaks. It is a very slow growing 

tree, and while it often is small or even shrubby, it can grow to diameters exceeding 

60 cm, heights close to 20 m, and can live in excess of 200 years. It is intolerant to 

shade and flood, has a high tolerance to drought and poor soil nutrients, and is tolerant 
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to periodic fires. It can dominate on some sites, typically where soil conditions are very 

poor. Dendrochronologists avoid this species because of its notoriously hard wood. 

Additionally, the center of the trunk often has heart rot, so there are no sources for tree 

ring data. 

Quercus stellata (post oak) is the characteristic tree of the uplands of the Eastern 

Cross Timbers. In North Texas, it does not typically grow very tall, typically staying 

under 15 m, but it can reach heights exceeding 30 m and diameters of 100 cm. Post 

oak only showed up in the two upland sites in the Greenbelt surveys, but it dominated in 

both surveys, particularly in the basal area. It is intolerant to shade, flooding, and soils 

with poor drainage or clayey textures. Post oak is found together with blackjack oak in 

sites with dry, poor soils, as both species tolerate these conditions; however, post oak is 

a little more tolerant to drought and a little less tolerant to poor soil nutrients. It is slow 

growing but faster than blackjack oak, and it can live longer than 300 years. Post oak is 

a favored species by some dendrochronologists, and a number of tree ring data sets 

are available, including datasets collected in North Texas. 

Salix nigra (black willow) is the largest North American willow species, and the 

only one native to North Texas. It was not found in the Barry and Kroll (1999) surveys 

and only constituted a minor component in the Rijal (2011) surveys; however, there 

were areas in the Greenbelt area where black willow dominated. Black willow is one of 

the first species that grows from new sand bars, often together with cottonwood. It is 

commonly found in sloughs and low-lying areas in the bottomland, and it is common in 

ditches and disturbed places where water collects in urban areas. Together with swamp 

privet, it is the most flood tolerant woody species in North Texas, and it has a high 
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moisture requirement for seed germination and establishment. It is intolerant to shade, 

short lived, a fast grower, and considered a pioneer species. There is limited published 

data and no available sources of tree ring data for black willow. 

Ulmus alata (winged elm) is a small to medium sized tree able to grow in a wide 

range of soil and moisture conditions. This tree was absent in the Barry and Kroll (1999) 

surveys. In the Rijal (2011) surveys, winged elm had high importance values in the two 

upland sites and appeared as a minor component in the bottomland sites. 

Correspondingly, the species was described as being a minor component in both the 

post oak-blackjack oak and the sugarberry-American elm-green ash forest types. In dry 

upland sites, it stays small, has stunted growth, but can grow to decent size on better 

sites. It is tolerant to shade but not as much as other elm species. The winged elm is 

classified as tolerant to flooding, although it is not known to grow in standing water. 

From personal experience, it is far more common in upland sites than in bottomland 

sites.  It is easy to misidentify cedar elm (Ulmus crassifolia) in the field as winged elm. 

While the two species each have distinguishing characteristics (winged elms grow corky 

wings on the stems and cedar elms have smaller leaves that are scabrous), cedar elms 

can also grow wings. Leaf size is highly variable among individuals, and winged elms 

leaves are slightly scabrous. In some cases, the only way to tell with certainty which of 

these species a tree belongs to is to identify it during the couple of weeks that it is 

flowering. Information is available on winged elm, but it is sometimes contradictory or 

incomplete. No sources of growth ring data are available. 

Ulmus americana (American elm) is the largest of elm species in North Texas. 

American elm was not observed by Barry and Kroll (1999), but it was a significant 
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component in the Rijal (2011) surveys. A limited number of large, older trees were found 

in the Greenbelt surveys, but a number of smaller young trees were also identified. Due 

to its susceptibility to Dutch elm disease, large American elm trees have diminished in 

importance in U.S. forests (Burns & Honkala, 1990). This is a possible explanation why 

large American elm trees are not as common in the Greenbelt forest. American elm is 

tolerant to a range of conditions. It is most common in bottomlands on flats and 

terraces, but it is not common in swamps. American elm is considered moderately 

shade tolerant and a climax species. American elm is a well-described species, but it 

has not been of interest in dendrochronology. 

Ulmus crassifolia (cedar elm) was one of the most common species in the 

Greenbelt. Found throughout the bottomland, it grew in sloughs, on flats, and fronts. It 

also grew in the uplands, although it was rather small and stunted in the Cross Timbers 

uplands. Cedar elm can grow in a range of soil conditions and can dominate in poorly 

drained heavy clay soils. Published data on cedar elm is limited, and growth data are 

difficult to determine as cedar elm exhibits very irregular radial growth and the cross 

sections can range from circular to square, or can be deeply scalloped. Growth rings 

are very indistinct. At times, it can grow corky wings and resemble winged elm. 

The species described above were all candidates for FACETA modeling and 

parameters were researched as far possible. However, either because of limited 

information and data, or because a species did not fit well in the model’s assumptions, 

not all of these species could be successfully modeled in FACETA. Other species were 

considered for different reasons for the Greenbelt FACETA model. Gleditsia triacanthos 

(honeylocust) and Maclura pomifera (bois d’arc) were both considered because of their 
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prevalence in the Greenbelt. Juniperus virginiana (eastern red cedar) was considered 

because of its importance as an invader in the Cross Timbers uplands, while Prosopis 

glandulosa (honey mesquite) was considered because of its importance as an invader 

in the prairie. However, model parameters were not pursued for these species. 

Maximum Age, Diameter, and Height Parameters 

Species-specific growth parameters include maximum age (AGEMAX), maximum 

height (HMAX), and maximum diameter (DMAX). It might seem these would be easy 

parameters to find values for, and indeed, a number of forestry and silvics resources 

give numbers for these maximums. However, the different sources do not always agree 

with one another, and information about species that have little or no commercial value 

is often incomplete or unknown. To some extent, it is not really possible to know these 

maximum values with certainty, and the best that can be done is to find information on 

the tallest, widest, or oldest tree of its species recorded. Another complication is that the 

size that individual trees from any species can reach can vary greatly across the native 

range of that species. The meaning of the term diameter, as well as height in some 

cases, is also somewhat ambiguous. Standard forestry practice for measuring diameter 

is to measures the perimeter around the trunk at breast height, and then to divide that 

length by Π (3.14). This measurement is the diameter at breast height (DBH). The 

assumption or rationale behind calling this measurement the diameter is that the trunk 

of a tree is essentially symmetric and circular. That assumption holds well for many 

trees of many species, but not for all trees or species. FACETA also relies on an 

assumption of symmetric trunk growth. This symmetry assumption does not cause an 

issue with modeling tree growth, forest development, or for finding a value for the 
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parameter DMAX, but it does become an issue for collecting and analyzing data when 

determining the growth rate parameter since in reality many data points will come from 

asymmetrical trees. The height of the DBH measurement was initially defined in 

American forestry practices as 4.5 feet, or 1.37 m, above the ground. Now the common 

standard used is 1.4 m above the ground, and in some countries, the convention is 

1.3 m. If there is a branch or burl growth at breast height, then the tree should be 

measured at the thinnest point below that level. In cases of trees growing on sloping 

land, some standards measure from the base of the tree on the high side of the slope 

while others measure from the midpoint between the high and low sides. The procedure 

for measuring trees growing on sloping land becomes significant on steep slopes with 

trees that have a pronounced broadening at the base of the trunk. Trees that are 

themselves growing at a slant or in odd forms can present challenges to measure 

according to a uniform standard. For the Greenbelt FACETA model, slanted tree growth 

was primarily a problem for the shrub-like species Forestiera acuminata. The height of a 

tree was typically measured as the height above the ground from the top of the crown, 

which is a straightforward definition. However, for a slant-growing species like 

F. acuminate, this method may be problematic, and it might be more appropriate to 

measure the length of the stem, at least for determining allometric relationships. Growth 

patterns such as slant-growing or asymmetrical stems that do not conform well to model 

assumptions were referred to as non-conforming growth (Fig. 5.1). In this research, 

when referring to measured data, the term DBH meant the perimeter of the trunk 

divided by 3.14 and measured at 1.37 m above the ground, or as close below that as 

possible to avoid lateral growths. The measurement itself was typically made with DBH 
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tape, a forestry measuring tape with a scale that has already been divided by 3.14. 

Within the model world of FACETA, DBH is defined as the diameter of a symmetric tree 

trunk at 1.37 above the ground. For both real-world measurements and within FACETA, 

the height is defined as the vertical distance from the ground to the top of the crown. 

 
Figure 5.1. Non-conforming growth in Greenbelt area trees. FACETA makes assumptions about growth 
forms and symmetry of trees, but many tree species do not conform well to these assumptions. (A and B) 
Maclura pomifera often grows multiple stems with a twisting, irregular form, or as a single, asymmetrical, 
lobed main stem branching out at low height. (C) Forestiera acuminata typically grows laterally and often 
even back towards the ground. (D) Quercus stellata can grow as two or three main stems. It is often 
unclear if multiples trees merged into each other, or if one tree split into multiple main stems. (E) Celtis 
laevigata is one of a number of Greenbelt area tree species that can exhibit asymmetrical radial growth of 
the main stem. These kinds of non-conformities can cause problems interpreting DBH and height 
measurements, interpreting height/DBH allometry, collecting and analyzing growth ring data, and may 
affect the assumptions for leaf area allometry. 
 

Size limit parameters DMAX and HMAX are both used in FACETA’s growth 

algorithms. Together with the growth rate parameter, G, they are used in the 
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incremental optimal diameter growth equation, the primary equation driving the growth 

of trees. This equation outputs for each species the optimal amount of new annual 

diameter growth as a function of the current diameter. Optimal growth increment can 

only be achieved if all environmental conditions are optimal. Stressor equations in 

FACETA, for example for drought or temperature, decrease annual modeled growth 

increments from the optimum depending on the environmental conditions and on each 

species tolerance parameters. Another growth equation that uses HMAX defines the 

allometric relationship between height and DBH. Both the optimal growth equation and 

height/DBH allometric equation are discussed in more detail in the following section. In 

addition to being used in growth algorithms, some parameters are also used in the tree 

mortality algorithms. FACETA uses a probabilistic, age-related background mortality 

based on the assumption that only a certain percentage of any population will be able to 

reach its maximum age. In any simulation year, all individuals of a species face the 

same probability of this background mortality, and the higher the AGEMAX parameter 

value is for a species, the lower its annual background mortality probability will be. 

Mortality also occurs in FACETA when trees do not grow significantly for some number 

of years. A lack of sufficient growth can occur when the environmental stressors are too 

great or if a tree reaches its maximum size. Once a tree reaches DMAX for its species, 

the tree will no longer grow and the no-growth component of mortality will follow.  

The limit parameters AGEMAX, HMAX, and DMAX are intended to represent true 

maximums that would occur under optimal conditions. Realized growth will always be 

reduced from this maximum through the stressor equations. Being able to find values 

for these maximums can depend on how common, desired, or commercially important 
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the species is. Considering how little old growth forest remains in the eastern United 

States, it is possible there are no remaining examples of true maximums for some of 

these native eastern species. Observing and measuring the width or height of a tree is 

much more common and far simpler than measuring a tree’s age, so it is likely observed 

maximums for DBH and height reflect the truer potential maximums for a species than 

those for age. To find values for these parameters, the approach taken is to find the 

largest cited values from credible sources while at the same time maintaining 

consistency by limiting the number of sources. The large variation in size that some 

species can exhibit across their range raises a question about this parameterization 

approach.  

The Greenbelt FACETA species that is probably most different in size across its 

range is Quercus stellata, or post oak. Post oaks require aerated soils and suffer in 

inundated soil. In the Greenbelt area, they grow on the sandy uplands of the Cross 

Timbers, and in the hot and dry summers in that part of Texas, sandy soil becomes very 

dry. The post oaks growing wild in the Cross Timbers typically do not exceed 12 m in 

height. They will grow taller if they receive more water, so the post oaks growing in 

residential properties within the study area may reach 15 m. In the wetter part of post 

oak’s range, it can achieve heights greater than 30 m. For example, the National 

Register of Big Trees, a national database of individual large trees, lists a post oak in 

Mississippi that exceeds 32 m. The question then is should HMAX be the maximum 

height across the species’ entire range, or should HMAX be limited to values that are 

realistic within the modeled area. The same question applies to DBH. It would be ideal 

to be able to set model parameters to an overall potential maximum and let the modeled 
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weather, soil moisture, and growth and stress relationships determine the modeled 

output size. One potential problem from doing this is ending up with unrealistic output, 

such as 30-m tall post oaks in Texas. It turns out that this particular problem is avoided 

if the height/DBH data for the allometric parameters and the growth ring data for the 

growth rate parameters are collected locally. The locally collected data has a stronger 

influence on the model parameters than the potential maximums.  

Possibly a larger concern or potential problem in using the maximums from 

across the entire range of species occurs when species with significantly different 

ranges are included in the same model. In this case, the maximum parameters from 

those different species might be incomparable. For example, Ulmus crassifolia, or cedar 

elm, has a smaller and more southwestern range than the other candidate species for 

the Greenbelt FACETA model. Its range lies mostly in Texas and northern Mexico, and 

extends on its eastern side to northern Louisiana, southern Arkansas, and the 

northwestern edge of Mississippi. For all the Greenbelt FACETA candidate trees, the 

largest growth is typically realized in the wetter, eastern parts of their range. A 

commonly cited maximum height for cedar elm is 30 m, the same as post oak. 

However, it seems plausible if not probable that cedar elms would achieve taller growth 

if their range extended further east. Considering cedar elms in the Greenbelt 

bottomlands grow twice as tall as upland post oaks, using 30 m for the maximum height 

parameter for both of these species is incomparable. The modeling philosophy is that 

you seed the model with the species’ optimal potential and let stress and competition 

within the model reduce the realized growth from the optimal. However, if parameters 

for the optimal potentials for different species are derived from places with different 
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climates or environmental conditions, then the question rises of whether those 

parameters reflect a true optimal potential or they simply reflect the realized maximums 

the species were able to attain under those different environmental conditions. This 

concern is somewhat alleviated by using local measurements for the other growth 

parameters, which brings the realized growth of the modeled trees more in line with the 

trees growing in the area.  

The question of how to exactly deal with the maximum parameters for species 

that vary greatly over their ranges is not fully addressed in this modeling philosophy. In 

this research, commonly cited maximums regardless of species range were typically 

used for the maximum parameters, but only to the extent that those maximums were 

still compatible with local measurements. The allometric and growth rate parameters 

were estimated from measurements taken locally within the modeled area, and these 

parameters caused the modeled growth to be influenced by the local growth patterns. In 

some cases, using maximum values that are out of line with local measurements can 

lead to undesirable outputs in the growth model, so using the largest of the referenced 

maximums is not always the best choice. 

Resources offered through the USDA, USFS, National Registry of Big Trees 

(NRBT), and local measurements were used to determine the maximum parameters. 

Three of the sources used are offered through the USDA Forest Service: Silvics of 

North America (Burns & Russell, 1990), the Climate Change Tree Atlas (Prasad & 

Iverson, 2007-ongoing), and the USDA Fire Effects Information System (FEIS; USDA, 

2014a). Silvics of North America is an agricultural handbook offered in print and online 

that describes the silvical characteristics of many North American tree species. This 
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manual is focused towards applications in forestry, and subsequently, commercially 

important trees have more comprehensive and complete descriptions. The Climate 

Change Tree Atlas is an online spatial database describing many species of the Eastern 

United States with the emphasis being the impact of climate change on these species. 

The database also describes many silvical and ecological characteristics of the species. 

The USDA FEIS online database provides information regarding fire effects on various 

plants, animals, and lichens. It includes a great amount of silvical and ecological 

information on tree species. The Natural Resources Conservation Service (NRCS), 

another agency housed within the USDA, offers the PLANTS Database (USDA, 2014b), 

an online resource describing biological and ecological characteristics of many native 

and imported plant species. While all four resources are from the USDA and three are 

from the USFS, the information they contain often overlaps and agree; however, they do 

not always agree. In some cases, the sources from the USFS cite maximums that come 

from notable or record-breaking trees. The numbers given are often for average, typical, 

or mature trees, but the NRCS PLANTS Database only reports typical or average 

values. The NRBT (American Forests, 2013) is a non-governmental resource. Operated 

by the non-profit, conservation organization, American Forests, the register allows 

people from around the country to submit information – circumference, height, and 

sometimes a photograph – of trees that are particularly large examples for their species. 

The trees are scored through a combination of the circumference and height, and the 

Big Tree Champions are declared for each species based on those scores. An 

interesting result of this scoring system is that many champions win that honor based on 

the circumference, while the height can often be far from record breaking. This register 
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is by its nature a source of maximum growth potential, but it probably should be used 

with caution for determining these maximum parameters. Species identification and 

measurements are done by people who nominate trees to be added to the register, the 

circumference measurements are sometimes made on trees with split or multiple stems 

or exhibiting other non-conforming growth patterns, and in some cases, these trees just 

seem to be extreme outliers in size (Fig. 5.2). Table 5-3 summarizes the maximum size 

and age values from these five sources as well as from local measurements.  

 

Figure 5.2. National Register of Big Trees champions. Photographs are submitted for many of the 
champions in the National Register of Big Trees. (A) A very large blackjack oak (Quercus marilandica) 
growing in Illinois, with a circumference of 125 in., equating to a DBH of 101 cm, and a height of 23 m. 
(B) This post oak (Quercus stellata) in Georgia became a champion by virtue of its circumference (245 
in.), but the trunk is split. (C) This black willow (Salix nigra) in Michigan has a massive trunk and limbs, 
but has a modest height of a little over 20 m. (D) An American elm (Ulmus americana) growing in 
Louisiana, this tree is close to 34 m tall and has a measured circumference of 324 in. The large 
circumference, equated to a DBH of 2.6 m, reflects the tree’s very broad, fluted base, and it should not be 
calculated as a DBH. (E) Another post oak, this one growing in Mississippi, has an amazing height, 
circumference, and crown, and it would tower over post oaks growing in Texas. Images are all from the 
NRBT (American Forests, 2013). 
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Table 5.3 
  
Maximum Age, Diameter, and Height for Greenbelt FACETA Trees 

Species AGEMAX (years) DMAX (cm) HMAX (m) 

Acer negundo 

Silvics: n/a FEIS: 100 Silvics: 120 FEIS: 92 Silvics: 23 FEIS: 21 

PLANTS: 

Short 
NRBT: n/a PLANTS: n/a NRBT: 210 PLANTS: 18 NRBT: 23 

CCTA: 100 Denton: n/a CCTA: n/a Denton: 67 CCTA: 15 Denton: 22 

FACETA: 100 FACETA: 90 - 120 FACETA: 23 

Carya 
illinoinensis 

Silvics: n/a FEIS: Long Silvics: 210 FEIS: 210 Silvics: 55 FEIS: 45 

PLANTS: Long NRBT: n/a PLANTS: n/a NRBT: 216 PLANTS: 43 NRBT: 41.5 

CCTA: 300 Denton: n/a CCTA: n/a Denton: 102 CCTA: 55 Denton: 32 

FACETA: 300 FACETA: 210 FACETA: 43 - 55 

Celtis 
laevigata 

Silvics: 150 FEIS: n/a Silvics: 46 FEIS: 46 Silvics: 30 FEIS: 30 

PLANTS: Mod. NRBT: n/a PLANTS: n/a NRBT: 244 PLANTS: 24 NRBT: 28 

CCTA: 150 Denton: n/a CCTA: 122 Denton: 76 CCTA: 24 Denton: 26 

FACETA: 150 FACETA: 75-120 FACETA: 30 

Forestiera 
acuminata 

Silvics: n/a FEIS: n/a Silvics: n/a FEIS: n/a Silvics: n/a FEIS: n/a 

PLANTS: Long NRBT: n/a PLANTS: n/a NRBT: 25 PLANTS: 10 NRBT: 14 

CCTA: n/a Denton: n/a CCTA: n/a Denton: 16 CCTA: n/a Denton: 11 

FACETA: 40 FACETA: 25 FACETA: 14 

Fraxinus 
pennsylvanica 

Silvics: n/a FEIS: n/a Silvics: 76 FEIS: 146 Silvics: 37 FEIS: 44 

PLANTS: 

Short 
NRBT: n/a PLANTS: n/a NRBT: 219 PLANTS: 24 NRBT: 30 

CCTA: 150 Denton: n/a CCTA: n/a Denton: 100 CCTA: 17 Denton: 38 

FACETA: 150 FACETA: 100-140 FACETA: 40 

Morus rubra 
Silvics: n/a FEIS: 125 Silvics: 76 FEIS: 181 Silvics: 21 FEIS: 22 

PLANTS: Mod. NRBT: n/a PLANTS: n/a NRBT: 222 PLANTS: 21 NRBT: 17 

CCTA: 125 Denton: n/a CCTA: n/a Denton: 37 CCTA: 21 Denton: 17 

 FACETA: 125 FACETA: 100 FACETA: 22 

Populus 
deltoides 

Silvics: n/a FEIS: 200 Silvics: 180 FEIS: 183 Silvics: 58 FEIS: 58 

PLANTS: 

Short 
NRBT: n/a PLANTS: n/a NRBT: 364 PLANTS: 58 NRBT: 27 

CCTA: 200 Denton: n/a CCTA: 160 Denton: 118 CCTA: 50 Denton: 34 

 FACETA: 200 FACETA: 160-180 FACETA: 50 - 58 

   
 

(table continues) 
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Table 5.3 (continued) 
Species AGEMAX (YEARS) DMAX (cm) HMAX (m) 

Quercus 
macrocarpa 

Silvics: 300 FEIS: 440 Silvics: 213 FEIS: 260 Silvics: 52 FEIS: 40 

PLANTS: Long NRBT: n/a PLANTS: n/a NRBT: 239 PLANTS: 30 NRBT: 30 

CCTA: 400 Denton: n/a CCTA: n/a Denton: 92 CCTA: 30 Denton: 32 

FACETA: 400 FACETA: 210 FACETA: 32 - 52 

Quercus 
marilandica 

Silvics: n/a FEIS: 230 Silvics: n/a FEIS: n/a Silvics: n/a FEIS: 15 

PLANTS: Long NRBT: n/a PLANTS: n/a NRBT: 101 PLANTS: 8 NRBT: 23 

CCTA: 230 Denton: n/a  CCTA: n/a Denton: 64 CCTA: 15 Denton: 14 

FACETA: 230 FACETA: 100 FACETA: 15-23 

Quercus 
stellata 

Silvics: n/a FEIS: n/a Silvics: 122 FEIS: 122 Silvics: 30 FEIS: 30 

PLANTS: Long NRBT: n/a PLANTS: n/a NRBT: 183 PLANTS: 18 NRBT: 32 

CCTA: 400 Denton: n/a CCTA: 135 Denton: 92 CCTA: 18 Denton: 16 

FACETA: 400 FACETA: 135 FACETA: 18 - 30 

Salix nigra 

Silvics: n/a  FEIS: n/a Silvics: 122 FEIS: n/a Silvics: 43 FEIS: 42 

PLANTS: Short NRBT: n/a PLANTS: n/a NRBT: 325 PLANTS: 30 NRBT: 20 

CCTA: 85 Denton: n/a CCTA: n/a Denton: 66 CCTA: 40 Denton: 22 

FACETA: 85 FACETA: 120 FACETA: 30 - 43 

Ulmus alata 

Silvics: n/a FEIS: n/a Silvics: 61 FEIS: n/a Silvics: 30 FEIS: n/a 

PLANTS: Short NRBT: n/a PLANTS: n/a NRBT: 146 PLANTS: 20 NRBT: 27 

CCTA: 125 Denton: n/a CCTA: 74 Denton: 61 CCTA: 24 Denton: 12 

FACETA: 125 FACETA: 74 FACETA: 20 - 30 

Ulmus 
americana 

Silvics: 300 FEIS: 300 Silvics: 152 FEIS: 152 Silvics: 38 FEIS: 36 

PLANTS: Mod. NRBT: n/a PLANTS: n/a NRBT: 262 PLANTS: 37 NRBT: 34 

CCTA: 300 Denton: n/a CCTA: 152 Denton: 74 CCTA: 38 Denton: 28 

FACETA: 300 FACETA: 152 FACETA: 38 

Ulmus 
crassifolia 

Silvics: n/a FEIS: n/a Silvics: 90 FEIS: n/a Silvics: 30 FEIS: n/a 

PLANTS: Short NRBT: n/a PLANTS: n/a NRBT: 126 PLANTS: 27 NRBT: 37 

CCTA: 125 Denton: n/a CCTA: n/a Denton: 64 CCTA: 24 Denton: 28 

FACETA: 125 FACETA: 90 FACETA: 30 

Note: Maximum age (AGEMAX), DBH (DMAX), and height (HMAX) parameters are derived from forestry 
and ecology resources, measurements of trees in the modeled area, and the NRBT. The sources in the 
table are coded as follows: Silvics = Silvics of North America, PLANTS = The PLANTS Database, CCTA 
= Climate Change Tree Atlas, FEIS = Fire Effects Information System, NRBT = National Register of Big 
Trees, and Denton = trees measured in Denton County both in and out of the Greenbelt Park. The values 
listed by FACETA are the initial model parameters used. 
 

The initial FACETA parameter values are chosen from the range of possible 

values from these sources. In general, model parameters need to be tested for 

sensitivity, calibrated, and validated. This process is particularly important when the 
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model output is easier to measure than the model’s input parameters. The maximum 

height, diameter, and age parameters are easier to measure than most of the other 

parameters needed in FACETA, but they still need to be tested for sensitivity and 

validated to ensure realistic results. Most of the model input parameters are linked to 

each other through multiple equations or algorithms, and in some cases, a particular 

parameter value may work well for one component of the model but not for another. 

Allometric Growth Parameters 

The three species-specific parameters in FACETA that define the geometric 

relationships between height, DBH, and leaf area are the diameter/height allometric 

coefficients, b2 and b3, and the height to base of crown ratio Hc. Another allometric 

growth parameter lifeform requires an input value in FACETA. Lifeform is used in one of 

FACETA’s predecessor models, ZELIG. The different lifeforms are defined primarily by 

genus, e.g., Thuja, Pinus, and Acer were three of the available values, with the idea that 

each lifeform group has an average or representative pattern in its allometric 

relationships. In the model, each lifeform is linked to a set of regression coefficients 

used in various equations for trunk tapering, diameter to sapwood, and leaf area to 

sapwood allometric relationships. This approach to tree allometry and the specific 

equations in ZELIG were developed for species growing in the Pacific Northwest, and 

lifeform was not implemented in FACETA. However, the approach could potentially be 

implemented in the future. To do so would require determining appropriate equations to 

represent the allometric relationships and collecting sufficient allometric data from each 

lifeform group to do the necessary regression analysis. The success of this kind of 

approach would depend on the consistency of the relationships within each lifeform 
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group and the ability to generalize those allometric relationships. While it is not used in 

the model calculations, a value for the lifeform parameter is still required in the FACETA 

species input file, so as a convention, it is set to that of generic deciduous tree.  

The height to base of crown parameter Hc is input as the ratio of the height of the 

base of the crown to the total tree height. FACETA actually uses the compliment of this 

value to determine the crown ratio or the ratio of the thickness of the crown to the tree 

height. This ratio is subsequently used in the calculation of total leaf area of the tree. 

The crown ratio turns out to be an important parameter because leaf area is calculated 

as a function of a tree’s DBH and the species’ Hc parameter. Leaf area is then used in 

calculating volumetric growth, and the volumetric growth equation is quite sensitive to 

changes in Hc. One advantage in the Hc parameter is that the measurements needed 

to estimate the parameter are relatively easy to make. Using a clinometer, it only 

requires measuring the angles to the base of a tree, to the base of its crown, and to the 

top of the tree. Hc can then be calculated from these angles.  

For this research preliminary data were collected for three candidate species–

Quercus stellata (post oak), Ulmus crassifolia (cedar elm), and Celtis laevigata 

(sugarberry)–to estimate the Hc parameter (Table 5.4, Fig. 5.3). All were measured in 

Denton County close to the study area watershed, and trees with any obvious signs of 

past pruning were avoided. For measurement purposes, the base of the crown was 

defined as the lowest point on the tree where branches with leaves were growing from 

the trunk. Leaves growing directly from the trunk were not included as part of the crown, 

and if a branch growing from the trunk grew upwards before leaves appeared from it, 

the lowest point on the branch with leaves was used to define the base of the crown.  
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Hc = 0.0 Hc = 0.3 Hc = 0.5 

Figure 5.3. Variation in crown to height ratio for Quercus stellata. Post oaks growing in the 
Cross Timbers ecoregion often have branches and leaves growing from the trunk close to the 
ground, resulting in a small height to base of crown ratio. Within the species there is still quite a 
bit of variation. From these images, the Hc parameter is calculated as the unlabeled height to 
the base of the crown divided by the total tree height H. Left: This tree has branches with leaves 
growing from the trunk down to the ground, resulting in a height to base of crown ratio of 0. 
Center: This tree has a height to base of crown ratio very close to the median value for post 
oaks of 0.29. Right: This image did not capture the full height of the tree, and the proportions 
are a little misleading. The height to base of crown ratio of this tree is approximately 0.5. 

  
Table 5.4 

Height to Crown Ratio for Selected Candidate Species 

Species N Average Minimum First 
Quartile Median Third 

Quartile Maximum 

Post oak 61 0.30 0.00 0.21 0.29 0.37 0.62 

Cedar elm - All 
    - In the open 
    - With competition 

14 
8 
6 

0.34 
0.29 
0.42 

0.21 
0.21 
0.33 

0.28 
n/a 
n/a 

0.34 
n/a 
n/a 

0.41 
n/a 
n/a 

0.47 
0.40 
0.47 

Sugarberry - All 
    - In the open 
    - With competition 

15 
4 

11 

0.44 
0.39 
0.46 

0.28 
0.28 
0.34 

0.38 
n/a 
n/a 

0.46 
n/a 
n/a 

0.50 
n/a 
n/a 

0.65 
0.48 
0.65 

Note: The results from data collected to estimate the height to crown parameter Hc for three 
FACETA candidate species: Quercus stellata, Ulmus crassifolia, and Celtis laevigata. Of the 
three, Q. stellata (post oak) had the smallest average Hc, but it also had the largest variation 
and range. C. laevigata (sugarberry) had the highest average Hc, and U. crassifolia (cedar elm) 
had the smallest variation and range in values. Quartiles were not calculated for the in the open 
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and with competition subgroups of cedar elm and sugarberry as the datasets were very small, 
and for post oak, the trees were not differentiated into those subgroups. 
 
The crown ratios of the trees were measured using two different methods: (a) using a 

clinometer as previously described and (b) taking a digital photograph of the tree and 

measuring the tree using a digital screen caliper on a computer.  

Many of the trees were measured using both methods, and when compared, the 

differences between the measurement methods were small. The advantage of using a 

digital photograph was that because of the ability to zoom into the image on a computer, 

the measurement was often more accurate. Determining which tree that branches and 

leaves are growing from can be difficult at times when trees are growing close together; 

zooming in on a digital photograph can really help in the differentiation. The 

disadvantage of using a photograph was that the image had to be taken from a distance 

far enough away that the angle to the top of the tree did not distort the measurement, 

and the camera required a clear view of the tree from that distance. For these reasons, 

the photo method was not possible when making the measurements within a forest, and 

a clinometer had to be used. Using binoculars in conjunction with the clinometer 

improved the accuracy.  

The post oak dataset contained 61 trees measured from three groups in different 

locations and conditions of Denton County. The group in the driest location was located 

on a rocky sandstone hill covered with a thicket of small, tightly spaced post oaks. The 

second group was a grove of post oaks located within a residential neighborhood but in 

an area that was not irrigated or landscaped. This grove was located in a topographic 

dip on the side of a slope, had deep sandy loam soil, and was likely representative of 

some of the best possible conditions for post oaks growing naturally in the area. The 
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trees were densely spaced but were also large. The third group was of post oaks 

growing out in the open without any competition and within a residential neighborhood 

that sat on deep sand to sandy loam soil. The objective was to get measurements from 

different conditions and get a full range of possibilities for post oak crown development; 

crown ratios between the three groups were not compared. 

However, an interesting followup question not addressed here is whether the 

crown ratios differ between these different conditions. The average value of Hc 

calculated from the post oaks was 0.30, and the values ranged from 0.00 to 0.62. The 

datasets for the other two species were much smaller. All of the cedar elms and 

sugarberries were measured within the same flat area close to a small, intermittent 

stream within a 500-year floodplain. The area was not properly described as a 

bottomland as the stream and its floodplain were too small, but it was a topographically 

moist location sitting on a clay loam to silty clay soil. About one third of these sugarberry 

and cedar elm trees were growing away from other trees without any canopy 

competition, and the other two thirds were growing closely next to other trees with 

canopies growing into each other. The average Hc from 15 sugarberries was 0.44, and 

the values ranged from 0.28 to 0.65.The average Hc from 14 cedar elms was 0.34, and 

the values ranged from 0.28 to 0.47.  

While these datasets were not sufficiently large to draw many conclusions, there 

were some possible trends. Of the three species, post oak tended to have the smallest 

Hc but also the largest variation and range. Sugarberry had the highest average Hc, 

and cedar elm had the smallest variation and range in values. For both cedar elm and 

sugarberry, the individuals growing in the open without competition for light had smaller 
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average Hc values than those growing with close canopy competition; however, the 

individual datasets were too small to draw conclusions on. Sugarberry growing in the 

bottomland forest grew tall and had a relatively high Hc, but sugarberry trees growing in 

the uplands were short and scraggly, often having crowns that reached close to the 

ground. However, this personal observation was not addressed in the dataset. 

Observation of branches low to the ground also extended to other species, such as 

blackjack oak, cedar elm, and winged elm, when found growing in the upland positions. 

It seems at least plausible that Hc can depend as much on topographic position as it 

does on other factors. While the comparison between upland and bottomland trees was 

not possible from this dataset, this interesting question should be examined. 

Some of the difficulties in determining and using the Hc parameter became 

apparent from initial measurements and observations. While Hc appeared to depend in 

part on species, there was variation within any species. In addition, Hc can change for 

an individual tree as it grows over its lifetime. Factors other than species can impact 

height and crown development. Competition for light from other trees can be a 

significant factor in height and crown development. Trees growing close together in the 

bottomland forests seemed to grow taller and have a higher Hc than trees of the same 

species growing without competition in the open. It is possible that competition impacts 

height and crown development differently for different species. For example, post oaks 

growing in dense upland stands seemed to have a lower average Hc than post oaks in 

the open. Another potential issue with using the Hc parameter was that for different 

species, the relationship between Hc and leaf area was likely to be different. For 

example, in the Greenbelt upland forests Hc tended to be smaller than in the Greenbelt 
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bottomlands, as the post oaks and blackjack oak often grew branches close to the 

ground. In comparison, the bottom of the crown of a large green ash in the bottomland 

may have been 15 m above ground. In the model, this difference equated to a larger 

crown ratio for the upland species, which resulted in a larger calculated leaf area and 

more rapid growth. However, there was more light penetration through a post oak 

canopy than through the crown of a large green ash tree, implying thinner or less dense 

crowns for post oaks. Additionally, many trees can have lopsided or one-side crowns, a 

condition common with post oaks. This sort of irregularity could be factored into the 

measurement, but that would make the measurement more complex.  

FACETA uses the same assumptions for calculating leaf area from DBH and Hc 

for all species and does not consider foliage density or other differences in the 

productivity of the crown. The Hc parameter is the only component in the model that can 

distinguish the leaf area allometries of different species, and that together with the 

simplicity of the measurement makes it a useful parameter. It could be more adaptable 

to different species if the parameter were calibrated to an efficiency or productivity factor 

rather than just the crown ratio; however, the measurements needed to estimate such a 

parameter would be considerably more complex than for Hc. In the optimal growth 

equation calculation, the Hc parameter’s role overlaps with another species-specific 

parameter, the growth rate G. Total leaf area calculation is in part a function of the Hc of 

each species, and G represents the optimal volumetric growth as a function of leaf area. 

Therefore, these two parameters are mutually sensitive to each other through the 

optimal growth equation. The output of this equation can be changed in similar ways by 

either changing Hc or by changing G. Estimating and calibrating two parameters that 
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are so sensitive to each other is considerably more difficult than it is for one, especially 

when the measurements and estimations for the parameters are either difficult to make 

or highly variable. Because of these various issues, no further attempt to determine 

species values for Hc was made at this time, and instead, this research focused on 

determining values of G for each species. For now, the parameter value of Hc was set 

to be the same in the model for all species. 

Other growth parameters are height/DBH allometric coefficients and growth rate. 

Of these two, it is simpler to make measurements for the allometric coefficients. In 

general, the quantitative relationships between different tree dimensions and other 

properties, for example between height and diameter or between diameter and leaf 

area, are referred to as tree allometry. The FACETA allometric parameters b2 and b3 

are the coefficients in an exponential model derived from the measurements of heights 

and diameters of individual trees. The height/DBH model is: 

( ) ( )( ) 3
20max0 exp1 bDbHHHH −−+= (5.1) 

In the model, H0 is breast height, or 1.37 m; Hmax is the maximum height parameter 

HMAX; and D is the DBH of the tree. This model assumes that height is a function of 

DBH and only models the growth of trees exceeding breast height. The parameter b2 is 

a negative number, so as the diameter of the tree increases, the entire exponential term 

approaches 1 and the overall model value approaches HMAX. Note that the maximum 

diameter parameter is not included in this model, and depending on the data used to fit 

the regression model, a tree might have to attain unrealistically large diameters before 

coming even close to HMAX in height. Making measurements for the height to diameter 

allometry regression model only requires measuring the heights and DBHs of trees from 
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each of the species. All of the trees measured for the allometric parameters in this 

research were either located in the Greenbelt State Park or nearby within Denton 

County. The Greenbelt tree surveys conducted in Rijal (2011) were included in this 

analysis. In the Rijal study, all trees with DBH greater than 5 cm were measured within 

square 25-m x 25-m plots. The plot locations were selected through a stratified random 

selection method to include plots on different soil types, topographic positions, and at 

different seral or developmental stages. Because all trees within the plots were 

measured, this dataset included individuals growing asymmetrically, at a slant, or with 

the top broken off, which all resulted in a departure from the idealized height to DBH 

allometry. The range of sizes in the dataset was limited to those trees found within the 

Greenbelt in these randomly sited plots. For some species like green ash and cedar 

elm, that probably included some of the largest individuals in the area, but for other 

species such as post oak and winged elm, there were much larger individuals growing 

outside of the Greenbelt Park. In addition to the Rijal dataset, trees from some species 

were specifically sought out in a non-random fashion for measurement. These targeted 

measurements were made both within and outside of the Greenbelt Park. The trees 

were selected to include the full range of heights and diameters in the dataset, and 

those with broken trunks or any significant non-conforming geometry were avoided in 

these measurements. Individuals from the species Populus deltoides, Quercus stellata, 

Quercus marilandica, and Salix nigra were specifically sought out for measurement 

within the Greenbelt Park, and Carya illinoinensis, Quercus stellata, Quercus 

marilandica, Salix nigra, and Ulmus alata were also sought out for measurement outside 

of the Greenbelt Park. Trees growing in the unnatural setting outside of a forest were 
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sometimes measured in order to include larger individuals. These trees were growing in 

places like parks, old fields, college campuses, and residential lots. In all the 

measurements, height was measured using a clinometer for the taller trees or with a 

measuring pole for shorter trees. DBH was measured using DBH tape at 1.37 m above 

the ground or as close as possible to avoid burls, limbs, or split trunks. The 

measurements, together with the HMAX parameter for each species, were then used in 

a nonlinear regression to solve for the allometric coefficients. Multiple values of HMAX 

taken from the forestry references were used in the regression to compare the 

differences in the height to DBH regression curves. HMAX was the asymptotic 

maximum height in the regression equation and therefore influenced the overall height 

of the curve’s rate of increase; however, the regression was performed on the 

measured data points. In general, the regression was not particularly sensitive to HMAX 

and the resulting curves differed little, and typically only differed perceptibly for large 

DBH values. The resulting error terms, for example the residual sum of squares, from 

the regressions using different HMAX values were also very similar. If only the 

allometric regression curve was considered, then the larger HMAX often seemed to 

yield the best fit to the data. However, using an HMAX value that was much larger than 

the tree heights used in the regression could cause difficulty with the volumetric growth 

equation, which is explained in more detail in the discussion on the growth rate 

parameter. In these cases, the smaller HMAX were considered. The results of the 

nonlinear regression analysis along with a brief discussion for each of the Greenbelt 

FACETA candidate species follow. 
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Acer negundo (boxelder) measurements were all made within the Greenbelt 

bottomlands (Fig. 5.4). Although boxelder was found throughout the Greenbelt 

bottomlands, most of these trees were concentrated in just a few locations. The input 

parameter HMAX was set to 23 m, which was the largest cited height in the sources 

used. One of the trees from the Greenbelt dataset measured just a little less than 23 m, 

and thus the true potential maximum height for boxelder may be higher. 

 
Regression coefficients: b2 = -0.01461, b3 = 0.54255 
Residual Standard Error = 2.139 on 182 Degrees of Freedom 
Residual Sum of Squares = 832.8 

Figure 5.4. Acer negundo height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of boxelder trees. 
 
The height of boxelder varies considerably throughout the DBH range, and the variation 

increases with increasing DBH. Boxelder is a weak tree that breaks easily, which may 

be a factor in some of this height variation. 

Carya illinoinensis (pecan) were measured both inside and outside the Greenbelt 

Park (Fig. 5.5). All of the smaller trees, those with DBH of 20 cm or less, were 

178 



measured in the Greenbelt Park. There were some larger pecan trees inside the park, 

but they were not included in this survey. The largest pecan trees found in the study 

area often grew along smaller streams in deep, well-aerated soil.  

 
Regression coefficients 
     HMAX=55: b2 = -0.00526    b3 = 0.70190 
     HMAX=43: b2 = -0.00857    b3 = 0.73351 
Residual Standard Error on 47 Degrees of Freedom 
     HMAX=55: 2.922     HMAX=43: 2.944 
Residual Sum of Squares 
    HMAX=55: 401.3      HMAX=43: 407.4 

Figure 5.5. Carya illinoinensis height/DBH allometry. Results of nonlinear regression performed 
on height/DBH measurements of pecan trees. 
 

All larger trees in this dataset were measured near a smaller stream at the site of 

a former pecan orchard. Pecan is a species where larger cited maximum heights may 

not be appropriate. The highest reference value for the maximum height parameter was 

55 m, a number far greater than the height of any trees in this dataset and greater than 

any pecans, or trees of any other species for that matter, observed in the study area. 

Setting the HMAX value in the regression curve to one of the lower reference values 

179 



such as 43 m yielded a regression curve that was imperceptibly different for DBHs less 

than 100 cm, and the resulting error terms were slightly larger. However, the higher 

HMAX may have yielded an unrealistic growth equation in this case. If the allometric 

height and HMAX differed too greatly, then the resulting growth equation could either 

output unreasonably large DBH increments or positive DBH increments even when the 

tree far exceeded its maximum diameter. This is explained in more detail in the 

discussion on the volumetric growth equation. 

Celtis laevigata (sugarberry) were measured in the Greenbelt Park (Fig. 5.6). The 

maximum height parameter was set to 30 m, the highest cited value from the references 

used in estimating HMAX and appeared to fit well to sugarberry growth in the Greenbelt.  

 
Regression coefficients: b2 = -0.02567, b3 = 0.97264 
Residual Standard Error = 1.771 on 402 Degrees of Freedom 
Residual Sum of Squares = 1260 

Figure 5.6. Celtis laevigata height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of sugarberry trees. 
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Because the regression curve underestimated the height of trees with the largest DBHs 

in this dataset, regression was also performed with a larger HMAX value of 35 m. The 

resulting regression curve differed only slightly at the highest DBHs, had a slightly 

smaller error term, but still underestimated all trees with the largest DBHs. It was likely 

an artificially high HMAX would cause problems with the growth equation. 

Forestiera acuminata (swamp privet) were measured inside the Greenbelt Park 

(Fig. 5.7). The maximum height parameter was set to 14 m, considerably higher than 

any measured heights but plausibly attainable. The swamp privet data were variable 

and did not fit tightly about the regression curve; however, the curve followed the 

general height and DBH pattern well, and the error was not bad. The swamp privet’s 

main stems rarely grow straight up for long; rather they typically bend and grow at a 

slant, sideways, or even back down towards the ground. Smaller offshoot stems grow 

straight up giving the plant additional overall height. The growth pattern assumed in 

FACETA’s height/DBH model, as well as in the calculations for growth, volume, and 

biomass was that of a single main stem growing more or less straight up. Swamp privet 

was fundamentally a poor fit for this assumption. As with all the tree height 

measurements used in this research, the swamp privet heights were measured as the 

height above the ground to the highest leaves. For swamp privet, it might be more 

appropriate, at least in the context of the height to DBH allometry, volume, or biomass 

calculations, to measure the length of the stem rather than the height. Swamp privet’s 

sideways growth pattern together with FACETA not being coded to simulate multiple-

stemmed trees made the species a poor choice for modeling, and the lack of reliable 

181 



information on the species’ life history (Table 5.3) added to the difficulty of modeling it 

successfully. 

 
Regression coefficients: b2 = -0.03187, b3 = 0.50631 
Residual Standard Error = 1.38 on 284 Degrees of Freedom 
Residual Sum of Squares = 540.7 

Figure 5.7. Forestiera acuminata height/DBH allometry. Results of nonlinear regression 
performed on height/DBH measurements of swamp privet trees. 
 

Fraxinus pennsylvanica (green ash) were measured in the Greenbelt bottomland 

(Fig. 5.8). The maximum height parameter was set to 40 m. One tree came close to this 

height, but 40 m appeared to be an appropriate HMAX for the growth pattern reflected 

in the dataset. There was a good fit of the model to the data with little error for DBH 

smaller than 25 cm, but the heights varied much more at larger DBHs. Green ash 

typically grows a fairly straight trunk, and they were some of the tallest trees in the 

Greenbelt bottomland. One particular outlying point had a DBH of approximately 70 cm 

and height of about 12 m. This tree most likely had been uprooted and started to fall 

over or had its top broken off. Without being able to confirm such, the tree remained 

part of the height to DBH regression dataset. As a check to see if outliers such as this 
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made much difference in the result, the nonlinear regression was also performed with 

the outlying data point removed, but the resulting curve was essentially unaffected. A 

similar check on the influence of outliers was performed with some of the other 

height/DBH datasets.  In no case did it change the result significantly.  

 
Regression coefficients: b2 = -0.01788, b3 = 0.88020 
Residual Standard Error = 2.795 on 313 Degrees of Freedom 
Residual Sum of Squares = 2445 

Figure 5.8. Fraxinus pennsylvanica height/DBH allometry. Results of nonlinear regression 
performed on height/DBH measurements of green ash trees. 
 

Morus rubra (red mulberry) were all measured in the Greenbelt bottomland (Fig. 

5.9). Most of the individuals measured were small trees with DBH less than 20 cm. Red 

mulberry trees grow as an understory tree, and large individuals were not very common 

in the Greenbelt. There were mulberry trees in the Greenbelt with DBHs around 50 cm 

to 60 cm, but none of the larger trees were measured for this dataset. The maximum 

height parameter was set to 22 m in the regression, much taller than any measured 

heights, but this was reasonable considering how small the DBH of most trees in the 
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data was. The model was a good fit to the data; there were no apparent trends in the 

error.  However, the dataset would improve with the addition of a few larger individuals. 

 
Regression coefficients: b2 = -0.02059, b3 = 0.68250 
Residual Standard Error = 1.366 on 69 Degrees of Freedom 
Residual Sum of Squares = 128.7 

Figure 5.9. Morus rubra height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of mulberry trees. 
 

Populus deltoides (eastern cottonwood) in this dataset were not as tall as 

expected given eastern cottonwood’s reputation as one of the tallest species east of the 

Rocky Mountains (Fig. 5.10). Trees in this dataset were measured within the Greenbelt 

bottomland, some from randomly assigned plots and some selected specifically for their 

size. However, because of bias introduced by the selecting organism being shorter than 

2 m, the trees measured specifically because of size were chosen based on DBH rather 

than height. The maximum height parameter used in the regression was 58 m, much 

taller than the cottonwoods in this dataset. Using a smaller HMAX of 50 m, which was 

the smallest of the reference heights but still considerably taller than the trees in this 
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dataset, had little effect in the resulting regression model other than slightly decreasing 

the error term. It was possible this sample of cottonwoods did not well represent the 

species’ height potential, but this was the sample measured in the study area. Even the 

smallest referenced maximum height appeared too large for the growth patterns based 

on these measurements. 

 
Regression coefficients 
     HMAX=58: b2 = -0.002729    b3 = 0.455932 
     HMAX=50: b2 = -0.004287    b3 = 0.475318 
Residual Standard Error on 40 Degrees of Freedom 
     HMAX=58: 4.188      HMAX=50: 4.164 
Residual Sum of Squares 
    HMAX=58: 701.6      HMAX=50: 693.6 

Figure 5.10. Populus deltoides height/DBH allometry. Results of nonlinear regression performed 
on height/DBH measurements of cottonwood trees. 
 

Containing only 11 trees, the set of Quercus macrocarpa (bur oak) height and 

DBH measurements was small (Fig. 5.11). These trees were measured in the 

Greenbelt.  Though young seedlings were seen frequently, larger bur oaks worthy of 

measuring were not very common in the Greenbelt bottomland. Bur oak is considered 
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adaptable to both upland and bottomland positions; however, it grew naturally in the 

uplands of the Cross Timbers ecoregion. The largest HMAX parameter of 52 m was 

much higher than any of these trees were tall, and probably much taller than bur oaks 

growing in the western part of the species’ range. The 53-m maximum height was cited 

for a particular tree growing in the Ohio Valley, while 30 m was the more often cited 

maximum height for typical trees. Even with a relatively small sample size, two trees 

exceeded 30 m, and one came very close to that height. Generally, the size of bur oak 

can vary quite a lot across its range, and it is another species where multiple HMAX 

values need to be considered. An HMAX of 40 m appeared to fit well to the pattern of 

this dataset. 

 
Regression coefficients 
     HMAX=52: b2 = -0.00481     b3 = 0.632286 
     HMAX=40: b2 = -0.00975     b3 = 0.720277 
Residual Standard Error on 9 Degrees of Freedom 
     HMAX=52: 3.156      HMAX=40: 3.089 
Residual Sum of Squares 
    HMAX=52: 89.6         HMAX=40: 85.9 

Figure 5.11. Quercus macrocarpa height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of bur oak trees. 
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Quercus marilandica (blackjack oak) measurements contained a large range of 

sizes from trees measured in variety of conditions, from densely packed oak thickets on 

dry hills with thin, rocky soil, to open areas on irrigated residential properties with deep, 

sandy soil (Fig. 5.12). A third of the trees were measured inside the Greenbelt Park. 

The maximum height parameter is set much higher than any of the measured trees, but 

smaller values of HMAX yielded regression models with slightly larger error terms. 

 
Regression coefficients 
     HMAX=23: b2 = -0.01159     b3 = 0.89007 
     HMAX=19: b2 = -0.01673     b3 = 0.94826 
     HMAX=15: b2 = -0.02756     b3 = 1.07262 
Residual Standard Error on 62 Degrees of Freedom 
     HMAX=23: 1.135    HMAX=19: 1.141    HMAX=15: 1.164 
Residual Sum of Squares 
    HMAX=23: 79.8       HMAX=19: 80.7      HMAX=15: 84.0 

Figure 5.12. Quercus marilandica height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of blackjack oak trees. 
 
None of the regression models’ trajectories will take trees close to an HMAX of 23 m, 

and the pattern of the data indicates a height trajectory that could surpass an HMAX of 
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15 m. The variation in height for different DBHs is small when compared to many of the 

other FACETA candidate species, and all three models fit the data well. 

Like its close associate species Quercus marilandica, Q. stellata (post oak) 

measured for this research included a broad range of sizes from trees growing across a 

broad range of conditions (Fig. 5.13). About half of these trees were measured inside 

the Greenbelt Park. Post oak is one species with the greatest variation in height growth 

across its range, and the post oaks growing in Texas tend to be on the shortest end of 

the height range. However, the regression models and error terms generated using the 

different HMAX values were nearly identical for trees with DBH less than 100 cm, and 

all the error terms were very close as well. As with blackjack oak, the largest referenced 

HMAX appeared too tall to fit the data collected in the study area, while the smallest 

appeared too short.  The most appropriate choice probably lay between the two. 
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Regression coefficients 
     HMAX=30: b2 = -0.00178    b3 = 0.38954 
     HMAX=20: b2 = -0.00693    b3 = 0.42872 
     HMAX=18: b2 = -0.01037    b3 = 0.45541 
Residual Standard Error on 65 Degrees of Freedom 
     HMAX=30: 2.145    HMAX=20: 2.141    HMAX=18: 2.139 
Residual Sum of Squares 
    HMAX=30: 299.1     HMAX=20: 297.9    HMAX=18: 297.4 

Figure 5.13. Quercus stellata height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of post oak trees. 
 

Seeds from Salix nigra (black willow) require wet conditions almost immediately 

after falling in order to geminate, and the species is very intolerant to shade. Some of 

the best places to find black willows are in wetlands or in roadside ditches. Some trees 

in this dataset were measured within the Greenbelt, but most were measured outside 

the park boundary (Fig. 5.14). Black willow’s growth pattern did not conform well to 

FACETA’s assumptions. The trunk is often split at the base into multiple trunks that are 

twisted and irregularly shaped, and it frequently leans and grows laterally out over water 

in the tree’s thirst for light. Black willow is also susceptible to a number of infestations, 

and the wood is weak and brittle, so larger trees commonly have broken tops.  
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Regression coefficients 
     HMAX=43: b2 = -0.003578,     b3 = 0.479056 
     HMAX=30: b2 = -0.010641,     b3 = 0.542547 
Residual Standard Error on 35 Degrees of Freedom 
     HMAX=43: 2.91      HMAX=30: 2.856 
Residual Sum of Squares 
    HMAX=43: 296        HMAX=30: 285 

Figure 5.14. Salix nigra height/DBH allometry. Results of nonlinear regression performed on height/DBH 
measurements of black willow trees. 
 
In addition, the black willows sampled in the study area appeared to have shorter 

growth tendencies than the largest reference maximum would require, and multiple 

HMAX values had to be considered. 

Most Ulmus alata (winged elm) were measured in the rocky Greenbelt upland hills, 

where it grew under and between the dominant post oaks and did not typically achieve 

large heights or diameters (Fig. 5.15). The two trees from this data with DBH greater 

than 30 cm were also measured in an upland location, but in a residential neighborhood 

where competition had been thinned and extra water more than likely added over the 

years. One winged elm was identified and measured from a Greenbelt bottomland 

survey that included more than 1000 trees. Sometimes winged elm is considered a 

bottomland species as well as, but that did not seem to be the case in the Greenbelt 

study area. The reference maximum height values, which ranged from 20 m to 30 m, 

also did not seem to align with the winged elm in this dataset. Either the winged elm in 

the study area was somewhat different from those in the eastern part of its range, or the 

species was confused with Ulmus crassifolia (cedar elm) in areas where their ranges 

intersected. The ranges of the two species only overlapped in relatively small areas 

including eastern Texas, southern Arkansas, and northern Louisiana. The two species 

can share many characteristics, and it can be difficult to identify between the two. 
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Regardless of the source of the discrepancy, HMAX for winged elm had to be set to the 

lowest referenced values to fit local growth patterns. 

 
Regression coefficients 
     HMAX=30: b2 = -0.00187     b3 = 0.41640 
     HMAX=20: b2 = -0.00637     b3 = 0.440187 
Residual Standard Error on 53 Degrees of Freedom 
     HMAX=30: 0.889      HMAX=20: 0.885 
Residual Sum of Squares 
    HMAX=30: 41.98        HMAX=20: 41.53 

Figure 5.15. Ulmus alata height/DBH allometry. Results of nonlinear regression performed on height/DBH 
measurements of winged elm trees. 
 

Ulmus americana (American elm) were measured in the Greenbelt bottomlands 

(Fig. 5.16). Both the HMAX value of 38 m and the regression model appeared to fit the 

data’s growth trend well. Large American elms were difficult to find in the study area, at 

least in part to the fungal disease Ascomycota (Dutch elm disease) that killed the 

majority of American elms throughout their range since the 1930s. This dataset only 

included four trees with DBH greater than 50 cm. The data benefited from relatively 

small variation in the heights and produced a well-fitting regression curve.  
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Regression coefficients:  b2 = -0.01269, b3 = 0.90654 
Residual Standard Error = 2.052 on 49 Degrees of Freedom 
Residual Sum of Squares = 206.3 

Figure 5.16. Ulmus americana height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of American elm trees. 
 

The dataset for Ulmus crassifolia (cedar elm) contained a large number of trees 

and range of sizes (Fig. 5.17). The variation in heights was substantial, especially for 

DBHs greater than 20 cm. The HMAX value of 36 was actually higher than the forestry 

or silvics reference sources, but the NRBT had a cedar elm listed as 37 m. In this case, 

the highest for maximum height from the forestry references, which was 30 m, appeared 

too small for the data. While the models were nearly identical for DBH less than 50 cm 

and the error terms were nearly identical, the appearance from the growth pattern in the 

data was that a tree from this group could eventually exceed a height of 30 m. The 

Cedar elm range lies mostly within Texas, and it is not an important forestry species, 

which may account for an underestimation in its maximum height. 

192 



 
Regression coefficients 
     HMAX=36: b2 = -0.01491     b3 = 0.89509 
     HMAX=30: b2 = -0.02144     b3 = 0.96163 
Residual Standard Error on 342 Degrees of Freedom 
     HMAX=36: 2.791      HMAX=30: 2.792 
Residual Sum of Squares 
    HMAX=36: 2665        HMAX=30: 2667 

Figure 5.17. Ulmus crassifolia height/DBH allometry. Results of nonlinear regression performed on 
height/DBH measurements of cedar elm trees. 
 

Allometric parameters are used by FACETA to define the height to diameter 

relationship for each modeled trees species. These parameters can be estimated by 

measuring the heights and diameters of a number of trees of different sizes, and then 

performing a nonlinear regression on this data. While seemingly simple, there are a few 

considerations related to measurement, model assumptions, and the mutual sensitivity 

between the model parameters. The model assumes a straight, cylindrical trunk, and 

the allometric parameters are linked through model equations to the maximum height, 

growth rate, and maximum diameter parameters. Information for many of the tree 

species on characteristics such as maximum size, particularly the commercially less 
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important species, can be missing or conflicting. To estimate the allometric parameters, 

a reasonable maximum height parameter that is not too out of line with the data used in 

the nonlinear regression must first be determined. The height/DBH data for the different 

candidate tree species had varying degrees of fit to the regression curve; however, the 

basic shape of the model fit well for all the species. FACETA has another allometric 

parameter, the ratio of the crown to the overall height of the tree. The appeal of this 

parameter is that it is easy to measure for, and other than the allometric coefficients, it is 

the only species parameter describing tree geometry. However, this parameter is also 

mutually sensitive with the other growth parameters, and its function is somewhat 

duplicated by the growth rate parameter. In addition, many tree species have a great 

amount of variability in this height to crown ratio. It was determined therefore not to use 

the height to crown parameter at this time, and this parameter was kept as a fixed value 

for all species. 

Growth Rate 

The growth rate parameter G is more difficult to measure and collect data for 

than the allometric coefficients. G represents the optimal or maximum amount of annual 

volume (cubic centimeters) of wood growth per unit of leaf area (square meter). Optimal 

growth refers to completely uninhibited growth that would be achieved under optimal 

conditions without any deficiencies in resources. The growth equation that uses G 

outputs an optimal annual volumetric growth increment based on the tree’s diameter, 

height, and leaf area at the start of the growing season, and the specie’s growth rate. 

Under the FACETA assumptions, the rate of change of volume over time is given by the 

equation:  
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The growth rate parameter G is expressed in cubic centimeters of wood per square 

meter of leaf area per year, L is the total leaf area of the tree in square meters, Dmax and 

Hmax are the maximum DBH and height parameters, and D and H are the modeled DBH 

and height, all in centimeters. As the product DH approaches the product of the 

maximum diameter and height parameters, the volumetric growth rate goes to zero. 

Another allometric relationship and assumption used by FACETA is that leaf area is 

proportional to the basal area of the tree: 

( )HcDL −= 1*16.0 2 . (5.3) 

In this equation, D is the DBH, so D2 approximates the basal area, 1 – Hc is the 

proportion of the tree trunk occupied by the crown, and 0.16 is a regression coefficient 

that was first used in one of the early predecessors to FACETA. The regression 

coefficient could easily be modified in the model if data showed that an improvement 

could be achieved. As a potential future refinement to the model, the regression 

coefficient could be combined together with the crown ratio to become a species-

specific leaf area coefficient and estimate the parameter from measurements made with 

species in the modeled region. The underlying assumption of this growth model is that 

the growth rate of small, young trees starts slow and is limited by the leaf area.  As the 

tree grows, gains diameter and subsequently leaf area, then the growth rate increases. 

The growth rate eventually peaks, and as the product of the height and diameter 

approaches the product of the maximums, the growth rate starts to decline until it 

reaches zero. The rationale behind the peak and decline of the growth rate is that the 
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tree eventually reaches a size at which most of the energy assimilated is used in the 

maintenance of the plant. From equation 5.2, it is clear why the growth equation is very 

sensitive to changes in Hc. However, as discussed earlier, Hc was set to the same 

value for all species, and species differences in growth rate were controlled only by the 

parameter G. Measuring and collecting data in order to estimate G could presumably be 

done directly by measuring both leaf area and annual volumetric growth, but these 

measurements would be difficult to make at all and even more difficult to make 

accurately. An indirect way to measure for G involves solving the growth equation for a 

different output, the diameter growth increments. Equations 5.1, 5.2, and 5.3 can be 

combined, manipulated algebraically, and the entire expression can be rewritten as an 

annual rate of change of diameter as a function of DBH, where G is still a parameter. G 

could then be fitted to data of diameter growth. This process is discussed in detail later. 

Mathematical assumptions and simplifications are used in the derivation of this 

growth model, allowing for the indirect method of measuring for an estimate of G. These 

assumptions can give rise to some subtle issues to be careful about in parameter 

estimation for G, HMAX, and the allometric coefficients b2 and b3. One such 

simplification is that the volume of the trunk is estimated as a square column, where the 

width of the column is the DBH (Fig. 5.18). This same assumption is used for basal area 

in the leaf area calculation (equation 5.3). While this might seem like a crude 

simplification, any geometric shape used to represent an organism in a model will be a 

crude simplification. Additionally, there are in fact tree species, for example cedar elm, 

which will sometimes grow an almost square or rectangular shaped trunk.  
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Figure 5.18. Different models of trunk volume. Left: Any model of tree growth requires some assumptions 
and simplifications to be able to calculate the modeled dimensions such as height, diameter, leaf area or 
volume. FACETA uses the assumption that trunk volume can be estimated as the volume of a square 
column. Other possible assumptions include cylinders, cones, and frustums of cones. Right: These two 
cross sections came from the trunk of the same sugarberry tree, with the larger cross section from about 
1 meter above the ground and the smaller section 3 meters above that. The entire tree was approximately 
7 meters tall. The difference in size between the two cross sections illustrates the kind of tapering typical 
of the trunks of many tree species. 

 
Many species, green ash for example, have trunks that are more consistently circular in 

shape (hence the term diameter at breast height); in those cases, estimating the volume 

as a cylinder is more appropriate. However, the volume of the square column and the 

volume of the cylinder differ only by a factor of (4 – π). The problem with both the 

column and cylinder models is that a tree trunk is widest at its base and tends to taper 

and become smaller higher up on the trunk. It might be that using a cone to model the 

volume is better. The difference in volume between a cone and a square column is 

much larger. They differ by a factor of (4 – π/3), or approximately 2.95. This assumes 

that the radius used to calculate the volume is at the base of the cone rather than at 

breast height, and that the width of the column is twice the radius. If the radius of the 

cone is measured at breast height, then the volumes differ by a little less. A cone may 

not be the best model as it probably overestimates the tapering angle of most trunks, 

and in turn underestimates the volume.  
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Some models are more sophisticated, and tapering equations have been applied 

to estimating trunk volume (e.g., using a paraboloid). When trunk volume is measured in 

the field, the trunk is estimated as a string of frustums of right circular cones. The 

diameter is measured along a series of locations along the trunk, each segment’s 

volume is calculated as a frustum, and the volumes are added together. A frustum of a 

cone may be a more accurate model than a square column, cylinder, or a cone, and it 

still provides relatively simple geometry. However, even this kind of modest increase in 

fidelity can add substantial complexity to the model’s calculations, with its assumptions, 

or in determining parameters. For example, using a single frustum to represent the trunk 

would require defining and modeling the relationship between the DBH and the height 

and the diameters of both the base and top of the frustum.  

Two sugarberry cross sections provided an example in the differences in 

volumes between these four simple models (Fig. 5.18). These two cross sections came 

from the same small sugarberry that was growing with a single, straight trunk, with 

relatively symmetric radial growth. The larger cross section came from approximately 

1 meter above the ground, a little below breast height, and the smaller cross section 

was at about 4 meters above the ground. The total height of the tree was approximately 

7 meters. The radii of the two slices, as calculated by the circumference divided by 2π, 

were 7.6 cm and 5.3 cm, respectively. Assuming the diameter of the larger cross 

section, which calculated to 15.2 cm, was the DBH of the tree, then three of the 

simplified volume models would calculate to approximately as follows: 161,700 cm3 for 

the square column, 127,000 cm3 for the cylinder, and 76,400 cm3 for the frustum of a 

cone. In order to calculate the frustum volume, it was assumed that the slant or tapering 
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angle of the trunk stayed constant throughout its length. In this particular example, the 

volume of the square column was more than double the volume of the frustum. In order 

to calculate the volume of the cone model, some assumption had to change since the 

extended height of the cone formed by these two cross sections would be nearly 

11 meters tall, and this tree’s height was only 7 meters. If it was assumed the cone was 

7 meters in height and the diameter of the larger cross section was the DBH, then the 

volume was approximately 64,700 cm3, which was about 15% less than the frustum 

volume. In order to achieve the overestimated volume given by the square column 

model, the value assigned to G would need to be about twice as large as the actual 

volume of wood grown per unit of leaf area compared to directly measuring volumetric 

growth rate.  

The average annual volumetric growth of this sugarberry provided perspective of 

what that might mean for values of G. This tree had 20 annual growth rings in the lower 

slice, so assuming it was 20 years old, the average annual volumetric growth rate 

estimated from the different volume models would range from a high of 8085 cm3/year 

for the square column to a low of 3235 cm3/year for the cone. There are two important 

differences between these average annual growth rate examples and the parameter G. 

The first is that G is the optimal or maximal growth rate, while the annual average is not 

necessarily representative of optimal conditions or even the optimal year for the life of 

this tree. The second difference is that G was the annual volume of new wood growth 

per square meter of leaf area. Annual average of volumetric growth could be more 

directly comparable to G if the amount of leaf area on the tree were known. The tree 

was cut down during the winter season with no leaves on it, so there was no way of 
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knowing what the actual leaf area was. Using the leaf area equation (5.3) to estimate it, 

this sugarberry would have had about 11 m2 of leaf area during its last year. 

Additionally, according to the leaf area model, the leaf area on this tree would not have 

exceeded 1 m2 until its 10th year. This discrepancy in the size of the estimated 

parameter G and the actual volumetric growth rate became transparent when using the 

indirect method of measuring for G specifically because the indirect method measured 

diameter growth rather than volume growth. It should be mentioned that city workers 

replacing underground sewer lines cut down the sugarberry tree used in this example to 

gain access to their dig site, and the cross sections were removed from the already 

felled tree. In fact, because this research involved looking at the cross sections of many 

trees, the following blanket disclaimer was made: No trees were cut down or otherwise 

injured for this research. All of the cross sections used in this research came from trees 

that had already been felled by other people, such as property owners or city workers, 

for reasons having nothing to do with this or any other academic research. 

Other assumptions behind the growth equation that can complicate estimating G 

include that the modeled height and DBH follow the height/DBH curve defined by the 

allometric regression coefficients, combined with the assumption that the volumetric 

growth will continue until the product DH equals the product DmaxHmax. Since the 

modeled height H at any time is always less than HMAX, which is the asymptotic 

maximum height, the only way for DH to be equal to or greater than DmaxHmax is for D 

to be greater than DMAX. A situation that needs to be avoided is having HMAX set too 

large as compared with the trajectory from the DBH/height data used to estimate the 

allometric coefficients. One potential problem that could result is that trees may have 
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the potential to realize unrealistic diameter growth. The model is growing trees towards 

the product of their optimal height and diameter, and if a tree’s height trajectory keeps it 

far below its optimal height, then the tree can put on that extra product in diameter. 

While the modeling philosophy of setting the optimal growth parameters to the true 

potential maximum makes sense as a philosophy, in practical terms the HMAX 

parameter used needs at least to align with the maximum height implied by the data 

used in the allometric regression. DMAX is also part of this product and impacts the 

growth curve. Increasing either of the two maximum size parameters has the effect of 

increasing the optimal volume and growth curve. However, HMAX is in some ways the 

more complicating parameter because the allometric coefficients are also linked to 

HMAX. Some examples of how the relationships between HMAX, DMAX, G, Hc, and 

the allometric coefficients impact the volumetric growth equation are shown in Fig. 5.19. 

The idea behind the indirect way of measuring for G is that data of diameter 

growth increments vs. diameter can be collected. With the equation expressed in the 

form of the optimal change in diameter as a function of diameter, and with the four other 

parameters determined, the value of G is then fitted so that the area under the curve 

includes all of the diameter growth increments from the data. The hope is that the 

largest growth increments in the dataset are representative of the true maximum 

potential diameter growth. It helps to have data across a wide range of diameters, but 

large diameter growth increments at any DBH will push the entire growth curve up.  
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Figure 5.19. Optimal growth equation with varying parameters. The optimal volumetric growth 
equation can be solved for an optimal DBH growth increment as a function of DBH. All of the 
following parameters impact this equation: HMAX, DMAX, G, b2, b3, and Hc. The graphs show 
examples of the different optimal growth equations that result when one of these parameters is 
changed and the others are held fixed. Top-left: DMAX is changed and the other parameters are 
fixed. Under the assumption that the other parameters are correct, all three of these curves 
have a G value that properly fits them to the data. Top-right: HMAX is changed, and 
subsequently b2 and b3 change since these regression coefficients depend in part on HMAX; the 
other three parameters are fixed. Under the assumption that the other parameters are correct, 
all three curves are properly fitted to the data. Bottom-left: G is changed. Bottom-right: Hc is 
changed. For both of these bottom two sets of graphs, the only properly fitted curves for these 
data are the ones resulting from the G=2600, Hc=0.7 parameter pair. From these curves, it is 
clear how the effect of G and Hc overlap. 
 

The data used in the examples in Figure 5.19 were of blackjack oak. Note that 

the growth curve continued past the maximum diameter parameter. It was apparent 

from the bottom two graphs how much the roles of Hc and G overlapped, which is why 

Hc was held fixed for all species and G was used alone to differentiate the growth rates 
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of species. Leaf area allometry for now was assumed the same for all species. It was 

notable that all three of the Hc values used in the curves were likely too large for 

blackjack oak. Blackjack oak was not measured for Hc, but of the three species that 

were measured, the largest median value was 0.46 and the median value for post oak 

was 0.29. However, the decision had been made to set the Hc value to be the same for 

all species, and that value was set to an old FACET holdover value of 0.7. The origins 

of the Hc value of 0.7 may have come from species growing in the Pacific Northwest, 

but that was speculative. 

The best way to measure for G might be to install dendrometer bands on trees 

across a range of different sizes and record their annual diameter growth over a period 

of years. A dendrometer band actually measures changes in the perimeter of the trunk, 

which is after all how diameter is measured. This method requires quite a lot of 

investment in both materials and time, and dendrometer band data were not available 

for any of the Greenbelt candidate species. A set of dendrometer data for Fagus 

grandifolia, or American beach, that was collected in East Texas by a team of 

researchers from Rice University was available (Paul Harcombe, personal 

communication). This dataset, while not used directly in this research, was extremely 

helpful as a reference and guide to this approach of estimating G. Two alternatives to 

dendrometer bands are measuring growth rings from cores removed with an increment 

borer and measuring them from cross sections cut from trunks. Both methods have 

associated problems and costs. Coring trees is difficult work, and the increment borers 

are expensive and can break or become stuck, especially in certain tough-wooded 

species. The quality of the core depends a little on luck. Trees can have very 
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asymmetrical radial growth. For the purpose of G estimation, which requires finding 

examples of optimal growth, cores that contain relatively small rings are of no value.  

Estimating G requires measurements of the diameter increments together with 

the diameters at which that grow occurred. In order to determine a diameter, the core 

must reach all the way to the center of the tree. Some trees are too large for the 

increment borer to reach the center, and the center can be missed for asymmetrical 

trees. Even with symmetrical trees, the borer can miss the center if it is not started in 

just the right spot and direction. Another problem can be trees with heart rot, a common 

condition in species like blackjack oak. A work around for some of these problems is to 

measure the DBH around the outside with DBH tape, measure the growth rings in the 

core starting from the outside, and subtract from the DBH to estimate the previous 

year’s DBH. There is not really a good work around for radial asymmetry other than to 

guess an outside spot on the trunk that will yield rings closest to the average growth of 

the tree.  

There is of course some variation in the size of growth rings between any two 

cores from the same tree. In some species, there can be a lot of variation. Asymmetric 

trees can have rings that are twice as wide in one part of the trunk as they are in 

another. A way to minimize problems with the variation in growth rings is to remove four 

orthogonal cores and then calculate average growth ring widths across the four cores. 

This also helps to reduce problems of missing and false rings since there is access to 

the growth rings from multiple parts of the trunk, but it also greatly increases the labor 

involved for each tree.  
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In general dendrochronology practice, two cores are typically removed. After a 

core is removed it must be mounted, sanded, and scanned or photographed with a 

high-resolution device before the growth rings can be measured. Sometimes a core 

removed from a tree, once sanded and mounted, will prove to be of little value because 

of asymmetries, rot, insect damage, or it is simply too difficult to distinguish or measure 

the rings. Standard procedure in dendrochronology requires that the cores are 

crossdated, which is the procedure where cores from different trees and from different 

locations are compared, and the growth rings produced during different years are 

matched by their relative widths. This procedure assures the correct year assignment 

for each ring, and without crossdating, matching of growth rings to years cannot be 

trusted. For estimating G, crossdating is not so important. The year that any ring is 

produced is not needed to estimate G, rather only the diameter and the ring width. 

Crossdating would still be useful to help avoid counting false or double rings or missing 

very small or faint rings, but it is not necessary. Measuring false or double rings would 

result in the error that a single year’s growth would be measured as two, which would 

impact G by underestimating its value. However, with a sufficiently large dataset, a few 

such double ring errors would likely be negated by other large growth rings measured 

correctly. Missing a small ring likely will not impact G estimation since the small rings 

are not going to contribute to the optimal growth parameter. The biggest risk of error to 

G by not crossdating the growth rings comes in with certain species that have very 

indistinguishable growth rings where multiple years of good growth might mistakenly be 

counted as a single year. Cottonwood is a good example of such a species. It is a rapid 

grower and puts on large annual growth rings under most conditions. Thus, the lines 
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distinguishing the annual rings can be very difficult to see. Extra care and high 

magnification must be used when measuring cottonwood growth rings. 

The biggest problem with using cross sections is that a tree must be cut down to 

reveal the cross section, an activity that was strictly prohibited for the purpose of this 

study. Cross sections from trees that had been cut down for other reasons were used. 

The advantages of using cross section are that each growth ring is fully viewed, any 

asymmetries are revealed, and with the full rings visible, it is easier to identify false or 

missing rings. Dendrochronologists typically measure tree growth using tree cores from 

increment borers.  Some public dendrochronology databases are available with the 

International Tree-Ring Data Bank (ITRDB), managed by the National Oceanic and 

Atmospheric Administration’s National Climatic Data Center, being the most extensive 

(National Climate Data Center [NCDC], 2015). Post oak happens to be a species 

favored by dendrochronologists, and a number of post oak datasets are available from 

the ITRDB, including ones collected from North Texas and Oklahoma. Most of the 

Greenbelt candidate species, however, were not represented in the ITRDB. Some 

datasets of bur oak and one of eastern cottonwood were available, but these were 

primarily taken from the northwestern part of their range (e.g., in South Dakota), and it 

was questionable how similar the growth patterns were from such climatically different 

parts of the species’ range. The most relevant dataset available was from a set of green 

ash cores that were collected, processed, measured, and crossdated by Komperod 

(2009) from trees growing within the Greenbelt bottomland. Green ash tended to grow 

symmetrically, had rings that were relatively easy to see, and happened to be a good 

species for coring. Post oak and green ash were the two most important upland and 

206 



bottomland species, respectively, of all the Greenbelt FACETA candidates. Additionally, 

these two species almost represented opposite ends of the growth rate spectrum of the 

candidate species. The only candidate species considered a slower grower than post 

oak was blackjack oak, and by some accounts possibly winged elm. Only two candidate 

species, black willow and cottonwood, grew distinctly faster than green ash. The growth 

rate of boxelder may also have exceeded that of green ash. Between the Greenbelt 

green ash core data and the publicly available post oak data, increment borer cores 

were a reliable starting point for estimating G. 

Before estimating G for any of the candidate species, it was useful to 

characterize their growth rates more qualitatively. The same forestry, ecology, and 

botany sources were referenced as with the maximum growth parameters. Not all of 

these sources consistently discussed growth rates for each species. The USDA (2014b) 

PLANTS database ranked growth rate qualitatively as slow, moderate, or rapid. This 

kind of information was useful only to the degree that it could help with relative rankings 

of growth rates between the species; it could not help estimate the number. The Silvics 

Manual from the USFS (USDA, 2014a) was consistent in providing some growth rate 

information for each of the species described in the manual, and often it even included 

quantitative rate information. Unfortunately, the way growth rate was described, it was 

not always consistent between species. Some species were only described 

qualitatively, while some were described by annual growth in height, some by average 

annual DBH growth, and some by average height or DBH achieved after a certain 

number of years. Some species with commercially important wood may have had stand-

level productivity quantified (e.g., volume of wood per acre), but FACETA requires 
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individual growth rates. Growth rates were rarely described quantitatively in a way that 

was easily transferable to FACETA parameterization. The older version of the USFS 

Climate Change Tree Atlas (Burns & Honkala, 1990), which featured ecological 

information on 80 different North American tree species, had tables available for each of 

the species displaying quartiles of growth rate measured across many plots. The growth 

rates were given in units of square centimeters per year. One obvious interpretation was 

that these growth rates were of basal areas of individual trees, and if that interpretation 

were correct, then the data could actually be directly interpreted to estimate a growth 

rate parameter. That interpretation, however, was not believed to be correct, as the 

numbers seem too large. Unfortunately, the tables were not accompanied by an 

explanation. They also seemed to have disappeared from the new version of the 

Climate Change Tree Atlas, although they still exist as files that can be downloaded 

from the USFS website. Even with the uncertainty of the interpretation of these data, 

they were still included for consideration of growth rates because the numbers were still 

possibly valuable in interpreting relative differences between the species. Table 5.5 

summarizes some of the growth rate information from these three sources. 

Table 5.5  
 
Growth Rate Information for Greenbelt FACETA Trees 

Species 
USDA 

PLANTS 
Database 

USFS Silvics Manual 

USFS Climate Change 
Tree Atlas – Diameter 

Growth (cm2/yr) 

Mdn Max Rank 
(of 80) 

Populus 
deltoides 

Rapid • Fastest growing commercial species 
• On one site DBH averaged 29 cm by 
5 years 

54.1 400.4 1 

    
(table continues) 
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Table 5.5 (continued) 

Species 
USDA 

PLANTS 
Database 

USFS Silvics Manual 

USFS Climate Change 
Tree Atlas – Diameter 

Growth (cm2/yr) 
Species 

Mdn Max Rank 
(of 80) 

Salix nigra Rapid 

• In natural stands in Mississippi Valley 
after 10 years trees average 15 m tall 
and 14 cm DBH 
• After 40 years they averaged 31 m 
tall and 49 cm DBH 

34.8 491.6 4 

Fraxinus 
pennsylvanica Rapid • DBH averaged 20-30 cm after 21 

years 
16.8 275.7 30 

Acer negundo Rapid 

• Rapid growth in first 15 to 20 years, 
up to 2.5 cm DBH/year 
• On poor sites DBH growth of 5 
mm/year 

19.0 232.8 24 

Celtis laevigata Moderate 
• Moderate to fast growth 
• Average 10 year DBH growth greater 
than 6 cm 

20.7 203.8 29 

Ulmus 
americana Rapid 

• Poor on droughty sands 
• Medium on wetter sites and good on 
well-drained flats in first bottoms 

16.3 317.0 32 

Morus rubra Moderate 
• Rapid growing 
• Very little is known about growth and 
development 

n/a n/a n/a 

Ulmus 
crassifolia Rapid 

• Grows rapidly 
• “The annual growth rings are very 
indistinct. Thus there may be 
considerable error in estimating the 
average annual growth rate.” 

n/a n/a n/a 

Carya 
illinoinensis Slow • DBH growth over 10 years ranges 

from 5-7 cm 
n/a n/a n/a 

Forestiera 
acuminata Moderate n/a n/a n/a n/a 

Quercus 
macrocarpa Slow 

• Slow growing 
• Annual DBH growth less than 2.5 to 
6.4 mm/yr in Iowa upland sites 
• In better site in Kansas DBH growth 
averaged 2.5 cm in 3.8 years 

15.1 516.0 38 

Ulmus alata Moderate • Diameter growth in natural stands 
averaged 50-64 mm in 10 years 

6.6 222.5 70 

    
(table continues) 
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Table 5.5 (continued)   

Species 
USDA 

PLANTS 
Database 

USFS Silvics Manual 

USFS Climate Change 
Tree Atlas – Diameter 

Growth (cm2/yr) 
Species 

   Mdn Max Rank 
(of 80) 

Quercus 
stellata Slow 

• Slow growing 
• Diameter growth doubled after 
thinning 

11.9 188.5 51 

Quercus 
marilandica Slow n/a 9.2 100.3 63 

Note: Greenbelt FACETA candidate species growth rates were characterized both qualitatively and 
quantitatively in various forestry and botanical references. Growth rate characterizations from three of 
these references are included in the table. The species are listed in order assumed for FACETA of 
highest growth rate to lowest growth rate.  

 
Green ash.  

The estimation of the growth rate parameter G for the different candidate species 

is discussed in the same order the problem was approached; thus, the order of the 

species is not alphabetic or linked to the magnitude of the growth rate or necessarily the 

importance of the species. The most relevant and reliable dataset available was from 

the increment borer cores of green ash growing in the Greenbelt, which made green 

ash a good species to start with. Before estimating G, the parameters DMAX, HMAX, 

and its corresponding allometric coefficients needed to be set. Green ash’s parameter 

value for HMAX was not in dispute. While the range of maximum heights cited in Table 

5.3 was large, the local data and two good references had maximum heights centered 

around 40 m, which fit the pattern of the local height/DBH data well. The value of DMAX 

for green ash was a little less clear and may need to be adjusted with G. The cores 

used for this analysis had already been processed, measured, and crossdated, and the 

growth ring measurements were arranged in the standard data format used by 

dendrochronology software. The data were reformatted and imported into a 
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spreadsheet, after which the annual growth increments were added together to 

calculate diameters. The diameter increments were plotted as pairs with the diameter. 

The data included 62 cores taken from 31 trees located in two different plots within the 

Greenbelt. This process revealed the first potential problem with using 

dendrochronology data.  

The two quantities needed for G estimation are the diameter and the diameter 

increment. In dendrochronology, two important things are the radial growth increment 

and the year in which it occurred. While possibly measured by the dendrochronologists 

when coring the tree, the outer DBH of the tree was not indicated anywhere in the 

standard format used in the analysis or dissemination of the data. Likewise, the data did 

not indicate which cores, if any, did not make it to the center of the tree. Additionally, the 

data did not indicate whether center rings were excluded because they were too 

indistinct to measure or because the center of the tree was rotted out. Sometimes parts 

of a core may be excluded because of problems with crossdating, and the data from the 

reliable part of the core are reported by themselves, but this was not indicated in the 

disseminated data.  

The files were laid out to give the history of growth going back in time, one yearly 

radial increment at a time. If it was known a core reached the tree’s center and all the 

rings were included in the measurements, then the data in the file could be flipped or 

transposed to give the growth history going forward in time. The radial increments could 

then be doubled to yield diameter increments and added together one year at a time to 

yield a progression of the tree’s diameter and new diameter growth over time. Without 

knowing whether the core reached the center, annual diameter growth increments could 
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still be calculated and increments added to yield what might be interpreted as 

diameters. However, if the center part of the tree’s growth rings was missing, then the 

calculated diameter total was too low. If this happened in the estimation of G, it 

essentially caused a shift to the left towards smaller diameters of the diameter growth 

increment data, and it may have resulted in causing an overestimation of G (Fig. 5.20).  

 
Figure 5.20. Green ash G estimation. The green ash growth data were measured from tree cores 
collected with increment borers from within the Greenbelt (Komperod, 2009). The data included 62 cores 
taken from 31 trees. Left: Growth equation with different possible values of DMAX, ranging from 80 cm to 
140 cm. G was set to 18,000 cm3/m2. Before seeing the impact of DMAX on the growth equation, the 
assumption was to set DMAX to 140 cm, but DMAX of 80 cm yielded a better fitting growth curve for this 
data. The data points at the top-left (circled) were not included under any of the curves. Some of these 
large measured increment growths occurring on trees with apparently very small DBH may have come 
from a core without the center of the trunk included. If so, that would have caused these points to shift 
left. Right: DMAX was fixed at 100 cm, and G ranged from 15,000 to 24,000 cm3/m2. In order to include 
all points under the curve, G had to be set as high as 24,000, but G=15,000 yielded a curve that included 
the vast majority of data points and looked generally to fit this data better. 
 

After adding the diameter increments and arranging the data as 

diameter/diameter increment pairs, the data were plotted on a graph together with the 

optimal growth equation. In order to fit G to the data, it was assumed all other 

parameters had been estimated and set. The value of G was then increased or 

decreased until the data points were all under the growth equation curve. The green ash 

growth curves used three different DMAX values: 80 cm, 100 cm, and 140 cm (Fig. 

5.20). Before seeing how DMAX impacted the growth equation, the assumption was to 
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set DMAX to 140 cm, a value that was smaller than the largest value cited in Table 5.3. 

One green ash in the Greenbelt dataset measured 100 cm DBH. The philosophy behind 

the maximum growth parameters was to use true maximums. However, DMAX of 80 cm 

yielded the better fitting growth curve for this data, which raised the question of whether 

the data represented optimal growth. This green ash data came from two plots of green 

ash trees growing in relatively close proximity. The data did not indicate any trees larger 

than 60 cm in diameter. It was likely there were examples of faster growth than what 

was captured in this dataset. One thing that was unclear about this method was whether 

all of the data points should be under the curve or just the majority. In the green ash 

data, few points with high diameter increments occurred at small DBH values and were 

not under all of the growth curves (circled area in Fig. 5.20). Since these points were so 

high and up against the y-axis, G would have to be increased to approximately 

24,000 cm3/m2 to include them under the curve, which would have resulted in an 

unrealistically high curve. Additionally, it was possible these high diameter increment 

data points were not located at the correct DBH coordinate due to errors made when 

estimating DBH from an incomplete core. It was not known how many cores in this 

dataset were incomplete, but it was known there were some. Given that, including those 

few points was not necessary or even appropriate. Between this curve fitting exercise, 

the allometric regression, and the locally collected data, the starting point for green ash 

growth parameters were G=18000, HMAX=40, and DMAX=100. However, it is possible 

this estimate for G was inflated from calculating diameters on incomplete cores. 
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Post oak. 

Through the ITRDB, post oak was another species for which a relatively large set 

of tree core data was available to this study. Many of the post oak tree cores in the data 

bank were collected in the same North Texas region as the Greenbelt study area. After 

graphing the post oak core data, the same issue became even more apparent. That is, 

some cores included in the G estimation process were likely incomplete at the center, 

resulting in calculated total diameters that are smaller than the trees’ actual diameters 

(Fig. 5.21). It was unlikely that any of the post oaks from this tree core dataset grew 

more than 0.5 cm of diameter in their first year.  

Another issue with using dendrochronology data for G estimation became 

apparent after adding the growth ring data from another post oak tree to the dataset, a 

tree grown on a residential property that had recently been cut down. 

Dendrochronologists are not particularly interested in optimal growth. In fact, the 

standard approach in dendrochronology is to sample from sites that will maximize the 

signal of whatever stressor is being investigated (e.g., water stress). In other words, 

sites are selected by their nature, not by environments that produce optimal growth; 

thus, the growth rings typically reflect some environmental stressor. The nature of 

estimating G requires finding examples of a species’ optimal growth potential, which 

means finding samples growing on sites with conditions offering minimal stress and 

abundant resources.  

The core data used from the ITRDB contained 36 cores taken from 31 trees 

growing near Fort Worth, TX (Stahle & Edmondson, 2014). When the data were 

graphed with the growth equation (Fig. 5.21), even small values of G dwarfed most of 
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the data, and the only thing that forced G to be increased was the data points with high 

diameter increments occurring at small diameters (i.e., those same data points were 

likely shifted to the left). The data from the one post oak growing on a residential 

property looked much different. For convenience, because it had been growing in a 

subdivision called Live Oak, it was referred to as “LO1.” The general growth pattern of 

LO1 included much larger growth increments than the tree core data, and there was a 

very distinctive pattern of increasing growth rates followed by decreasing rates after a 

peak. With the exception of the growth increments in the smallest diameter range, the 

data from this one tree made a greater impact on G than all tree cores combined.  

 
Figure 5.21. Post oak G estimation. Post oak G estimation was done with data taken from increment 
borer tree cores and from tree trunk cross sections. The other parameters in the growth equations were 
HMAX=18 m and DMAX=100 cm. The tree cores were taken from natural settings of the Cross Timbers 
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ecoregion for dendrochronological analysis, and they were most likely from a dry rocky hill and in 
relatively dense woodland. The measurements from the cross sections came from only four trees that 
probably started their lives in natural settings of the Cross Timbers ecoregion, but then spent the last 
several decades growing in a residential neighborhood. The time series of growth of two of these cross 
sections indicated the impact that development of the neighborhood had on the trees’ growth. Top-left: G 
estimation using only tree cores. The total number of cores was 36 coming from 31 trees. Top-right: 
Adding data from one cross section greatly changed the appropriate value of G. Bottom-left: G estimation 
with four cross sections. Bottom-right: Time series of diameter growth from that same cross section plus 
another one that grew close by. Around 1940, the growth rate of both trees increased. The years are 
approximate since the samples were not crossdated. 

 
Approximately one year after measuring LO1, another large post oak growing in 

the same neighborhood became available for measurement. This tree, referred to as 

LO2, was blown over in a storm. After measuring its growth rings, a remarkably similar 

pattern of growth to LO1 was discovered (Fig. 5.21). Eight post oak cross sections were 

collected for growth ring measurement, all which had been growing in residential 

neighborhoods. Of those eight, only four were used to estimate G, as the growth rings 

on the other four were too small to contribute to the estimation of the optimal growth 

rate. In this case, too small simply meant they were generally smaller than the growth 

rings on the other four cross sections. As a result of the G and allometry analysis, the 

starting points for post oak growth model parameters were G=5000, HMAX=18, and 

DMAX=100. 

Because of the discovery of this particular post oak cross section and the impact 

it had on the estimation of G, it was realized that random selection was not the best 

approach for measuring the optimal growth rate parameter. Since G is supposed to 

reflect optimal growth, it should be estimated from samples that have grown in as 

optimal of conditions as possible. Residential properties often offer conditions better 

than in the natural forest, at least for the upland forests and species like post oak, so 

collecting felled tree trunks from residential curbsides became a new strategy for G 

measurements. With an increasing collection of cross sections, some of the advantages 
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of using them over tree cores became more apparent. Ultimately, it was not possible to 

collect cross sections for all of the Greenbelt FACETA species. Some species, such as 

black willow, swamp privet, red mulberry, and even green ash, do not commonly grow in 

people’s yards or in city parks, and conveniently finding a felled log of one of these 

species is a matter of luck.  

Post oaks LO1 and LO2 presented an incredibly interesting example of growth 

history that needed to be investigated a little further. The backstory of LO1 was that it 

was growing in a residential neighborhood, and it was cut down during the winter of 

2012-2013. There were two surprising facts about this tree. It was much younger than 

its size might have implied. The DBH measured a little over 54 cm, quite large for post 

oak, and a post oak of this size could easily be over 200 years old. However, this tree 

was only around 100 years old when it was cut down. The second surprising fact was 

the incredible increase in the growth rate that occurred right about 1940. A few growth 

rings on the very inside of the trunk were not counted or measured because they were 

very difficult to discern. Growth ring measurement started on approximately the 10th 

growth ring. For the first 25 measured growth rings, the diameter increments averaged 

2.2 mm, and none exceeded 3 mm (growth period A in Fig. 5.22). The growth over the 

next 50 years was very robust (growth period B) with an average diameter increment of 

7.2 mm. The highest diameter growth increment of nearly 15 mm occurred in the mid-

1940s. By the 1990s, the diameter growth increments slowed down again, averaging 

about 3.6 mm during approximately the tree’s last 20 years (growth period C). The 

neighborhood, house, and block the tree came from was probably developed sometime 
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between the late 1950s and early 1960s, making the growth spurt starting in 1940 even 

more interesting.  

 
Figure 5.22. One post oak's history. History of the 100-year-old post oak, LO1. Top-left: In 1942, the area 
around LO1 had been recently thinned. Top-right: By 1954, the area had been cleared for development. 
Bottom-left: By 1964, the neighborhood had been built. Bottom-right: By 2011, LO1 was approximately 
100 years old and apparently growing too close to the house. Center: A cross section of LO1. The ruler in 
the image for size perspective is a standard 12 inch/30 cm ruler. The labels A, B, and C indicate the three 
periods of different growth rates – slow, rapid, slow – in LO1’s history. 

 
After a little investigation of some historical aerial photos, a likely explanation was 

found (Fig. 5.22). The land this neighborhood sits on contained some of the last 

remaining larger tracks of the upland Cross Timber post oak forest within the city of 

Denton before the neighborhood was developed. There was some agriculture within the 

area, but much of the land was largely unsuitable for crops because of the extremely 
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sandy soil found through much of the area, which was probably why the tracks of forest 

remained. The sandy soil in this area was the most likely explanation for an early 

nickname given to the neighborhood after it was developed: “Idiot’s Hill.” While the 

house where this tree was growing was not built until around 1960, development related 

activities might have started much earlier. In an aerial photograph from 1942, it seemed 

clear that the area this tree was growing in had been recently thinned of trees. The 

location of LO1 is inside the circle on the image. From the wider view provided by the 

full aerial photograph (Fig. 5.22 only shows a zoomed-in shot of the tree’s immediate 

surroundings), it can be seen that many of the forested patches are darker and thicker 

looking, like the patch growing along the road on the north (top) side of the image. In 

comparison, the patch with the circled tree is much thinner. It is not possible to know 

from the image when the thinning occurred, but within a few years after such a thinning, 

the remaining trees should have spread and filled out more to give a thicker appearance 

again. At the time of the 1942 image, LO1 had a DBH of approximately 9 cm. By 1954, 

most of the other trees from the thinned patch had also been removed, and a number of 

tracks of land had been cleared completely for streets and blocks of houses to go up. 

The resolution of the 1954 image is unfortunately poor, but LO1 is still visible in a little 

cluster of about four other oak trees. At this point, LO1 had grown to a DBH of 

approximately 18 cm. By 1964, the house had been built, and LO1 was now part of 

someone’s yard. It was likely that LO1 started receiving extra water from lawn irrigation 

once the house was built. By 1964, the DBH had reached 28 cm.  

The proposed hypothesis for the cause of LO1’s growth spurt was the reduced 

competition, with the primary factor being the additional light it received after the 
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surrounding trees were removed. If this hypothesis were correct, then it would be an 

indication of just how strong of a limiting factor light is for post oak. The reduced 

competition for water is undoubtedly also a factor. Another important question raised by 

LO1’s growth history is what caused the growth rate to decline. One possible answer is 

that the tree was following the exact kind of growth trajectory that is assumed by the 

FACETA growth equation, which is that after reaching a certain size the tree’s energy 

primarily goes into maintenance, and growth rate slows down. Another possible 

explanation also has to do with light. Four tall pine trees were planted after development 

of the neighborhood that grew just to the south and southwest of the LO1. These pine 

trees can be seen in the 2011 image, clearly taller than the post oak. It is not known 

how the pine trees’ growth correlated to the post oak’s growth decline, but certainly by 

2011 they would have blocked much of the direct sunlight from the post oak.  

The growth history of LO2 is remarkably similar to LO1. LO2 was uprooted during 

a strong storm, and it revealed a root system that had mostly rotted away. This raises a 

third possible explanation to the decline in growth rate – root rot from too much lawn 

watering. From the graph in Figure 5-21 it appears that LO2’s growth trajectory lags a 

little behind LO1’s. This may be a real lag, or it is also possible that ring counting errors 

are a factor. The outer growth rings of LO2 were very difficult to see, and it is possible 

some were missed which would underestimate the tree’s age. Crossdating on the 

growth rings of the two trees was also not done. 

Blackjack oak. 

Only cross sections were collected for blackjack oak, and this species ended up 

with the largest collection of cross sections with approximately 15. Of those, nine were 
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measured and included in the estimation of G (Fig. 5.23). The growth rings on the 

samples collected but not included were too small to change the G estimation and were 

discarded. Blackjack oak growth rings tend to be easy to distinguish and are relatively 

easy to measure, at least when they are not too small. Some of the samples that were 

not used had rings that were very small and more difficult to distinguish. Blackjack oak 

is one of, if not the slowest growing tree species from the candidate list, so getting a 

good estimate for its G helped provide a lower bound for estimates on the growth 

parameters for the other species. Between the allometric regression and G estimation, 

the starting values for blackjack oak model parameters were G=2600, HMAX=18, and 

DMAX=100. 

 
Figure 5.23. Blackjack oak G estimation. G for blackjack oak was estimated from growth rings on nine 
cross sections of trees that had been growing in residential properties. 
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Sugarberry. 

Thirteen cross sections of sugarberry were examined for G estimation, but 

almost half had small growth rings, and only seven were measured and included in the 

analysis (Fig. 5.24). This dataset was likely not representative of sugarberry growth as 

all the samples collected were growing in upland positions, albeit in residential 

neighborhoods. Many of the largest sugarberry trees in the study area were found in the 

Greenbelt bottomland. Similar to blackjack oak, sugarberry growth rings tend to be easy 

to distinguish unless they are too small and become more difficult to see. Starting 

parameter values for sugarberry were G=11000, HMAX=30, and DMAX=100. 

 
Figure 5.24. Sugarberry G estimation. G for sugarberry was estimated from growth rings on seven cross 
sections of trees. All of the samples came from topographically upland positions, albeit on residential 
properties. 
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Cottonwood. 

Cottonwood ended up with a small sample of four cross sections, all of which 

grew on residential properties in topographically upland positions. Even with the small 

sample size, the G estimate still ended up larger then the next largest sample set 

discussed yet, green ash. However, given that the green ash data set contained 

30 trees, the G value for cottonwood was likely underestimated and would be improved 

with a better dataset. Cottonwood growth rings, while large, can also be very hard to 

distinguish. Measuring these samples took a great amount of care and high 

magnification, and having the full cross section available to view was very helpful. Initial 

parameter values for cottonwood were G=25000, HMAX=50, and DMAX=160. 

 
Figure 5.25. Cottonwood G estimation. Only four cottonwood cross section samples were included in the 
specie’s G estimation. All of the samples came from residential properties located in topographically 
upland positions. 
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American elm and boxelder. 

These two species ended up with micro sample sizes of one cross section each. 

While one data point is better than zero, unless that tree exhibits robust growth rates, 

the only value the one data point brings to the estimation of G is to provide a lower limit 

of values. Both of these trees had been growing in upland residential sites before being 

cut down. The boxelder exhibited very rapid growth; in 16 years, it grew to a DBH of 

approximately 25 cm. Even with a sample size of one boxelder, G estimate was a 

plausible value in that it fit roughly in with the sugarberry growth rate. According to some 

of the silvical information available on boxelder, it grows rapidly when it is young but 

then slows down considerably. It would be helpful to obtain samples from older boxelder 

trees to see how well their growth pattern fit FACETA assumptions. The G estimate for 

the American elm was too low. American elm is known to have poor growth rates on dry 

sites, and this tree was growing in an upland, sandy soil location.  

 
Figure 5.26. American Elm and Boxelder G estimation. American elm and boxelder only had one cross 
section sample each to estimate G. The result for boxelder seemed reasonable, but for the American elm, 
it was too low. This particular tree was growing on a sandy, upland site. 
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Of these two trees, the rings on the American elm were relatively easy to discern 

and measure, while the rings on the boxelder were more difficult. The boxelder rings 

were not as difficult to distinguish as the cottonwood samples, but having the entire 

cross section was still useful in determining ring boundaries. From this analysis the 

starting parameter values for American elm were G=4500, HMAX=38, and DMAX=152, 

and for boxelder they were G=12000, HMAX=23, and DMAX=90. However, by no 

estimates does American elm grow slower than post oak (G = 5000), and the G value 

determined from this one tree was not an acceptable starting FACETA parameter. A G 

value for American elm needs to be estimated by other means. 

All Other Species 

No growth rings were successfully measured or data obtained for the other 

candidate species. Some growth ring datasets were available through the ITRDB for 

two of the candidate species, bur oak and cottonwood (NCDC, 2015). The bur oak data, 

sampled in South Dakota, had the same problems as the post oak tree core data from 

the ITRDB in that growth rings were overall small with the exception of some graphing 

as if they occurred at a DBH of zero. The growth increments were no doubt calculated 

from data reported from incomplete cores. The dataset was deemed unhelpful for 

estimating G, and the ITRDB cottonwood data was not even examined. More than 10 

samples of cedar elm cross sections were collected, but all proved too difficult to 

measure the rings with enough confidence, and none was used. Cedar elm is notorious 

for having rings that are difficult to tell apart. Three old stumps of black willow were 

found, photographed, and growth ring measurements attempted, but they were too 

deteriorated to measure successfully. The American elm sample that was measured fell 
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short of providing a reasonable G estimate. No samples of mulberry, pecan, swamp 

privet, or winged elm were obtained. Without data, the best alternative for estimating G 

was to use published sources, the best available qualitative data, and assign values of 

G according to the relative differences in growth rates for the species. Estimates from 

blackjack oak, post oak, sugarberry, green ash, and cottonwood, going from low to high 

growth rate, were used as anchor points to rank and assign values to the unknown 

species. Information used in the ranking and parameter estimation of these species is 

summarized in Table 5.5. It should be noted that there is a much greater level of 

uncertainty in the estimates not based on measured growth rings. The results of the 

growth curves from the G estimations are shown in Figure 5.27, and parameter values 

are given in Table 5.6. As with any model parameters, these initial values will be 

calibrated and improved with testing. Since all of the growth parameters are mutually 

sensitive, changes to any one of them may require changing others. 

 
Figure 5.27. G estimation for other species. The growth curves are from the estimated G parameters for 
the candidate tree species for which no useful growth ring data was obtained. These G values were 
estimated based on relative ranking in growth rates between these species and the other species where 
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G was based on measured growth. There is a large amount of uncertainty in these estimates and for 
some species, for example swamp privet, the estimate is only a little more than a guess. 
 
Table 5.6  
 
Initial Species Growth Parameter Estimates 

Species Common Name G HMAX DMAX 
Populus deltoides Cottonwood 25000 50 160 
Salix nigra Black willow 21500 30 122 
Fraxinus pennsylvanica Green ash 18000 40 100 
Acer negundo Boxelder 12000 23 90 
Celtis laevigata Sugarberry 11000 30 100 
Ulmus americana American elm 10000 38 152 
Morus rubra Red mulberry 8000 22 100 
Ulmus crassifolia Cedar elm 8000 36 90 
Carya illinoinensis  Pecan 7000 43 210 
Forestiera acuminata Swamp privet 6000 14 25 
Quercus macrocarpa Bur oak 6000 40 210 
Ulmus alata Winged elm 5000 20 74 
Quercus stellata Post oak 5000 18 100 
Quercus marilandica Blackjack oak 2600 18 100 

Note: The growth parameter estimates for the FACETA candidate tree species. The shaded rows indicate 
species for which the growth rate parameter G is based on tree ring measurements, while those in the 
unshaded rows are based on relative rankings. The table is listed in the assumed descending order of 
growth rates. Relative rankings are based on the same information that was used to generate Table 5-5. 

 
To summarize some of the results in estimating values for the optimal growth 

parameter, while the equation is in units of volume of wood, it can be modified into an 

equation based in diameter and diameter increments. Between the three different 

methods of measuring diameter growth, dendrometer data are likely the most accurate 

because it really is measuring the characteristic that is interpreted as diameter, the 

circumference. No dendrometer data were available for this study for the candidate 

species so the other two methods were explored. Measuring growth from tree cores 

was considered first, but using cross sections was found to be a better method. 

Advantages of cross sections included being able to see the entire ring, which helped to 

eliminate errors and avoided measuring in areas with asymmetric growth rings. The 
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primary disadvantage was that using cross sections required destroying the tree, and 

this was avoided by only using cross sections taken from felled trees that had been 

discarded as waste. The main disadvantage of core data was it was not known whether 

the rings were measured from incomplete cores. When incomplete cores were treated 

as complete in this procedure for estimating G, the parameter value was inflated. There 

were also numerous difficulties in extracting usable cores. Another useful finding was 

that individual trees exhibiting rapid growth or that had been growing under good 

environmental conditions were helpful in estimating G. Trees growing on dry rocky 

slopes or with dense competition probably did not provide examples of optimal growth. 

Regeneration: Seeding and Sprouting 

Regeneration in FACETA is modeled through a process where a number of new 

seedlings are determined annually for each species, and then a proportion of these are 

probabilistically made available for establishment. These potential new recruits are 

subjected through an environmental filtering process, where the filtering is done as a 

multiplier determined by conditions of soil moisture, fertility, light, and temperature. If 

seedlings make it through this filtering, they become trees. There is a species 

parameter available in FACETA, called SEED, which assigns rank differences between 

the species. Differences in seeding rates and rates of establishment definitely exist 

between species, and there is some information available for some species, often 

qualitative in nature. For example, the USDA (2014b) PLANTS database describes 

seed abundance in terms of high or low, and provides descriptions of seedling spread 

rate, such as slow. Other silvics reference sources may provide additional information 

such as number of seeds per pound, age range at which trees produce seed, or 
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methods of dispersal, but this information is difficult to convert into a model parameter. 

Since the SEED parameter is just a ranking, it is possible to use the kinds of qualitative 

descriptions found in the PLANTS database to rank the different species. However, the 

focus of this study was modeling site conditions. A value for this parameter was 

required for each species in the species parameter input file in order to run the model. A 

switch in the species parameter input file that negates the SEED parameter. With it 

negated, regardless of the value entered into the input file all species have the same 

number of expected seedlings in any year. Since each species has its own set of 

environmental tolerance parameters, annual differences in establishment between 

species still occurs through the environmental filtering process. Rather than introducing 

seeding advantages or disadvantages to any of the modeled species, the SEED 

parameter was negated in this research. With this parameter negated, site conditions 

were the sole determining factor in establishment success. 

Another mechanism for regeneration encoded into FACETA is vegetative 

reproduction through stump sprouting. This is another characteristic where information 

can be found for some species, but it is almost entirely qualitative. Sources may provide 

information on whether or not a species has the ability to reproduce vegetatively, or 

some provide descriptors such as a species being a prolific stump sprouter. This 

capability is controlled by two input parameters required for each species. One 

parameter is the number of sprouts per stump expected to grow into mature trees, and 

the other is a maximum size limit of trees that can produce sprouts. Values for these 

input parameters are also required to run the model, but setting either or both 

parameters to zero turns off the capability. As with the seeding parameter, the decision 
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was made to negate this parameter and allow site conditions alone drive the 

regeneration dynamics between species. 

Tolerances for Temperature, Drought, Flood, Shade, Nutrient 

FACETA requires species parameters that define the range of tolerances and 

responses to various environmental and physical conditions. There are parameters for 

each species that describe tolerances to temperature range, drought, flooding or 

saturated soil, shade, and deficiencies in soil nutrients. In general, each tolerance 

parameter yields a tolerance curve. The curve produces a number between 0 and 1 

depending on some metric of that environmental condition over a growing year, and the 

tolerance curve values is used as a multiplier to the optimal growth increment. In some 

cases, for example with the two soil moisture related tolerances, the values of the 

tolerance curves are combined into a single multiplier by taking the minimum of the two. 

Temperature tolerance is modeled with a parabolic function with the input based 

on the concept of growing degree days (GDD). GDD is based on the notion that trees 

require a minimum temperature to grow. Every day during the growing season when the 

temperature exceeds the minimum limit, it counts towards the year’s GDD by the 

number of degrees that the temperature exceeds the limit. FACETA requires two input 

parameters for temperature tolerance, a minimum (DDMIN) and a maximum (DDMAX). 

These two values are the x-intercepts of the tolerance parabola, so any simulation year 

with the total number of GDD outside this range results in zero growth. These 

parameters are typically estimated by using the native range of the species and taking 

the average GDD occurring at the northernmost extent of the range for DDMIN and 

southernmost extent for DDMAX. A problem arises with this approach whenever 
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modeling a species close to its temperature range. A potential solution to this problem is 

using upper and lower limits for the average number of GDD occurring at the southern 

and northern extents, respectively. For example, rather than taking the average GDD 

over a 30-year history as the parameter, the minimum number over the 30 years is used 

if it is from the northern extent and the maximum number over the 30 years is used if it 

is from the southern extent. This approach requires more effort than finding the 

average, but, if taken, then average temperature years at the extent of the species 

range can still result in positive growth. This issue is not a problem if the species 

modeled are not near the edge of their range. In this study, the temperature tolerance 

parameters were determined in the traditional manner of finding the northern and 

southern averages for the number of GDD occurring in a typical growing season. This 

was accomplished using a species range map and temperature records or even 

climographs of the southern and northern extents of the range. In the case where two 

species’ ranges essentially overlapped, the same values are used. Having said that it, 

must be noted that there were problems in the underlying assumption and approach to 

modeling and determining parameters for the temperature tolerances. It is not apparent 

that high temperatures are a limit to the ranges of any of the tree species native to the 

southeastern United States, or any of those considered for FACETA. Many have their 

ranges bounded on the south by the Gulf of Mexico, and the limiting factor on the 

western side of their ranges is much more likely to be precipitation than temperature. 

However, using the traditional assumptions on temperature tolerances, Table 5.7 lists 

these parameter values for the FACETA candidate species.  
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Table 5.7  
Temperature Tolerance Parameters for Candidate Species 

Species Common Name DDMIN DDMAX 
Acer negundo Boxelder 890 5500 
Carya illinoinensis  Pecan 2390 5500 
Celtis laevigata Sugarberry 2680 6220 
Forestiera acuminata Swamp privet 2390 5500 
Fraxinus pennsylvanica Green ash 890 5500 
Morus rubra Red mulberry 1950 5500 
Populus deltoides Cottonwood 1950 5500 
Quercus macrocarpa Bur oak 1950 5500 
Quercus marilandica Blackjack oak 2510 5560 
Quercus stellata Post oak 2680 6010 
Salix nigra Black willow 1950 6220 
Ulmus alata Winged elm 2680 6010 
Ulmus americana American elm 1950 5500 
Ulmus crassifolia Cedar elm 2680 6220 

Note: The minimum (DDMIN) and maximum (DDMAX) temperature parameters are derived by estimated 
that average number of GDD that occur at northern extent (for DDMIN) and southern extent (for DDMAX) 
of the species range. 
 
 

Drought tolerance itself is not a new feature for FACETA; however, the way it is 

implemented has changed. Predecessors to FACETA used relative rankings of 1 

through 5, with 5 being the most tolerant. The parameter in FACETA is a value that 

represents the proportion of days in the growing season that the species can tolerate 

being in dry soil. In this case, dry soil is defined as having no extractable water, which is 

when the soil moisture level drops below wilting point. Any such day is called a dry day, 

and the total number of dry days is divided by the length of the growing season. As this 

number approaches a specie’s drought tolerance parameter, the specie’s tolerance 

curve decreases as a square root function. This approach certainly is a refinement over 

FACETA’s predecessor in that it is tallying a drought index daily; however, there are still 

some limitations. For example, the annual drought index does not take into account 

when in the growing season dry days occur or how they are distributed. It surely seems 
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reasonable that 10 consecutive dry days would be more injurious to a tree than 10 days 

scattered throughout the growing season. However, the model’s drought index treats 

these two scenarios the same. Another limitation to the approach is that although the 

parameter is based on quantifiable value – the proportion of dry days in the growing 

season the species can tolerate – there is little to no available data on which to base the 

parameter. The best that can be accomplished with the model’s current drought 

tolerance implementation and the information and data available is to rank the species 

by relative drought tolerance, group them when possible, and assign initial values for 

the tolerance parameter based on those rankings. Relative rankings are based on the 

same type of descriptive or qualitative information that is often only what is available for 

determining qualitative model parameters (descriptions such as low drought tolerance 

or high moisture requirement). As with some of the previously discussed information 

available for tree species, details can often be either unavailable or conflicting. Table 

5.8 gives examples of common descriptions regarding drought tolerances of the 

candidate species. Three example sources are used in this table: the USFS Climate 

Change Tree Atlas (Prasad et al., 2007-ongoing), the USFS Fire Effects Information 

System (USDA, 2014a), and the USDA (2014a) PLANTS database. The PLANTS 

database in particular has contained information that seems contradictory to other 

sources or personal observations. The advantage of this database is that it contains 

information on a very large number of species, including every one of the FACETA 

candidate species. Examples of suspect information from the PLANTS database in 

Table 5.8 include giving the same low tolerance rating to drought for sugarberry, pecan, 

and swamp privet. Both sugarberry and pecan can survive in dry sites whereas swamp 
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privet does not. Additionally, the PLANTS database ranks both green ash and 

cottonwood as more drought tolerant than sugarberry, which from personal 

observations in the North Texas area seems incorrect. Both green ash and cottonwood 

are noted for having considerable variation in drought tolerance across their ranges, 

and it is quite possible that the individuals from these species in the North Texas region 

are of the less tolerant variety. 

Table 5.8. 
  
Drought Tolerance Descriptions for Candidate Species 

Species 
Common 

Name 

CCTA 
Drought 

Comments 
FEIS Drought Comments 

PLANTS 
Drought 
Rating 

Dry Day 
Limit 

Parameter 
Post oak Extremely 

resistant to 
drought 

Drought resistant; Seedlings 
resistant to drought 

High 0.60 

Blackjack oak Dry site 
intolerant 

Semi-xeric species; Typically 
occurs on dry sites; Often 
survives more xeric sites than 
post oak but during severe 
drought in Oklahoma had higher 
mortality than post oak 

High 0.60 

Winged elm n/a n/a Low 0.45 
Bur oak Extremely 

resistant to 
drought 

Endured drought very well over a 
7 year period 

High 0.40 

Cedar elm n/a n/a Medium 0.35 
Boxelder Resistant to 

drought 
Tolerant once established High 0.35 

Sugarberry n/a n/a Low 0.35 
Green ash n/a Varies across the species’ range; 

In South Dakota 63% survival 
over 5 years of drought 

Medium 0.35 

Red mulberry n/a n/a Medium 0.35 
Pecan n/a n/a Low 0.30 

American elm n/a n/a Medium 0.30 
    

 
(table continues) 
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Species 
Common 

Name 

CCTA 
Drought 

Comments 
FEIS Drought Comments 

PLANTS 
Drought 
Rating 

Dry Day 
Limit 

Parameter 
Table 5.8 (continued)   

 
Species 
Common 

Name 

CCTA 
Drought 

Comments 
FEIS Drought Comments PLANTS Drought Rating 

Cottonwood n/a Drought tolerant; Significant 
geographic variation in drought 
resistance 

Medium 0.25 

Black willow Wet required Not drought tolerant; Entire 
stands may die when water 
tables lower 

Low 0.15 

Swamp privet n/a n/a Low 0.15 

Note: Drought tolerance descriptions can be found for many species from various botanical or silvics 
sources; however, the information available is rarely quantitative and sometimes contradictory. This table 
summarizes drought tolerance descriptions from three such sources: The USFS Climate Change Tree 
Atlas = CCTA, the USFS Fire Effects Information System = FEIS, and the USDA PLANTS database = 
PLANTS. One advantage to the PLANTS database is that it contains information on most species; 
however, it also offers the vaguest descriptions and can often contradict other sources or observations. In 
some cases a simple rating system is used, in which case a one-word descriptor appears in the table 
(e.g., High). In other cases, the sources offer more verbal descriptions, in which case the table 
paraphrases the information from the source. If the table states n/a, then no specific information about 
drought tolerance was found from the source. The table is listed in order from what is assumed to be 
most drought tolerant to least for the Greenbelt FACETA model. 
 

Final ranking and drought parameter estimation was based on both the 

information from the various botanical resources and on familiarity with tree responses 

to dry conditions in the North Texas area. For example, bur oak was frequently 

described as being drought tolerant or even extremely drought tolerant, but the species 

did not occur on the direst sites in North Texas where post oak and blackjack oak do 

occur. However, both winged elm and cedar elm associated with the post oak on these 

dry sites. The conclusion drawn was that winged elm and cedar elm are very close to 

bur oak in drought tolerance. Since winged elm appeared on some of the driest of these 

sites, albeit as a small scrubby tree, it was ranked just above bur oak in drought 

tolerance, while cedar elm was ranked just under bur oak. There are actually two 
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required drought tolerance parameters in FACETA for each species, one for trees and 

one for seedlings. Mature trees and seedlings are treated differently in the model when 

considering access to and requirements for soil moisture. Seedlings’ access to soil 

moisture is limited to the first 20 cm of soil depth whereas trees have access to the 

moisture from the entire column. However, without better data on which to base these 

parameters, there was no reason to assume the limit for trees was different from that for 

seedlings. Since trees have access to more of the soil moisture than seedlings, even 

with the same parameter value seedlings will be more impacted during dry periods. 

These initial parameter estimates were tested and calibrated, and as with all model 

parameters, they should be altered as more information is gained. Figure 5.28 shows 

graphs of the drought tolerance curves using these parameter estimates.
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Figure 5.28. Dry day response curves for candidate species. Dry day tolerance response curves for 
FACETA candidate species using the parameters listed in Table 5.8. The model parameter is the 
proportion of dry days at which the graph intersects the x-axis, which equates to growth response factor 
of 0 or no growth.  

Flood tolerance is a new addition to FACETA. While it is referred to as flood 

tolerance, it functions more like anaerobic tolerance combined with a minimum moisture 

limit. Similar to the temperature tolerance, the curve is parabolic, and there are two 

required parameters, which are the two x-intercepts of the parabola. Similar to the 

drought tolerance, both the parameters and the index that determines the tree response 

are expressed as a proportion of days in the growing season. In this case, the days 

being counted are wet days, which are defined as being days when the soil moisture 

exceeds field capacity. Soil water that is in excess of field capacity is also called 

gravitational water, and is water that percolates down towards the groundwater. This 

excess water takes up soil pore space that would otherwise be occupied by air, so it is 

anaerobic stress. Table 5.9 lists some of the common descriptions regarding flood 

tolerances of the candidate species and lists initial parameter values. The sources used 

for this table included USFS Climate Change Tree Atlas (Prasad et al., 2007-ongoing), 

USDA Fire Effects Information System (2014a), and the USDA (2014b) PLANTS 

database along with a handbook produced in collaboration between the US Geological 

Survey (USGS, n.d.) and the USFS (USDA, 2014a) on bottomland hardwood 

restoration. The parameter was allowed to exceed 1 to allow for positive growth of 

swamp-tolerant species, or it could be below 0 to allow for positive growth of xeric 

species. As with the drought tolerance parameter, FACETA allows for different 

parameter values for seedlings and trees. At this time without better data on which to 

base the parameters, the values for seedlings and trees were set the same for most 
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species. Figure 5.29 shows graphs of the flood tolerance response curves using the 

parameters in Table 5.9. 

Table 5.9.  
Flood Tolerance Descriptions for Candidate Species 

Species 
Common 

Name 
FEIS or CCTA Flood 

Comments 

USGS 
Flood 

Tolerance 

PLANTS 
Moisture 

Use 

PLANTS 
Anaerobic 
Tolerance 

Wet Day 
Parameter 
Low / High 

Swamp privet n/a T High High 0.1 / 1.5 
Black willow FEIS: Develops best in 

stagnant water; thrives in 
saturated soil 

T High High 0.1 / 1.5 

Green ash CCTA: Extremely tolerant of 
flooding 

MT Medium Medium 0.0 / 0.95 

Cedar elm n/a MT Medium None 0.0 / 0.8 
American elm CCTA: Tolerates dormant 

season flooding but not 
growing season flooding 
FEIS: Found in bottomlands 
but not typically in deep 
swamps 

MT High Low 0.0 / 0.8 

Sugarberry FEIS: Cannot tolerate 
prolonged flooding; 
Found on moist soils and 
slough margins but not deep 
swamps 

MT High Medium 0.0 / 0.8 

Cottonwood FEIS: Moderately tolerant to 
water-logged soils; tolerant to 
short-term inundation 

WT to MT High High 0.0 / 0.8 

Boxelder FEIS: Can withstand short 
periods of flooding 

MT Medium Medium 0.0 / 0.75 

Red mulberry CCTA: Moderately tolerant at 
least for one growing season 

WT to I Medium Medium 0.0 / 0.75 

Pecan FEIS: Most common on well-
drained soils not subject to 
prolonged flooding 

WT High None 0.0 / 0.5 

Winged elm n/a WT to I Medium Low 0.0 / 0.35 
Bur oak FEIS: Tolerant to some 

inundation but not to 
prolonged flooding 
CCTA: Intolerant to flooding 

I Medium None 0.0 / 0.35 

(table continues)  
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Table 5.9 (continued)     
Species 
Common 

Name 
FEIS or CCTA Flood 

Comments 

USGS 
Flood 

Tolerance 

PLANTS 
Moisture 

Use 

PLANTS 
Anaerobic 
Tolerance 

Wet Day 
Parameter 
Low / High 

Blackjack oak FEIS: Excessive soil moisture 
and inundation cause severe 
stress and often high 
mortality in seedlings; 
Typically occurs on dry sites 

n/a Low None -0.1 / 0.3 

Post oak CCTA: Very intolerant of 
flooding 

n/a Medium Low -0.1 / 0.25 

Note: Flood tolerance descriptions can be found for many species from various botanical or silvics 
sources; however, the information available is rarely quantitative and sometimes contradictory. This table 
summarizes flood tolerance descriptions from four such sources: the USFS Climate Change Tree Atlas = 
CCTA, the USFS Fire Effects Information System = FEIS, the USGS Guide to Bottomland Hardwood 
Restoration = USGS, and the USDA PLANTS database = PLANTS. In some cases, a simple rating 
system is used, in which case a one-word descriptor appears in the table (e.g., High). In the case of the 
USGS ratings, the codes are tied to specific meanings: T = tolerant to long-term flooding, MT = tolerant to 
several months of flooding, WT = tolerant to a few weeks of flooding, and I = tolerant for at most a few 
days. In other cases, sources offer more verbal descriptions, in which case the table paraphrases the 
information from the source. Information in both the CCTA and FEIS on flood tolerance is spotty, so these 
two sources are combined into one column. If the table states n/a, then no specific information about 
flood tolerance was found from the source. The table is listed in order from what is assumed to be most 
flood tolerant to least for the Greenbelt FACETA model. 

 
Figure 5-29: Wet day response curves for candidate species. Wet day tolerance response curves for 
FACETA candidate species using the parameters listed in Table 5-8. The model parameters are the 
values at which the parabolic graph intersects the x-axis, which equates to growth response factor of 0, or 
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no growth. If a parameter value is either less than zero or greater than 1, then this species can still grow 
in either xeric (for 0) or swamp (for 1) conditions. 
 

Shade tolerance is implemented in FACETA in a relatively simple manner, and is 

unchanged from its predecessor. Each species is assigned a value from 1 (very 

intolerant) to 5 (very tolerant), and a different tolerance curve based on the percentage 

of full sun received is assigned to each class. Sunlight is reduced from 100% in 

FACETA through a light attenuation model that diminishes sunlight as it passes through 

the canopy. This is one way that competition between individual trees is simulated. 

Taller trees get more sunlight. For this parameter, it is more important to know the 

relative differences in shade tolerances between the species rather than some 

quantifiable characteristic. While this approach is a little arbitrary, shade tolerance is a 

very difficult characteristic to measure so this approach is about the best option. 

Through observations and tree surveys, it is not too difficult to determine which species 

are or are not tolerant to shade. This is the only silvics characteristic for which the 

various sources consulted are mostly in agreement. Examples of shade tolerance 

characterizations are given in Table 5.10. The sources used for this table again include 

USFS Climate Change Tree Atlas (Prasad et al., 2007-ongoing), the USGS (n.d.) 

bottomland hardwood restoration handbook, and the USDA (2014b) PLANTS database. 

Tolerance to soil nutrient stress is also modeled in a somewhat simple fashion. 

Every soil type is given a fertility parameter expressed as a potential annual productivity 

rate. As trees grow within a plot, potential productivity is used, and species susceptible 

to nutrient stress will have their growth rate diminished. This is another way to simulate 

competition dynamics. Similar to shade tolerance, the parameter is based on classes. 

The classes are rated from 1 (nutrient demanding) to 3 (nutrient stress tolerant). 

240 



Table 5.10 
Shade Tolerance Descriptions for Candidate Species 

Species 
Common Name 

CCTA USGS Tolerance 
Description 

PLANTS 
Shade 

Tolerance 

Shade 
Tolerance 
Parameter 

Sugarberry Tolerant T to VT Tolerant 5 
Red mulberry Tolerant T to VT Tolerant 5 
Swamp privet n/a T Tolerant 5 
Winged elm Tolerant T Tolerant 4 

Boxelder Tolerant MT to T Tolerant 3 
American elm Intermediate MT to T Intermediate 3 

Cedar elm Intermediate MT to T Intermediate 3 
Green ash Tolerant, but 

varies through 
its range 

Adult = I;  
Seedling = MT to T 

Tolerant 3 

Bur oak Intermediate WT Intermediate 3 
Pecan Intolerant I to MT Intolerant 2 

Post oak Intolerant n/a Intolerant 2 
Blackjack oak Intolerant n/a Intolerant 2 
Cottonwood Very intolerant VI Intolerant 1 
Black willow Very intolerant VI Intolerant 1 

Note: Shade tolerance descriptions can be found for many species from various botanical or silvics 
sources and is always qualitative, but different sources tend to agree more on this silvics characteristic. 
This table summarizes shade tolerance descriptions from three sources: the US Forest Service Climate 
Change Tree Atlas = CCTA, the USGS Guide to Bottomland Hardwood Restoration = USGS, and the 
USDA PLANTS Database = PLANTS. The characterizations tend to be simple rankings such as “tolerant” 
or “intermediate”. In the case of the USGS ratings, the codes are tied to specific meanings: VT = species 
is able to survive and thrive in the deep shade of a closed canopy forest, T = species is able to survive 
and grow in the shade, but growth may be slowed if shade is deep, MT = species will survive in moderate 
shade, but growth and seed production may be reduced, WT = species will grow with partial shading for a 
portion of the day but requires some direct sunlight for normal growth, and I = species requires open 
conditions and full sunlight for normal growth. No definition is given in the handbook for “VI”, but 
interpolating from the description of “I” it must be assumed that “VI = Very Intolerant” means something to 
the effect of the species does not grow at all in the shade. If the table states “n/a” then no specific 
information about shade tolerance was found from the source. The table is listed in order from what is 
assumed to be most shade tolerant to least for the Greenbelt FACETA model. 

 
Only the USDA (2014b) PLANTS database provided information on fertility demands 

with any consistency at all. Many sources have within the species descriptions 

statements such as thrives in rich soils, but these descriptions vary greatly and are 

difficult to apply to estimating model parameters. Nutrient stress tolerance is another 
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characteristic that is very difficult to measure. Table 5.11 lists the nutrient stress 

tolerances for the candidate species. 

Table 5.11 
Nutrient Tolerance for Candidate Species 

Species Common 
Name 

PLANTS 
Fertility 

Requirement 

Nutrient 
Stress 

Parameter 
Blackjack oak Low 3 

Post oak Medium 3 
Red mulberry Low 3 
Winged elm Medium 2 
Sugarberry Medium 2 
Cedar elm Medium 2 

Bur oak Medium 2 
Boxelder Medium 2 

American elm Medium 2 
Green ash Medium 2 

Cottonwood Medium 2 
Black willow Medium 2 

Swamp privet Medium 2 
Pecan High 1 

Note: Beyond descriptions of types of soils that a species may favor, nutrient stress tolerance 
descriptions are difficult to find and likely impossible to quantify. This table lists the nutrient or fertility 
requirements for the species from only one source, the USDA PLANTS Database = PLANTS. The 
characterizations are simple rankings of high, medium, and low. The table is listed in order from what is 
assumed to be most nutrient stress tolerant to least for the Greenbelt FACETA model. 

 
Of all species parameters, the ones for tolerances to environmental stress are 

the most difficult to measure for or quantify. Typical methods used across the board for 

modeling these responses and determining parameters is by ranking the species and 

assigning response curves based on rank. The wet-day and dry-day response methods 

incorporated into FACETA represent an effort to base the response more on the 

biological response to the physical moisture conditions being modeled in the soil. 

However, because of how response and parameters work, there are still limitations. 

Wet-days or dry-days within the growing season are not differentiated by when they 
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occur or how they are distributed. Data to base the parameter values on are limited at 

best. Considering the definition of a dry day is that the moisture level has been reduced 

to the wilting point, few plant species could withstand very many dry days within the 

growing season. However, because response curves tend to drop with a very steep 

slope as they approach the parameter values, setting parameter values too low (or high 

in the case of the smaller of the wet-day parameters) results in little or no growth and 

high mortality. The parameters may require a little buffer space to prevent this.  

Of all the tolerance parameters, temperature range is the most straightforward 

and easiest to quantify a parameter value for given the model’s assumptions. Potential 

problems with assumptions occur if a species being modeled is close to the edge of its 

temperature range, in which case growth will be too restricted because of the steep 

decline of the response curve. In this case, a little buffer could be built in by using lower 

(from the north end of the range) and upper limits (from the south end of the range) 

rather than averages of the annual GDD.  

Shade and nutrient stress responses and parameters are fairly easy to determine 

since the parameters are simple rankings. Collaborating information to base those 

rankings is easy to find for shade tolerance as it is an easy characteristic to observe. 

However, there is very little good information for the nutrient parameter. Additionally, the 

responses for these stressors are a bit arbitrary, but probably the best approach 

available without a better way to quantify both the stress tolerance and stress response.  

All tolerance parameters, as well as all of the other species parameters, are 

calibrated as the model is developed, and because of the mutual sensitivity between 

them, all calibration can be an exceedingly challenging task.  
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Conclusions: FACETA Biological Parameter 

To develop a model that is representative of a particular ecoregion, it must 

contain species that represent it and all of its important ecological niches. If the model is 

trying to capture the effects of topography and terrain attributes, then the species used 

in the model must allow validation of the model and possess terrain sensitive 

characteristics. If the model is representing a particular location, area, or watershed 

within the ecoregion, then species prevalence in that location must be consider in 

selecting the species for the model. There are also model concerns in selecting 

modeled species, in that it can be difficult to find adequate, non-contradictory 

information to model many species. Some species have little commercial value and are 

somewhat ignored, while other species may be well known and studied but can possess 

huge variations in characteristics, from growth potential to drought resistance, across 

their range. A species like winged elm can have so much differing or conflicting 

information about them from different sources that it can seem like different species are 

being discussed. Perhaps some of these different sources are really discussing different 

species, or maybe different varieties, and certainly different populations. This raises the 

question of what is meant by a species, and how that understanding is translated into a 

forest model like FACETA. Different populations adapt to the environmental conditions 

they live in, and can develop greatly varying characteristics and phenotypes. If building 

a forest model for Texas, should post oak growth parameters be based on observations 

of Texas post oak or should they include the much larger post oaks that grow in places 

like Mississippi? Could a post oak taken from the population in North Texas grow as 

large as one from the southeast if given more optimal conditions? These questions 
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arose through this research, though they were not satisfactorily answered. There is also 

the problem that some species just do not fit well to the model’s assumptions of growth 

patterns and forms. All of these issues complicated developing a list of species to be 

modeled. 

The issue of differences in characteristics across a specie’s range is particularly 

clear in determining the maximum parameters. Proposed limits on heights and 

diameters for some species can vary wildly. In a way, these maximum values are not 

knowable since a potential cannot be really understood unless it is realized. The 

philosophy behind parameters such as maximum height in these kinds of models is to 

set the value to the idealized maximum potential and then let environmental conditions 

and competition control the realized growth. There are two potential problems with that 

approach. Numerous model parameters interact with each other through model 

equations and mutual sensitivity can be high. If interacting model parameters are 

dramatically out of alignment with each other, it can result in unrealistic outcomes from 

the model assumptions. Another problem with the maximal approach is that in many 

cases, models such as these are not simulating the actual biophysical processes taking 

place; rather, they often simulate the effects of those biophysical processes. For 

example, instead of simulating the actual reduction in photosynthesis because of shade, 

it is much simpler to group species into tolerance classes and then penalize growth 

accordingly when shade is present. Modeling responses to stressors in this way can 

work quite well; however, success depends on getting the relative rankings correct. 

Changes made in FACETA to the species parameters and response to both 

drought and anaerobic stress is an example of an attempt to base the model more on 
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measurable, physical responses, by making the growth penalty a function of the 

proportion of the growing season during which the stressor occurred. However, even a 

small enhancement in the realism in the model requires a large amount of knowledge to 

use properly. How do trees respond if seasonal soil moisture levels exceed field 

capacity during half of the growing season? Does it make a difference it this occurs 

because every other day during the growing season the soil moisture exceeded that 

level versus a scenario where the soil is soaked for three months continuously? The 

answers obviously depend on the species. Relative difference between species’ 

responses is often fairly well understood, but the difficulty lies in quantifying those 

relative differences. In the case of FACETA, the model was enhanced to make the soil 

moisture responses more real, but in the end the data available to parameterize those 

responses was too limited to do any better than rank the species, then assign best 

guess parameter values based on those. One problem with drought response is that 

FACETA does not treat species differently underground. Root geometry and root depth 

do not change with species. While a number of factors impact a plant’s susceptibility or 

tolerance to drought, one factor at least for some species is the root geometry. Honey 

mesquite, a common invader in dry sites, has been said to grow a tap root up to 60 feet 

deep. On the other hand, most tree species grow most if not all of their roots in the 

upper layers of the soil. Modeling species response based on a physical property such 

as access or lack thereof to soil water at depth rather than assigning ranks between the 

species provides more realism. However, that does not change the problem of 

parameterizing a species to respond to a stressor once one occurs. 
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Using actual tree measurements to determine the allometric and growth rate 

parameters is an example of trying to make model parameters based more on data than 

just intuition. The techniques generally seemed to work well, but there are still some 

limitations and problems. Different species fit the assumptions of the model to varying 

degrees. For example, with the allometric growth equation relating height and diameter, 

the shrubby swamp privet does not seem to follow the rule at all whereas the 

height/DBH data points used in the blackjack oak regression look almost as if they were 

generated by the regression curve. One of the problems of measuring for the growth 

rate parameter G is determining just how to do it. The parameter is given in units of 

volume of new wood per unit leaf area per year. Direct measurements for such a 

parameter are difficult at best. In this case, using the assumptions behind the model 

equations – assumptions regarding the relationships between leaf area and diameter 

and between diameter and volume – the parameter can be measured for by measuring 

diameter growth increments. This is seemingly simple enough, but how are diameter 

increments measured? Some tree species can have very irregular geometries with 

lobed, twisted, fluted, or angular trunk shapes where the question arises of what is even 

meant by diameter. It is typically assumed or interpreted that diameter means the 

circumference divided by pi, and that a diameter increment is twice the width of a tree 

growth ring. For this study, it was found that the best way to measure for diameter 

increments, short of using dendrometer bands in a long-term study, was to measure 

growth rings using cross sections. Using cross sections reduced uncertainty about 

asymmetric growth rings, rings that were difficult to see or false rings, and the diameter 

of the tree at the time any particular growth increment occurred. Since the objective of 
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measuring for the growth rate parameter was find examples of optimal growth, using 

trees growing in optimal conditions such as residential yards was concluded to not only 

be acceptable but the best approach. 

While there are methods for measuring growth rate and allometric parameters, 

many of the biological parameters do not such methods. For parameters such as the 

various tolerances, typically the best that can be done is to determine the relative 

parameterization between species accurately. In some cases, a parameter might be 

easy to measure for (e.g., height to crown ratio), but variation might be so great that the 

measurements become difficult to interpret.  
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CHAPTER 6 

FACETA ENVIRONMENTAL PARAMETERS 

The environmental parameters required by FACETA can be grouped into three 

categories: climate averages used to drive the random weather generator, soil 

conditions used to model the soil water balance, and landscape and terrain parameters 

used in the insulation and hydrological components of the model. A weather generator 

is used in the model to provide simulated daily high and low temperatures and daily 

rainfall amounts.  Input parameters are required for each month, which are calculated 

from local daily weather records as well as from monthly averages. The soil water 

balance model and weather generator are linked. The generated rainfall is used as input 

into a soil moisture model, where daily moisture dynamics are simulated through a 

water budget calculated for each soil layer that includes infiltration through layers, 

percolation away from the root zone, and evapotranspiration to the atmosphere. Soil 

parameters include depth, infiltration rate, how much water the soil can hold, and how 

much water the soil must have for it to be available to plants. Landscape and terrain 

input parameters include topographic measurements of slope, aspect, and elevation. 

Terrain type parameters are also derived from the topographic wetness index (TWI) and 

soil type groups. Slope and aspect are used to model insulation. Elevation is used in the 

model to simulate changes in temperature and precipitation that can occur in 

mountainous regions. While these three parameters are used by FACETA and are 

required in the input file, they were not focused on in this research. Rather the 

hydrologically centered parameters derived from the TWI and soil type terrain types 

were the landscape parameters of interest. 
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Methods: FACETA Environmental Parameters 

Environmental parameters were estimated through different methods for the 

three categories. The weather and climate parameters were determined from historical 

records. Monthly solar radiation parameters were obtained from already aggregated 

historical monthly averages, but all the other weather-related parameters were 

determined from a history of daily records. Soil parameters for the modeled soil series 

were estimated using layer depths, textures, and organic content of the typical pedon 

for each soil series as described in the Denton County soil survey (Ford & Pauls, 1980). 

Soil parameters for selected locations were also determined from layer depths, textures, 

and organic content measured from soil core samples taken from within the Greenbelt. 

The two sets of parameters were estimated to compare results from the two sources to 

help determine the reliability of using a county survey in the gap model application. The 

terrain type parameters were determined from the distribution of values of the different 

raster grids calculated from the digital elevation model (DEM). Specific details for the 

environmental model parameters are provided in the following sections. 

Results: Climate and Weather Parameters 

A major change in FACETA was to convert its weather simulator from a monthly 

to a daily time step. Like most models of its kind, FACET produced monthly high and 

low temperatures and monthly rainfall totals based on probability distributions. Monthly 

results were then aggregated across the growing season to determine annual tree 

growth response. Because the objective of this research was to introduce the hydrologic 

effect of topography and to develop a more detailed method to simulate tree response 

to soil moisture conditions, the rainfall simulator was converted to a daily model. 
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Daily weather records from the City of Denton spanning the years 1913 to 2013 

were obtained from the Utah Climate Center’s database (Utah Climate Center, 2013). 

The records included the high and low temperatures and precipitation totals for each 

day. The data were used to describe the climate from annual, monthly, and daily 

perspectives. At each level, only complete data sets were used in the analysis. For a 

given day, the temperature record was considered complete if both the high and low 

temperature record existed, and precipitation record was considered complete if both 

that day’s and the previous day’s precipitation records existed. For either monthly 

temperature or precipitation analysis, a month’s records were considered complete if 

there was a complete record for every day of the month. For the annual analysis, a 

single year was considered complete if there were at least 365 days of complete data 

for that year. Incomplete months or years were not included in the analysis. 

Temperature and precipitation were treated separately in terms of completeness. For 

example, if the temperature sensor for the weather station was down one day but the 

rain gauge was functional, that day’s data were included in the precipitation analysis but 

not for temperature. After eliminating incomplete months and years from the 100 years 

of weather data collected, there were 78 years of complete precipitation data and 

65 years of complete temperature data. For any of the 12 months of the year for both 

temperature and precipitation, there were at least 88 complete records. The parameters 

for FACETA’s weather generator were determined from this data using the daily 

weather records for each month separately. 

Prior to making the big change from monthly to daily rainfall simulation, a smaller 

change was made to the way monthly temperatures were simulated. It is common to 
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use a normal distribution to model the monthly high and low temperatures, which was 

the method in FACET. In a literature review, it was noted that in many climates some 

months have more of a skewed temperature distribution. The monthly temperature 

averages were analyzed from the historical records for normal distributions using 

exploratory data analysis, chi square goodness of fit, and Shapiro-Wilks tests.  Both 

skewness and kurtosis were calculated (Table 6.1). Most months’ average temperature 

distribution could not be concluded to be significantly different from normal, but three 

were. All months showed a small degree of being peaked according to Geary’s kurtosis, 

and most months had some amount of skew to the left or right. Of note, these 

calculations were done on the set of average monthly temperatures. The results were a 

little different when performed on the average low or average high monthly 

temperatures. For example, the average low temperatures for April were significantly 

different from normal but neither the average high nor the average April temperatures 

were. To make the temperature distribution options more flexible, a skewness 

coefficient was added to FACETA’s monthly temperature model. 

While kurtosis was calculated, no model changes were made to incorporate it. 

Results from the exploratory data analysis are listed in Table 6.1, and examples of 

graphs from that analysis for one winter and one summer month are illustrated in 

Fig. 6.1. Both months had slightly skewed temperature distributions (July skewed right 

and December skewed right). Generally winter months, December through February, 

have a notable left skew, and summer months, June through August, have right skews.  
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Table 6.1  
 
Results of Average Monthly Temperature Analysis 

Month 
Chi-square 
GOF (X2), 

p value 

Shapiro-
Wilks 
(SW),      

p value 

Skewness Kurtosis 
(Geary’s) 

Conclusion (Using α =0.10 for 
normality tests) 

January 0.16 0.09 -0.43  0.78  Can reject the distribution is 
normal based on SW; skewed 
left and slightly peaked; there are 
outliers at low values 

February 0.72 0.33 -0.36 0.78 Cannot reject the distribution is 
normal; slightly skewed left and 
peaked; there are outliers at low 
values 

March 0.02 0.56 -0.16 0.81 Cannot reject normal based on 
SW; X2 result in conflict with SW; 
small left skew, peak around the 
mean 

April 0.24 0.30 0.28 0.80 Cannot reject the distribution is 
normal; skewed right and a little 
peaked; there are outlier at the 
high end 

May 0.08 0.96 0.02 0.78 Cannot reject normal based on 
SW; X2 result in conflict with SW; 
slightly peaked; there are outliers 
at both high and low ends 

June 0.11 0.03 0.47 0.81 Reject normal based on SW; 
peaked and skewed a bit to right; 
there are outliers 

July 0.06 0.07 0.55 0.77 Reject normal from both tests; 
peaked and slightly skewed right; 
outliers to the right 

August 0.68 0.48 0.32 0.81 Cannot reject normal; a little right 
skewed and peaked; outlier on 
each end 

September 0.63 0.77 0.18 0.80 Cannot reject normal; slightly 
peaked 

October 0.38 0.16 -0.20 0.76 Cannot reject the distribution is 
normal; slight left skew and peak 

November 0.28 0.63 -0.19 0.81 Cannot reject normal; slight left 
skew and peak 

December 0.44 0.36 -0.38 0.79 Cannot reject normal; left skew 
and peak 

Note: Distributions of monthly temperature averages were analyzed from historical weather records using 
exploratory data analysis and testing for normality, skewness, and kurtosis. Normal temperature 
distributions are often assumed in weather models such as the one used in FACETA. However, some of 
monthly distributions were found to be different from normal. FACETA was modified to include a 
skewness coefficient. 
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Figure 6.1. Average monthly temperature distributions for July and December. Distributions of monthly 
temperature averages were analyzed from historical weather records using exploratory data analysis and 
testing for normality, skewness, and kurtosis. Normal temperature distributions are often assumed in 
weather models such as the one used in FACETA. However, some monthly distributions were found to be 
different from normal. FACETA was modified to include a skewness coefficient. Graphs from the analysis 
are shown here for two months, one winter and one summer, as examples of months with distributions 
different from normal. The graphs on the left with the slight right skew are from July, and the graphs on 
the right with the left skew are from December. 
 
This pattern intuitively at least can be explained by the unusually cold or hot days 

experienced during those months’ respective seasons. Some of the months’ 

distributions were not significantly different from normal or exhibited little skewness. 

The precipitation component of FACETA’s weather simulator was converted into 

a full daily model; however, the temperature component at the time was a hybrid 

between monthly and daily. The model produced daily temperatures, but the random 

temperature simulator only generated one high and one low temperature for each 

month. These simulated monthly temperatures were converted to daily by linear 

interpolation between the days in the middle of each month. This could have the 

unwanted effect of temperatures steadily increasing or decreasing, depending on the 

season, from one day to the next. Because of how the temperature component interacts 
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with tree growth in the model, which only depended on the accumulation of total number 

of growing degree days (GDD) in a growing season, potentially the growing season in 

the model could start too early or end too late. The FACETA temperature model uses a 

monthly based random number generator to draw high and low temperatures for each 

month from distributions that are skewed from normal. The temperature inputs needed 

were average high, average low, the standard deviation, and skewness for each month. 

The standard deviation was calculated from the average monthly temperatures rather 

than from the average high or low monthly temperatures. Results for these parameters 

are given in Table 6.2. 

Table 6.2  
FACETA Monthly Temperature Parameters 

Temp Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Min .6 2.7 6.7 11.3 16.3 20.8 22.7 22.4 18.5 12.6 6.3 1.9 
Max 13.2 15.8 20.1 24.7 28.3 32.8 35.4 35.5 31.5 26.0 19.4 14.3 
StDev 2.5 2.3 2.2 1.6 1.3 1.3 1.3 1.5 1.6 1.5 1.9 1.9 
Skew -.43 -.36 -.16 .28 .02 .47 .55 .32 .18 -.20 -.19 -.38 

Note: FACETA requires temperature inputs for average monthly lows (Min), average monthly 
highs (Max), standard deviation (StDev), and skewness (Skew). The temperature statistics were 
calculated from a 100-year history of daily weather records from the City of Denton, where 
monthly statistics were only calculated using months with a complete record. Temperatures are 
in degrees Celsius. 

One component of FACETA’s weather model that was not altered was the solar 

radiation model. This component was still simulated in monthly time steps using daily 

averages for each month as parameter inputs. In the model, each day of a month 

received the same amount of radiation. Data for these parameters were obtained from 

the Renewable Resource Data Center, operated by the National Renewable Energy 

Laboratory (NREL, 2006). The monthly model parameters were calculated from daily 

averages collected for each month spanning from 1961 to 1990. The data were 

collected in Fort Worth, TX, approximately 40 miles southwest of the study area 
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watershed. Solar radiation was measured using 14 flat plate collectors with a fixed tilt of 

zero degrees, i.e. oriented horizontally. The daily averages were averaged across the 

14 collectors, and then averaged over all the days in each month. This was done for 

each month over the 30-year period. The daily average for each month was averaged 

again across the 30-year record. Results from these calculations were used as the 

model input parameters for the solar radiation model (Table 6.3). 

Table 6.3  
Average Monthly Total Radiation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
247.5 318.3 406.1 481.2 537.7 594.5 603.7 548.0 447.7 363.4 270.7 229.1 

Note: The FACETA solar radiation model is a simple model that average monthly totals as input 
parameters. Solar radiation data had been collected daily over a 30-year period in Fort Worth, TX, and 
obtained through the National Renewable Energy Laboratory’s Renewable Resource Data Center (NREL, 
2006). The daily values were totaled for each month, and monthly averages calculated over the 30-year 
history. The numbers are in units of calories/cm2/day. 
 

Changes to the precipitation component of the weather simulator required a 

completely different approach than what was implemented in FACET. Monthly 

precipitation distributions were straightforward to model as compared to daily. With daily 

rainfall, depending on the climate, there was no rain most days, and days when it did 

rain, the amount could vary from a sprinkle to a deluge. Most rainy days received a 

small to average amount of rain, some rainy days were soakers but not extreme events, 

and rare events occurred with large amounts of precipitate in a single day. Capturing 

this pattern accurately can be difficult in random weather simulators. Many daily rainfall 

simulators fail to model rare extreme events adequately. Most also fail to sum up the 

precipitation so that the daily rainfall simulator produces annual averages in the way 

that is hoped. 
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A number of different modeling approaches have simulated daily rainfall. The one 

implemented into FACETA is a two-stage approach. A first order Markov model is used 

to determine which days are rainy and which are dry in a month. The assumption 

behind using a Markov model is that the likelihood of rain falling in any given day will 

depend on whether or not it rained the previous day. This is not a novel approach and 

has been implemented in many situations; however, one noted problem using this 

approach is that it can fail to capture drought periods in semiarid climates appropriately. 

Using a higher order Markov chain has been proposed as a potential remedy; at this 

stage of FACETA development, the first order model is being implemented.  

Parameters for the Markov model are conditional transition probabilities for days 

in each month, with the probabilities being the chance of rain on any given day 

conditioned on whether the previous day was rainy or not. With this approach, it is 

common to treat each month as having different probabilities; rainfall patterns are 

certainly seasonal in many places. To estimate these parameters, a 100-year history of 

daily weather records was grouped into the different months. Any month with an 

incomplete record was omitted, and proportions of days were calculated where a rainy 

day was followed by no rain or a rainy day was followed by rain. A complete rainfall 

record for any month was interpreted to be a complete set of every day’s rainfall total 

plus the rainfall total of the last day of the preceding month. These proportions were 

then averaged across all 100 years, and these averages were used as the transition 

probability parameters (Table 6.4). 
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Table 6.4  
FACETA Precipitation Parameters 
Precipitation Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
P(wet|wet) 0.45 0.43 0.40 0.40 0.43 0.40 0.32 0.34 0.39 0.42 0.42 0.44 
P(wet|dry) 0.20 0.21 0.21 0.21 0.24 0.18 0.12 0.14 0.14 0.16 0.16 0.17 
Average 

rain on wet 
days 

0.59 0.75 0.80 1.16 1.33 1.19 1.07 1.06 1.29 1.38 0.88 0.78 

SD rain on 
wet days 0.91 1.29 1.30 1.67 1.89 1.51 1.58 1.43 2.00 2.23 1.36 1.19 

Proportion 
of rainy 

days 
0.27 0.28 0.26 0.27 0.30 0.23 0.16 0.18 0.20 0.22 0.22 0.24 

Note: Transition probabilities for the Markov model that determines which days are rainy or not 
are estimated from the proportions of wet days followed by wet days and the proportion of dry 
days followed by wet days. This is done for each month independently. P(wet|wet) is the 
probability that it will rain conditioned on if it rained the previous day, and P(wet|dry) is the 
probability that it will rain if it was dry the previous day. The average amount and standard 
deviation on the rainy days were used to define the gamma distribution that the random weather 
simulator drew from to determine the rainfall amounts on rainy days. The average rainfall 
amounts are in centimeters. 

 
The second part of the precipitation model determines the amount of rainfall that 

occurs on a rainy day. FACETA assumes a gamma distribution to model this daily 

amount of rainfall. The parameters required for the gamma distribution are shape and 

scale, which can be estimated using the mean and variance of daily rainfall as 

determined from the days there is rain. FACETA therefore has been set up so the input 

parameters for the gamma distribution are the average and standard deviation of the 

total rainfall amount calculated only from days there was rain. Estimating these values 

from the daily rainfall records is simply a matter of calculating the average and standard 

deviation of rainfall amount after omitting the days with no rain. Another parameter 

required but not used in the random weather generation is the average proportion of 

days for each month that it rains, which is used to verify that the Markov model 

produces the correct stable distribution of rainy days.  

258 



Unlike some of the biological parameters, the estimation of the parameters used 

in the weather model was based on a solid set of empirical data of 100 years of daily 

weather records. The modeled weather outputs were compared with the weather 

history. The results of these comparisons said more about the assumptions behind the 

weather simulator as well as the simulator’s numerical implementation than about the 

ability to measure for parameter estimation. 

Results: Soil Parameters 

Soil parameters for FACETA were derived from two sources: all the modeled soil 

types from the USDA soil survey for Denton County and plots and soil types from field 

measurements taken by Rijal (2011) from the Greenbelt. In the Rijal study, soil cores 

were taken to a depth of around 2 m and analyzed for texture as well as other physical 

and chemical properties. Soil parameters derived from the field data were compared to 

the county’s soil survey, and FACETA simulations were performed using both. 

In the FACETA soil moisture model, water is input at the surface through the 

rainfall simulation and infiltrated into the top layer of soil. Each layer of soil works like a 

tipping bucket in that water flows into the top of the layer until it is full, at which point the 

water starts to pour down into the next layer. The full point for each layer is its field 

capacity. If the water infiltrates down through the last layer, then it is lost to groundwater 

percolation. Water is also pulled back up through layers of soil by evapotranspiration, 

unless the level of water in a layer is at or below wilting point when water can no longer 

be drawn upward. Evapotranspiration also works through the layers.  Soil depth 

available to tree roots is different between seedlings and established trees. Seedling 

can only draw water from the first 20 cm of soil, whereas trees can reach water 
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throughout all layers. The assumptions and treatment of root geometry and depth are 

the same regardless of species. The parameters needed for each soil type for the soil 

moisture routine included the fast flow fraction of water flowing through macropores 

from the surface, the dry surface infiltration rate, the saturated surface infiltration rate, 

the maximum available porosity of the soil, the number of layers, the depth of each 

layer, the field capacity and wilting point of each layer, and the saturated hydraulic 

conductivity of each layer.  

The Denton County soil survey (Ford & Pauls, 1980) produced by the Soil 

Conservation Service is an example of an Order II level survey.  The higher the order 

number, the more detailed and accurate the information.  It would be very costly to 

directly measure all parameters for more than a limited number of soils. However, there 

was enough information in the Order II level soil surveys to estimate these parameters. 

Given the small scale of these soil surveys, it was not clear how close the survey’s 

description for any soil series were to the conditions on the ground in any specific 

location. In addition, the soil surveys did not provide the level of detailed measurements 

required for FACETA parameters. In order to use the soil survey parameters such as 

field capacity and wilting point, they had to be estimated from the description of soil 

texture. Therefore, parameters determined from the soil surveys were estimates of 

estimates. The soil parameters determined from the soil cores taken from the study site 

were also indirectly estimated (e.g., field capacity was still estimated from soil texture). 

The difference and the point of comparison was how close the descriptions in the 

county soil survey were to the descriptions from on-site samples. 
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To determine the model soil parameters from the county soil survey, the 

description of the typical pedon for each modeled soil series was used (Ford & Pauls, 

1980). The soil survey provided descriptions of layers including depths, representative 

values or ranges of values for proportions of sand, silt and clay of each layer, ranges for 

saturated hydraulic conductivity, percent organic content, and percent gravel. These 

values where then used to estimate field capacity, wilting point, and maximum available 

porosity using an available hydrology model called SPAW, for Soil – Plant – 

Atmosphere – Water. One component of this model was a calculator that estimated 

hydraulic characteristics from soil texture and a few other variables. Other available 

input variables in the SPAW calculator were percent organic matter, salinity, percent 

gravel, and compaction level. Outputs included wilting point, field capacity, maximum 

available porosity, and saturated hydraulic conductivity. Percentages of sand, silt, clay, 

organic matter, and gravel were estimated from the soil survey information and input 

into the SPAW calculator. Output from the calculator on saturate hydraulic conductivity 

typically did not agree with the ranges stated in the soil survey, so this parameter was 

selected from within the soil survey range. However, since the soil survey did not list 

values for wilting point or field capacity, the SPAW calculator values were used for 

these parameters. Clearly, there was a considerable amount of estimation and room for 

error in determining the required FACETA soil parameters. The data from the field soil 

cores included number of layers, depth of layers, representative proportions of sand, silt 

and clay for each layer, and percent organic matter. The soil model parameters 

estimated from these field samples were also estimated using the SPAW calculator, the 

only difference being that field samples analyzed were taken from the study site.  
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Additional soil parameters required were dry infiltration rate at the surface, fast 

flow fraction, and soil fertility. Fast flow fraction, which is a function of available 

macropores, was not considered since no reliable data were available upon which to 

base this parameter value. Dry infiltration rate at the surface was estimated based on 

the surface layer texture using the values implemented in the EPA’s Soil and Water 

Assessment Tool (SWAT). Soil fertility was estimated using the range productivity 

values given in the soil survey for each soil series. Layers in the model did not 

necessarily coincide with discernible physical layers in the soil. The model has some 

requirements in determining depths of the top layers because of how seedlings can 

extract water and how solar evaporation from the soil work. Seedlings can only extract 

water from the first 20 cm of soil, so a modeled layer must end at that depth. Solar 

evaporation (as opposed to transpiration) in the model only affects the uppermost layer 

of soil. Based on a study of the impact of soil texture on the depth to which bare soil 

evaporation reaches (Wythers, Lauenroth, & Paruelo, 1999), the depths of the first layer 

were determined according to the soil texture class. For many of the soil series, the 

depth of the second layer was set to reach the 20-cm seedling root limit, except for soils 

with physical layer differences occurring prior to that depth. In those cases, the top three 

layers made up the soil accessible to seedlings.  

Another factor to consider with soil depth is the total depth of all layers. Setting it 

too deeply in the model can lead to unrealistic water availability for some species. 

Unlike seedlings, water is accessible to established trees from all the layers of soil 

regardless of depth or species. Some species of trees grow tap roots or deep root 

systems; however, many species only grow roots in the upper parts of the soil. FACETA 
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soil parameters estimated from some of the soil series described in the soil survey as 

well as from the field soil cores are shown in Table 6.5. Because of the large number of 

soil series in the study area, the table only presents a few representative examples of 

the Greenbelt soils. Additionally, for the sake of brevity the table only lists the 

parameters for the top three soil layers. 

Table 6.5  
 
Soil Parameters from Selected Soil Series and Field Core Samples 

Soil Parameter Ovan Clay Kaufman Clay Birome Sandy 
Loam Plot #9 

Fertility (Mg/ha/yr) 18.75 18.75 11.25 11.25 
Dry surface infiltration 
rate (cm/hr) 2.54 2.54 10.16 6.00 

Saturated surface 
infiltration rate (cm/hr) 0.16 0.07 1.78 3.30 

Layer 1 Depth (cm) 0-15.0 0-15.0 0-7.0 0-7.0 
Layer 1 FC (cm) 6.20 7.04 1.17 1.41 
Layer 1 WP (cm) 4.31 5.27 0.64 0.50 
Layer 1 SHC (cm/hr) 0.16 0.07 1.78 3.30 
Layer 1 AP (%) 50 55 39 44 
Layer 2 Depth (cm) 15-20 15-20 7-20 7-20 
Layer 2 FC (cm) 2.07 2.33 2.17 2.63 
Layer 2 WP (cm) 1.44 1.75 1.20 0.94 
Layer 2 SHC (cm/hr) 0.16 0.11 1.78 3.30 
Layer 2 AP (%) 50 56 39 44 
Layer 3 Depth (cm) 20-38.5 20-35.6 20-30 20-30 
Layer 3 FC (cm) 7.64 7.29 2.84 2.02 
Layer 3 WP (cm) 5.31 5.46 1.77 0.72 
Layer 3 SHC (cm/hr) 0.16 0.11 0.30 3.30 
Layer 3 AP (%) 50 56 41 44 

Note: Soil parameters were estimated both from soil series descriptions and from measurements made 
on soil core samples taken from the study site. Ovan clay was the most prominent bottomland soil in the 
Greenbelt, and Kaufman clay was another prominent bottomland soil with even heavier clay content. 
Birome sandy loam was one of the more important soil series in the area that was associated with upland 
post oak development. Plot #9 soil core was taken from the slope of Wildcat Hill in a location that 
according to the soil survey map was in the Birome Sandy Loam. Significant differences between these 
two sets of parameters included higher dry and lower wet surface infiltration rates for the soil series. 
Parameters estimated from the soil series also differed by having lower field capacity (FC) and higher 
wilting point (WP) for the top two layers, which resulted in significantly less available water. Saturated 
hydraulic conductivity (SHC) was estimated lower from the soil series, and substantially lower for deeper 
layers. Estimates of available porosity (AP) were similar from both sources but slightly lower from the soil 
series. These differences in estimates essentially stemmed from the soil series indicating sandier soil at 
the upper layers and higher clay content at deeper layers than the field core indicated. 
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From the examples presented in Table 6.5, Ovan Clay and Kaufman Clay were 

two of the most prominent bottomland soils in the Greenbelt. Both were heavy clay 

soils, with Kaufman being the heavier soil. Birome Sandy Loam was one of the more 

important soil series in the area that was associated with upland post oak development. 

The soil core taken from Plot #9 was located on the slope of Wildcat Hill in a spot, which 

according to the soil survey map, was in the Birome Sandy Loam. While the parameters 

were similar between the estimates from the soil survey and the soil core, and they 

were much more similar to each other than to either of these two bottomland soils, there 

were some differences. Significant differences between these two sets of parameters 

included higher dry and lower wet surface infiltration rates for the soil series. 

Parameters estimated from the soil series also differed by having lower field capacity 

and higher wilting point for the top two layers, which resulted in significantly less 

available water in those layers for tree to draw from. Saturated hydraulic conductivity 

was estimated lower from the soil series and substantially lower for deeper layers. For 

most series layers, saturated hydraulic conductivity was given as a range of values with 

significant differences between the high and low ends of the ranges. Estimates of 

available porosity were similar from both sources but slightly lower from the soil series. 

These differences in estimates essentially stemmed from the soil series indicating 

sandier soil at the upper layers and higher clay content at deeper layers than the field 

core indicated. 

Results: Landscape and Terrain Parameters 

The landscape and terrain parameters required by FACETA include elevation, 

slope, aspect, and the two new parameters devised for FACETA, flow accumulation and 
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a parameter called the run-on coefficient. Given the relatively small change in elevation 

across the Greenbelt study area (less than 100 m difference between the highest and 

lowest points), and the subtropical latitude, the choice of elevation and aspect 

parameters potential taken from the study area were assumed to not greatly impact the 

model output. In FACETA’s current implementation slope, as with aspect, is only used 

in the insulation component of the model. Slope, aspect, and elevation are all required 

inputs; however, differences in their effects were not investigated, at least not as direct 

inputs. Slope still plays a role in the input by being a part of the TWI. The parameters 

estimated for the terrain types, which are based on TWI classes and soil series, also 

use the distribution of slopes from each terrain type.  

The two new parameters work together as one, but incorporating them into the 

model separately provides a little more flexibility. Flow accumulation is input as an 

integer and is intended to represent the typical upslope catchment area for a terrain 

type. It should be noted that the FACETA parameter flow accumulation is not 

necessarily the same thing as the geographic information systems (GIS) calculation by 

the same name, but it is based upon the GIS operation. The run-on coefficient is simply 

a multiplier applied to the flow accumulation. In its current implementation the run-on 

coefficient cannot be a negative value (i.e., a run-off coefficient), but it can be 0. For any 

rainfall event an additional amount of water that is equal to the product of the flow 

accumulation, run-on coefficient, and precipitation total. While these two parameters are 

implemented in order to capture the hydrological similarity resulting from surface and 

subsurface flow, incorporating the extra moisture into the rainfall total is a simple 

solution to avoid developing a more complicated hydrological model. 
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The flow accumulation parameter for any particular terrain type depends upon 

the TWI class of that terrain type. For the lowest TWI class, both the flow accumulation 

and run-on coefficient are set to 0, so no extra added moisture is added to this group. 

For the medium TWI group, the flow accumulation is set to be one fourth of the median 

flow accumulation value from across that soil series. The run-on coefficient is set to 

c(1-MaxSlp), where MaxSlp is the maximum slope (expressed as the tangent of the 

slope angle) from that soil series. C is a scalar multiplier between 0 and 1 used in model 

calibration. The highest TWI class is given the flow accumulation value equal to the 

median flow accumulation from across the soil series, and the run-on coefficient is c. 

This scheme might seem somewhat arbitrary, but it allows differentiation of the three 

TWI class for every soil series through varying amounts of moisture, and it incorporates 

the characteristics of both flow accumulation and slope as determined from the soil 

series’ distributions of values into the added moisture. Table 6.6 shows examples for 

these terrain parameters from two of the Greenbelt soil series, the upland Birome Sandy 

Loam, and the bottomland Ovan Clay.  

Table 6.6 
 
Terrain Parameters for Ovan and Birome Soils 

Soil Type TWI Group 
Flow 

Accumulation 
Parameter 

Run-on 
Coefficient 

Extra Moisture 
Factor for 

Terrain Type 
Ovan Clay 
Median FA=3 
Max Slope = 0.22 

 Low 0 0 0 
 Medium 0.75 0.78c 0.585c 
 High 3 3c 3c 

     
Birome Sandy Loam 
Median FA=1 
Max Slope=0.36 

 Low 0 0 0 
 Medium 0.25 0.64c 0.16c 
 High 1 c 1c 

Note: The terrain parameters flow accumulation and run-on coefficient for each terrain type from the 
distributions. 
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One problem devising a systematic algorithm for determining these parameters 

was that the process of testing different options resulted in too much extra moisture for 

the medium TWI group. Retrospectively, it became clear the medium group should be 

moisture-neutral, and the low TWI group if anything should be subject to a moisture 

penalty. Allowing a negative value for the run-on coefficient would have provided more 

flexibility in the set up. It would also have allowed the ability to make the low TWI class 

drier while keeping the medium TWI group neutral and enhancing the moisture level of 

the high TWI group, but that was not how the run-on coefficient was implemented in 

FACETA. To avoid the problem of too much simulated moisture, the soil types could 

have been divided into two TWI groups instead of three, with one moisture neutral and 

one moisture-enhanced, but three terrain groups aligned better with the variety of 

topographic positions that existed on the ground (e.g., depressions, flats, or slopes). 

Conclusions: FACETA Environmental Parameters 

FACETA environmental parameters include climatic statistics used to drive the 

weather model, soil parameters, and the new hydrologically based terrain parameters. 

An advantage of finding parameters for the weather model as compared to the 

biological parameters is that the parameters are nothing more than climatic statistics 

and can be determined from a statistically significant history of weather records. In this 

case, a history of 100 years of daily weather records was used. The data the 

parameters were based on were solid, so the question that was investigated was how 

good the assumptions were behind the weather simulator. The modeled weather output 

was compared with the weather history from which the parameters were derived.  
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Soil parameters were determined primarily from the USDA county soil survey, 

which gave physical descriptions of representative samples of the different soil series 

(Ford & Pauls, 1980). Two issues were raised. The descriptions in the soil survey were 

not necessarily the same physical parameters needed by FACETA. For example, the 

soil survey did not give information on field capacity or wilting point. These values could 

be estimated from other properties such as soil texture, but those estimates were based 

on regression relationships. Although soil texture may have been measured directly, the 

model parameter was based on estimates that involved assumptions regarding the 

regression relationships. Another issue was whether the soil series was too course-

scaled to use for model parameters.  These questions were investigated by comparing 

parameters estimated from the soil survey with ones that were estimated from the study 

site. Initial evaluation identified differences in the parameter values. It remains to be 

tested how much the model parameter differences impact the model output. 

FACETA’s new terrain parameters were implemented to simulate topographically 

based hydrologic similarity and differences. Their implementation within the model was 

simple in that it worked to add additional water whenever the model simulated rainfall. 

Devising a systematic approach to accomplish these similarities and differences using 

model parameters was tricky. The goal was to allow the average conditions across each 

terrain type impact how much, if any, extra moisture was added. In retrospect, the 

model would be more flexible towards this end if the run-on parameter could also be 

used as a moisture penalty or run-off parameter. That was not the case in its current 

implementation, but it is always the case for models like FACETA to change and evolve 

as they are tested, improved, and the assumptions behind them reconsidered. 
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CHAPTER 7 

FACETA RESULTS 

Methods 

FACETA simulation runs were executed using various terrain types and tested 

and analyzed for validity. Model output was examined at three levels: weather and 

climate, soil moisture dynamics, and forest simulation. In the early stages of model 

development and parameter calibration, it was best to reduce and simplify where 

possible. Complexity could be added as the model was verified, corrections were made 

as needed, and model parameters were fine-tuned. For the initial simulations, species 

were limited to only those species with the best set of model parameters. The species 

selected represented some of the different ecological roles in order to draw conclusions 

on model output, and this could be accomplished with as few as three species. Initial 

simulations with FACETA included six of the candidate species: cottonwood, post oak, 

blackjack oak, green ash, sugarberry, and black willow. All of these species with the 

exception of black willow had growth rate parameters based on tree ring 

measurements, which was the primary reason they were included in the model. Species 

with incomplete or conflicting silvics information were left off the list, as well as species 

such as swamp privet that did not fit well into the model’s growth assumptions. Although 

no tree rings were measured for it, black willow was included to represent the truly 

swamp tree role. Post oak and blackjack oak provide the best two representatives of the 

upland forests, and green ash and sugarberry were two of the three best 

representatives of the Greenbelt bottomland forest. Cottonwood was the fastest grower 

and the one that was most considered a pioneer species. Sugarberry was also a good, 
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although probably not the best species from the list to represent those that could grow 

in a variety of positions. Cedar elm might have been the best species for the generalist 

role, except at the time there were too many uncertainties in its species parameters. 

Figure 7.1 shows the input file for the species parameters. All parameters in this file that 

were used, as well as some that were not were discussed in Chapter 5. 

 
Figure 7.1. FACETA species input file. FACETA input file for species parameters. The last two 
parameters/columns in the file, hurricane susceptibility and forest type, were not discussed in the 
previous sections because they were not used. All the other parameters were described in Chapter 5. 
 

Comparisons of soil types and terrain types for early simulations were limited to 

the two most common soils on opposite ends of the soil spectrum: Birome sandy loam 

and Ovan clay. Also included in the early runs were the soil parameters estimated from 

the soil core sample in Plot #9, which according to the soil survey map belonged to the 

Birome sandy loam series (Ford & Pauls, 1980). This research study was initially limited 

to these two contrasting terrain cases in order to provide more focus on the new terrain 

parameters themselves. Figure 7.2 shows the FACETA input file for the soil parameters. 

The soil input file contains the parameters for all of the modeled soil types. At the top of 

the parameter list for each soil type are the number of layers, soil fertility, fast flow 
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fraction, and dry and wet surface infiltration rates. Underneath those are the parameters 

for each soil layer, including its depth, field capacity, wilting point, and saturated 

hydraulic conductivity.  

 
Figure 7.2. FACETA soil parameter input file. Input file for FACETA soil parameters containing 
parameters for three soils: Ovan clay soil series, Birome sandy loam soil series, and Plot #9 soil core. The 
actual input file had all of the simulated soil types arranged in one column; the parameters were 
rearranged for this figure for display purposes. 
 

There were several other input files required for FACETA, with eight files in its 

current version. The exact number and configuration of input files needed has changed 

as the model has evolved, and some involve simulation control functions such as 

defining the plot size, selecting output to be printed, and setting global constants or 

initial conditions. Two other input files that needed to be described were the climate file 

and the terrain file (Fig. 7.3 and Fig. 7.4). The climate file had inputs for the solar 

radiation model, such as longitude and latitude, and the monthly solar radiation 

averages. It also contained the inputs for the weather generator, such as the wet/dry 

271 



conditional transition probabilities used in the rainfall occurrence in the Markov chain 

model, the daily rainfall statistics used to estimate the shape and scale parameters of 

the rainfall-amount gamma distribution model, and the monthly temperature statistics. 

The terrain input file contained the new flow accumulation and run-on coefficient 

parameters, as well as the parameters for slope, aspect, and soil type. Some 

parameters in these files were not discussed because they were not used in this study. 

For example, any parameters involving hurricanes, lapse rates, ponding, or berm 

heights were incorporated into FACETA for use in other scenarios, and these were 

bypassed or negated in this application. 

 
Figure 7.3. FACETA climate and weather input file. FACETA climate parameter input file. This file 
contained weather and climate statistics that were used to parameterize the solar radiation, temperature, 
and rainfall models. The parameters were estimated and entered into the model for each month.  Each 
column in the input file are the parameters for one of the months from January through December. Labels 
for each row of parameters are on the file on the left side. 
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Figure 7.4. FACETA terrain input file. Along with some other parameters, this file was used to input slope, 
elevation, aspect, and the two new terrain parameters, flow accumulation and run-on coefficient. It 
contained the random number seed that allowed initiation of different realizations of modeled weather 
series (the same random seed will produce the same string of weather). Labels for the different 
parameters are on the file in the left column. 
 

Results: Weather and Climate 

A common problem found in daily weather simulation is that model output 

statistics do not always match well with the climate data at various timescales. With that 

in mind, the FACETA weather output was analyzed at three different timescales: daily, 

monthly, and annual. A single 100-year realization of simulated weather was used to 

compare with the 100-year historical record. One of the input parameters was a random 

weather seed, which could be changed for each simulation run to produce a different 

series of weather. While each of these realizations was different from each other, since 

they were all generated by the same probabilistic number generators they were 

statistically equivalent. To confirm this, a number of simulation runs using different 

random seeds were compared, and the results were relatively consistent. Each random 

seed produced a unique series of weather that was distinguishable from all other runs, 
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but statistically the differences were minor. As an example, the totals of annual 

precipitation for two runs using different random seeds are presented in Figure 7-5. 

Each of these runs was for a 100-year period. 

 

Run 1 
Minimum = 48.28 
Median = 82.35 
Maximum = 
126.00 
Mean = 82.84 
SD = 17.57 
 
 
Run 2 
Minimum =47.50 
Median = 81.08 
Maximum = 
131.70 
Mean = 84.61 
SD = 18.32 
 
 
Fail to reject Run 1 
and Run 2 are 
from the same 
distribution, Mann-
Whitney U test, 
p=.55 

Figure 7.5. Annual precipitation totals from different simulation runs. Different realizations of simulated 
weather generated using different random number seeds were compared for statistical difference. At the 
annual timescale, the results were statistically equivalent. Different simulation runs also matched well at 
the monthly timescale. The graphs used in this example were the kernel densities estimated from the 
histograms. 
 

Precipitation results were analyzed separately from temperature, and 

temperature results were only analyzed at the annual scale and only through the total 

growing degree days (GDD). Precipitation was parameterized at the monthly scale but 

using daily data. The output of the precipitation model was in daily time steps, and 

precipitation at the daily timescale was examined first. 
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The daily precipitation model used the two-step approach with the Markov chain 

model determining the sequence of rainy and dry days for each month. On wet days, 

the total amount of rain received was drawn from a gamma distribution. Wet day 

referred to a day that any amount of precipitation was generated, and dry day meant 

there was no precipitation. The Markov model parameters were the conditional 

transition probabilities estimated from proportions of wet days following wet days and 

wet days following dry days for each month over a long history of records. The transition 

probabilities were estimated for each month of the year separately. Similarly, the shape 

and scale parameters defining the gamma distribution were estimated from the mean 

and variance of the amounts of rain received on wet days for each month separately. 

Therefore, the simulated daily rainfall pattern for each of the months was examined 

independently. Resulting precipitation across all months was analyzed at the annual 

scale. On the daily time scale, the simulated weather was analyzed through the 

distributions of rainfall amounts occurring on wet days for each month and comparing 

those distributions with real weather history. The sequence of wet and dry days could 

have been considered a daily process, but it was analyzed at the monthly scale. 

Due to the nature of the distributions of daily rainfall amounts, it was somewhat 

difficult to do a visual comparison. However, histograms and estimated kernel densities 

for both real and simulated weather were graphed and were compared (Fig. 7.6). 

Differences for some months were apparent in the graphs, but they were subtle. 

Generally, the distributions of simulated and real daily rain amounts compared fairly 

well. Using a Mann-Whitney U test to compare the distributions of real versus simulated 

daily rain totals, seven of the months were rejected as coming from the same 
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distribution (α=0.05). The two months selected as examples for closer examination 

included one of the worst fits and one of the better fits, February and June, respectively. 

Comparisons of these two months are presented in Figure 7.6 and Table 7.1. 

 
Figure 7.6. Daily simulated and real rainfall amounts for February and June. The graphs show the 
estimated kernel densities from the real daily precipitation amounts (black) and the simulated amounts 
(red). The histogram was graphed from the real rainfall data. The FACETA rainfall generator captured 
daily rainfall patterns well in June, but not as well in February. Simulated February daily rainfall was less 
than real February daily rainfall. Rainfall totals are in centimeters. The number of simulation years is 100; 
thus, the number of February days is N=2800. The weather history used spanned 100 years, but records 
during that time were not complete. Only one record of precipitation was missing during the month of 
February. Because of leap year (which is not accounted for in FACETA), N=2824 for the real weather 
data. The simulated and rainfall daily rainfall amounts were much closer for the month of June. The real 
weather data had a slightly longer tail, but the distributions were too close to be differentiated by the 
Mann-Whitney U test. In June, N=3000 for simulated rain and N=2970 for real rain. 

 
A comparison of the higher percentiles and maximum values showed that the 

simulator substantially underestimated large rainfall events in February. Comparing the 

means showed that the total amount of simulated rainfall in February was also 

underestimated; however, the mean on simulated wet days was higher than the mean 

on real wet days. Therefore, the real February weather had on average more wet days 

with smaller amounts than simulated February weather, but the real weather also had 

much larger extreme rain events. Subtle differences were seen in the graphs of 
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estimated kernel densities, but primarily visible in the graph was the extended tail of the 

real weather as compared to simulated (Fig. 7.6). Results from the Mann-Whitney U test 

rejected that the real and simulated daily February rainfall amounts came from the same 

distribution (p<10-8). 

Table 7.1 
 
Simulated and Real Daily Rainfall Summaries for February and June 

Test February June 

Simulated 

Min    1st     Med    3rd    Max 
0.00   0.00   0.00   0.00   7.32 
 
90th percentile = 0.39 
95th percentile = 1.15 
Mean = 0.18 
Mean on wet days = 0.84 
SD on wet days = 1.19 

Min    1st     Med    3rd    Max 
0.00   0.00   0.00   0.00  7.25 
 
90th percentile = 0.79 
95th percentile = 1.62 
Mean = 0.26 
Mean on wet days = 1.09 
SD on wet days = 1.29 
 

Real 

Min    1st     Med    3rd    Max 
0.00   0.00   0.00   0.01   18.06 
 
90th percentile = 0.56 
95th percentile = 1.39 
Mean = 0.22 
Mean on wet days = 0.78 
SD on wet days = 1.34 

Min    1st     Med    3rd    Max 
0.00   0.00   0.00   0.00   9.80 
 
90th percentile = 0.76 
95th percentile = 2.05 
Mean = 0.27 
Mean on wet days = 1.18 
SD on wet days = 1.49 
 

Mann-
Whitney U 

Test 

Reject the simulated and real daily 
rainfall totals come from the same 
distribution, p<10-8 

Reject that the simulated and real 
daily rainfall totals come from the 
same distribution, p=.74 

Note: Daily rainfall summary statistics for February and June, for both real weather data and the FACETA 
weather simulator. The June simulation is very close to the real June rainfall amounts, but the February 
simulations fall short. The mean and standard deviation calculated only from wet days from the real 
weather data are the input parameters for the gamma distribution that models the daily rainfall amounts. 
 

In June, the distributions between the simulated and real amounts were much 

closer. The tails compared much better for June, but the model slightly underestimated 

the highest rainfall. The means were very close, indicating the total amounts for June 

compared well. The average amount of rain on real June wet days was a little higher 

than simulated, and the largest daily amounts were also a little higher, but overall the 
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simulated and real June daily rain compared well. The Mann-Whitney U test failed to 

determine that they came from different distributions (p = .74). 

Although the simulated and real daily rainfall amounts did not test statistically as 

coming from the same distribution for all months, the daily rainfall generator appeared to 

capture the general characteristics of daily rainfall amounts well for most months 

(Table 7.2). For most months, the simulator followed the highs, percentiles, and means 

for daily rain amounts well. The graphs for the estimated kernel densities appeared 

similar, with the only apparent difference in some months being the length of the tails. 

For some months, for example April, the model was remarkably good. Some months 

had a small difference in the overall means, in which case there were also differences in 

the total amount of rain for that month. The largest such difference was in February at 

0.04 cm. The difference in the daily mean implied a difference in total rainfall of 1.2 cm 

for February. Otherwise, it was unclear at this scale how the statistical differences in the 

daily rainfall amount distributions affected monthly and annual time scales. 

The daily rainfall totals were evaluated for sensitivity to gamma distribution input 

parameters, the mean and standard deviation of the rain amounts on wet days. Small 

changes in these values did not substantially alter the rainfall output. Changes of 

approximately 10% to either of these parameters resulted in roughly the same amount 

of change in the output to the same statistic. The most noticeable impact from either of 

these changes was to the maximum value as a result of changing the input standard 

deviation parameter. An increase of 10% to the parameter resulted in an increase of 

approximately 30% to the maximum daily rainfall amount over 100 years of simulation. 
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General characteristics of the distributions of simulated amounts were not very sensitive 

to changes in the gamma distribution parameters. 

Table 7.2  
 
Simulated and Real Daily Rainfall Summaries 

Month 

Simulated 
90th, 95th, 100th percentiles 

Mean (µ), Wet day mean (µR), 
Wet day SD (σR) 

Real 
90th, 95th, 100th percentiles 

Mean (µ), Wet day mean (µR), 
Wet day SD (σR) 

Mann-
Whitney U, 

α = 0.05 

January 
90th = 0.37, 95th = 0.99,  
Max. = 7.96 
µ = 0.16, µW = 0.69, σW = 1.00 

90th = 0.41, 95th = 1.09,  
Max. = 9.47 
µ = 0.16, µW = 0.61, σW = 0.98 

Reject 
same, 

p=.0009 

February 
90th =0.39, 95th =1.15,  
Max.=7.32 
µ = 0.18, µW = 0.84, σW = 1.19 

90th = 0.56, 95th = 1.39,  
Max. = 18.06 
µ = 0.22, µW = 0.78, σW = 1.34 

Reject 
same, 
p=10-8 

March 
90th = 0.54, 95th = 1.61,  
Max. = 16.55 
µ = 0.25, µW = 1.05,  σW = 1.64 

90th = 0.56, 95th = 1.47,  
Max. = 12.90 
µ = 0.22, µW = 0.85, σW = 1.42 

Fail to 
reject, 
p=.058 

April 
90th = 0.86, 95th = 2.10,  
Max. = 20.70 
µ = 0.31, µW = 1.23, σW = 1.74 

90th = 0.97, 95th = 2.16,  
Max. = 20.52 
µ = 0.31, µW = 1.17, σW = 1.66 

Fail to 
reject, 
p=.246 

May 
90th = 1.17, 95th = 2.73,  
Max. = 20.30 
µ = 0.41, µW = 1.50, σW = 2.08 

90th = 1.32, 95th = 2.54,  
Max. = 18.54 
µ = 0.40, µW = 1.33, σW = 1.89 

Fail to 
reject, 
p=.052 

June 
90th = 0.79, 95th = 1.62,  
Max. = 7.25 
µ = 0.26, µW = 1.09, σW = 1.29 

90th = 0.76, 95th = 2.05,  
Max. = 9.80 
µ = 0.27, µW = 1.18, σW = 1.50 

Fail to 
reject, 
p=.74 

July 
90th = 0.17, 95th = 0.88,  
Max. = 12.10 
µ = 0.16, µW = 1.14, σW = 1.64 

90th = 0.20, 95th = 1.14,  
Max. = 10.67 
µ = 0.17, µW = 1.07, σW = 1.57 

Reject 
same, 
p=.015 

August 
90th = 0.36, 95th = 1.21,  
Max. = 12.30 
µ = 0.18, µW = 1.09, σW = 1.43 

90th = 0.31, 95th = 1.19,  
Max. = 10.26 
µ = 0.18, µW = 1.04, σW = 1.42 

Fail to 
reject, 
p=.353 

September 
90th = 0.33, 95th = 1.40,  
Max. = 12.02 
µ = 0.24, µW = 1.38, σW = 2.02 

90th = 0.51, 95th = 1.58,  
Max. = 14.28 
µ = 0.26, µW = 1.28, σW = 2.00 

Reject 
same, 
p=.003 

October 
90th = 0.52, 95th = 1.79,  
Max. = 17.82 
µ = 0.28, µW = 1.41, σW = 2.14 

90th = 0.69, 95th = 2.01,  
Max. = 15.88 
µ = 0.31, µW = 1.39, σW = 2.22 

Reject 
same, 
p=.025 

  (table continues) 
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Table 7.2 (continued)  

Month 

Simulated  
90th, 95th, 100th percentiles 

Mean (µ), Wet day mean (µR), 
Wet day SD (σR) 

Real 
90th, 95th, 100th percentiles 

Mean (µ), Wet day mean (µR), 
Wet day SD (σR) 

Mann-
Whitney U, 

α = 0.05 

November 
90th = 0.39, 95th = 1.13,  
Max. = 12.02 
µ = 0.19, µW = 1.00, σW = 1.56 

90th = 0.43, 95th = 1.37,  
Max. = 11.53 
µ = 0.20, µW = 0.90, σW = 1.38 

Reject 
same, 
p=.034 

December 
90th = 0.37, 95th = 1.10,  
Max. = 9.13 
µ = 0.17, µW = 0.83, σW = 1.22 

90th = 0.42, 95th = 1.23,  
Max. = 7.52 
µ = 0.19, µW = 0.78, σW = 1.18 

Reject 
same, 
p=.003 

Note: Simulated daily rainfall amounts for each month were compared with real daily amounts. While for 
the majority of the months the data and the simulated amounts did not test as coming from the same 
distribution (Mann-Whitney U test, α=0.05), in general the simulator does a good job capturing the 
characteristics of daily rainfall amounts for most months. 
  

Two precipitation characteristics were examined at the monthly time scale, the 

number or proportion of wet days and the total precipitation amounts for each month. 

The proportion of wet days was impacted only by the transition probability parameters 

used in the Markov model, and the total amount of rain per month depended on both the 

Markov parameters and the gamma distribution parameters as both the frequency of 

rain and amount per event impacted the monthly totals. For monthly comparisons, the 

same 100-year series of simulated weather was compared with monthly historical data. 

The monthly historical data came from the same 100-year dataset, but any months with 

missing records were excluded from the analysis. The smallest number of years for any 

of the months was N=93. 

The distributions of proportions of wet days were much closer to normal than the 

daily rainfall amounts and were much easier to compare visually. Histograms of both 

real and simulated weather were graphed and overlaid with the estimated kernel 

densities, summary statistics were compared, and Mann-Whitney U test calculated. The 

graphs from all of the months were similar but with some differences. Four months had 
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distributions that could be rejected as being the same: January, February, September, 

and December (Table 7.3). 

Table 7.3  
 
Simulated and Real Proportion Wet Days Summaries 

Month 
Simulated Minimum, Median, 

and Maximum 
Mean (µ) and SD (σ) 

Real Minimum, Median, and 
Maximum 

Mean (µ) and SD (σ) 

Mann-
Whitney 
U, α = 
0.05 

January Min. = 0.03, Med. = 0.23,  
Max. = 0.42 
µ = 0.23, σ = 0.09 

Min. = 0.00, Med. = 0.27,  
Max. = 0.65 
µ = 0.27, σ = 0.14 

Reject 
same, 
p=.02 

February Min. = 0.03, Med. = 0.21,  
Max. = 0.46 
µ = 0.21, σ = 0.09 

Min. = 0.03, Med. = 0.21,  
Max. = 0.59 
µ = 0.28, σ = 0.12 

Reject 
same, 
p=.0001 

March Min. = 0.06, Med. = 0.23,  
Max. = 0.48 
µ = 0.24, σ = 0.09 

Min. = 0.07, Med. = 0.26,  
Max. = 0.52 
µ = 0.26, σ = 0.10 

Fail to 
reject, 
p=.058 

April Min. = 0.00, Med. = 0.23,  
Max. = 0.53 
µ = 0.25, σ = 0.10 

Min. = 0.03, Med. = 0.23,  
Max. = 0.67 
µ = 0.27, σ = 0.12 

Fail to 
reject, 
p=.68 

May Min. = 0.10, Med. = 0.26,  
Max. = 0.55 
µ = 0.27, σ = 0.10 

Min. = 0.03, Med. = 0.29,  
Max. = 0.61 
µ = 0.30, σ = 0.12 

Fail to 
reject, 
p=.06 

June Min. = 0.03, Med. = 0.23,  
Max. = 0.47 
µ = 0.23, σ = 0.10 

Min. = 0.03, Med. = 0.23,  
Max. = 0.57 
µ = 0.23, σ = 0.11 

Fail to 
reject, 
p=.47 

July Min. = 0.00, Med. = 0.13,  
Max. = 0.35 
µ = 0.14, σ = 0.07 

Min. = 0.00, Med. = 0.16,  
Max. = 0.42 
µ = 0.16, σ = 0.09 

Fail to 
reject, 
p=.17 

August Min. = 0.00, Med. = 0.16,  
Max. = 0.52 
µ = 0.16, σ = 0.09 

Min. = 0.00, Med. = 0.16,  
Max. = 0.52 
µ = 0.18, σ = 0.10 

Fail to 
reject, 
p=.22 

September Min. = 0.00, Med. = 0.17,  
Max. = 0.37 
µ = 0.17, σ = 0.08 

Min. = 0.03, Med. = 0.20,  
Max. = 0.50 
µ = 0.20, σ = 0.09 

Reject 
same, 
p=.043 

October Min. = 0.03, Med. = 0.19,  
Max. = 0.52 
µ = 0.20, σ = 0.09 

Min. = 0.00, Med. = 0.19,  
Max. = 0.58 
µ = 0.22, σ = 0.11 

Fail to 
reject, 
p=.34 

November Min. = 0.00, Med. = 0.20,  
Max. = 0.40 
µ = 0.20, σ = 0.08 

Min. = 0.00, Med. = 0.20, 
 Max. = 0.53 
µ = 0.22, σ = 0.11 

Fail to 
reject, 
p=.10 

(table continues) 
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Table 7.3 (continued)  

Month 
Simulated Minimum, Median, 

and Maximum 
Mean (µ) and SD (σ) 

Real Minimum, Median, and 
Maximum 

Mean (µ) and SD (σ) 

Mann-
Whitney 
U, α = 
0.05 

December Min. = 0.03, Med. = 0.21,  
Max. = 0.42 
µ = 0.21, σ = 0.08 

Min. = 0.03, Med. = 0.23,  
Max. = 0.58 
µ = 0.24, σ = 0.11 

Reject 
same, 
p=.03 

Note: Simulated and real weather were compared at the monthly timescale through the proportion of wet 
days for each month. The simulator generally captured the characteristic well; however, it underestimated 
the mean, variance, and maximum proportion of wet days for almost every month, implying that the 
simulator produced fewer and less persistent wet periods. The distributions for all but four months were 
not rejected as being the same. (Mann-Whitney U test, α=0.05). 
 

One commonality between the four months with different distributions was the 

simulated weather underestimated the maximum, mean, and variance of the proportion 

of wet days, implying that real weather can result in longer, more persistent wet periods 

than simulated. The model underestimated proportions of wet days to some degree for 

all of the months. Considering the North Texas climate, one of the most important 

factors impacting plant growth is dry periods, which can be particularly prevalent in the 

summer, and droughts. While it was possible, it was not necessarily the case that an 

underestimation of wet periods was linked to the model’s ability to simulate dry periods 

or droughts accurately. Droughts are defined by more than just the proportion or 

number of dry days, but also by their persistence, whether or not wet days are 

interspersed with dry days, and by the amount of rain on wet days. While not exact fits, 

the simulated proportions of wet days compared fairly well with the real weather. 

As with the daily rain amounts, February was an example of a month where 

simulated and real proportions of wet days did not compare as well, while for June the 

comparison was good (Fig. 7.7; Fig. 7.8). However, there was no apparent reason that 

these two should be linked. Proportions of wet days depended only on the Markov 

model, while daily rainfall amounts depended only on the gamma distribution. 
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Figure 7.7. Simulated and real proportions of wet days for February. Simulated (left) and real (right) 
proportions of wet days were compared for each month visually through the graphs of their histograms 
and estimated kernel densities. The February simulated weather underestimated the proportions of wet 
days. The histogram on the left is graphed from the simulated weather, and the histogram on the right 
from the real weather. In both graphs, simulated weather is in blue and real weather in black. 
 
 

 
Figure 7.8. Simulated and real proportions of wet days for June. Simulated (left) and real (right) 
proportions of wet days were compared for each month visually through the graphs of their histograms 
and estimated kernel densities. The simulation for June was very close in proportions of wet days to the 
real weather. The histogram on the left was graphed from the simulated weather, and the histogram on 
the right from the real weather. In both graphs, simulated weather is in blue and real weather in black. 
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Total rainfall for each month was compared in a similar way as proportions of wet 

days. In general, simulated and real weather compared very well for monthly rainfall 

totals. Distributions from all 12 months could not be rejected as being the same (Mann-

Whitney U test, α=0.05). Graphs of histograms and kernel densities between real and 

simulated monthly totals compared well, and means and medians were all fairly close 

(Table 7.4; Fig. 7.9).  

Table 7.4  
Simulated and Real Total Monthly Rainfall Summaries 

Month 

Simulated 
Minimum, Median, and 

Maximum 
Mean (µ) and SD (σ) 

Real 
Minimum, Median, and 

Maximum 
Mean (µ) and SD (σ) 

Mann-
Whitney U, 

α = 0.05 

January Min. = 0.19, Med. = 3.70,  
Max. = 13.61 
µ = 4.54, σ = 3.16 

Min. = 0.00, Med. = 4.47,  
Max. = 18.11 
µ = 5.20, σ = 3.87 

Fail to 
reject,  
p=.34 

February Min. = 0.01, Med. = 4.43,  
Max. = 14.58 
µ = 5.03, σ = 3.41 

Min. = 0.10, Med. = 5.09,  
Max. = 22.02 
µ = 6.08, σ = 4.64 

Fail to 
reject,  
p=.18 

March Min. = 0.12, Med. = 6.50, 
Max. = 19.51 
µ = 7.31, σ = 4.43 

Min. = 0.15, Med. = 5.89,  
Max. = 28.14 
µ = 6.98, σ = 5.04 

Fail to 
reject, 
p=.35 

April Min. = 0.00, Med. = 7.32,  
Max. = 24.65 
µ = 8.31, σ = 5.43 

Min. = 0.05, Med. = 8.82, 
 Max. = 30.96 
µ = 9.43, σ = 6.14 

Fail to 
reject, 
p=.20 

May Min. = 0.97, Med. = 11.17,  
Max. = 40.50 
µ = 12.18, σ = 7.30 

Min. = 1.36, Med. = 10.86,  
Max. = 42.56 
µ = 11.97, σ = 7.06 

Fail to 
reject, 
p=.95 

June Min. = 0.01, Med. = 7.49,  
Max. = 23.86 
µ = 8.74, σ = 5.40 

Min. = 0.05, Med. = 7.42,  
Max. = 32.05 
µ = 8.22, σ = 5.83 

Fail to 
reject, 
p=.42 

July Min. = 0.00, Med. = 4.01,  
Max. = 25.20 
µ = 4.79, σ = 4.31 

Min. = 0.00, Med. = 4.14,  
Max. = 34.49 
µ = 5.40, σ = 5.19 

Fail to 
reject, 
p=.50 

August Min. = 0.00, Med. = 4.89,  
Max. = 19.07 
µ = 5.78, σ = 4.42 

Min. = 0.00, Med. = 4.92,  
Max. = 31.28 
µ = 5.80, σ = 5.14 

Fail to 
reject, 
p=.78 

September Min. = 0.00, Med. = 6.81,  
Max. = 31.22 
µ = 8.10, σ = 5.92 

Min. = 0.03, Med. = 5.64,  
Max. = 34.47 
µ = 7.61, σ = 6.87 

Fail to 
reject, 
p=.21 

   
(table continues) 
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Table 7.4 (continued)  

Month 

Simulated 
Minimum, Median, and 

Maximum 
Mean (µ) and SD (σ) 

Real 
Minimum, Median, and 

Maximum 
Mean (µ) and SD (σ) 

Mann-
Whitney U, 

α = 0.05 

October Min. = 0.03, Med. = 6.74,  
Max. = 41.06 
µ = 8.97, σ = 7.83 

Min. = 0.00, Med. = 7.77,  
Max. = 59.59 
µ = 9.56, σ = 9.04 

Fail to 
reject, 
p=.76 

November Min. = 0.00, Med. = 4.92,  
Max. = 19.22 
µ = 5.76, σ = 4.09 

Min. = 0.00, Med. = 4.29,  
Max. = 30.81 
µ = 5.84, σ = 5.39 

Fail to 
reject, 
p=.46 

December Min. = 0.15, Med. = 4.78,  
Max. = 20.91 
µ = 5.72, σ = 4.22 

Min. = 0.05, Med. = 4.69,  
Max. = 21.41 
µ = 5.85, σ = 4.47 

Fail to 
reject, 
p=.99 

Note: Simulated and real weather were compared at the monthly timescale through the total rainfall for 
each month. The simulator does a very good job capturing this characteristic. It underestimates extremely 
large monthly totals, but is very close in its central tendencies. Simulated and real monthly totals from all 
12 months could not be rejected as being from the same distribution. (Mann-Whitney U test, α=0.05). 
Rainfall totals are in cm. 
 

 
Figure 7.9. Distribution of total rainfall amounts. Distributions of real and simulated monthly totals of 
rainfall were very close for all 12 months. The real weather distributions had longer tails due to higher 
maximums and more abnormally high monthly rain totals, but the distributions were otherwise difficult to 
distinguish. The months of May and July are used here simply as examples. 
 

One way in which the simulated and real weather differed was in the maximum 

total rainfall. The maximums were greater for every month in the real weather, and in 

285 



nine of the months, the maximums were substantially larger. This observation was in 

agreement with the similar one made with the daily rainfall amounts, in that the model 

was not as good as real weather at producing abnormally large amounts of rainfall. 

However, from the perspective of the distribution of monthly rainfall totals, the model 

produced a very realistic simulated weather that was very close to the climate for which 

it was parameterized. 

Annual precipitation totals were also compared between the model and historical 

records. As with the monthly totals, the annual total amounts between simulated and 

real weather compared very well in means and medians, and their distributions were not 

distinguishable by the Mann-Whitney U test (Fig. 7.10).  

  
Min. = 38.54, Med. = 84.59, Max. = 145.20 

µ = 88.50, σ = 23.92 
Min. = 44.79, Med. = 81.94, Max. = 125.00 

µ = 84.29, σ = 18.86 
Mann-Whitney U test result: Fail to reject that the distributions are the same, p = 0.29. 

Figure 7.10. Annual precipitation totals. Annual totals of precipitation for real and simulated weather were 
compared and the distribution found to be similar. The real weather produced a greater variation in 
annual totals, including a smaller minimum and a larger maximum. However, the Mann-Whitney U test 
failed to reject the distributions are the same (p=.29). 
 

The primary difference between the simulated and real weather monthly totals 

was in variability. The real annual precipitation totals had a bigger variance and a wider 
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range with both a smaller minimum and larger maximum. This pattern was an echo of 

what was seen at both the daily and monthly timescales.  The simulated precipitation 

amounts and totals were just a bit less variable than real weather. The mean and 

median values for simulated weather were also a bit smaller by about 5%. However, 

generally the distribution of the simulated rainfall total appeared to be a good fit overall. 

The temperature component of the weather simulator was not examined as 

closely, and expectations were not high that it would hold up under close scrutiny. 

Because of time limitations, the temperature component was a hybrid between a daily 

and monthly model, and thus, individual day-to-day temperatures in the model had an 

unrealistic increasing or decreasing pattern depending on the season. However, tree 

growth in the model only depended on the accumulation of GDD during the growing 

season, and so that was the only output from the temperature model that was analyzed. 

The model used a well-defined trigger based on temperature progression to indicate 

both the beginning and end days of the growing season for each modeled year. GDD 

were summed up only during the growing season. The total was then input into the 

species temperature tolerance curve to determine temperature stress. If the model 

produced temperatures resulting in too high or too low of a total number of GDD, then 

any tree species with temperature tolerance limits set close to that output GDD would 

struggle to grow. 

One problem with comparing temperature output with the real weather data was 

that unlike the model, nature does not have a well-defined trigger indicating when the 

growing season starts or stops. Additionally, different species do not respond in the 

same way to temperature or sunlight triggers that cause them to leaf out in the spring or 
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drop their leaves in the fall. In mild winters in North Texas, for example, American and 

winged elm start budding and growing leaves by the second week of February. Post 

oaks and pecans on the other hand usually do not produce any leaves until well into 

March. These species tend to keep their leaves until later into the fall than many others, 

often barring an early freeze all the way through November. A conservative estimate to 

bind the real growing season in North Texas would be that at maximum it goes from the 

beginning of February through the end of November, and at a minimum from March 

through October. Using the same 100-year weather record used in the precipitation 

comparisons and weather parameterization, GDD were calculated for every day and 

totaled across every month. Months with any missing temperature records were 

omitted. Historical GDD monthly totals were calculated using the same assumption the 

model used for temperature and tree growth, where 5.6° C was the threshold 

temperature for tree growth to occur. Under this assumption, a GDD was counted for 

each degree Celsius when the average daily temperature exceeded the 5.6° C 

threshold. Thus, if the average temperature during a day reached 10°C, then 4.4 GDD 

were accumulated for that day. To compare the accumulation of GDD for the entire 

growing season with the model output, three different values were calculated. An upper 

limit used maximum total GDD for each of the months from across the weather history.  

The monthly totals from February through November were then summed. The lower 

limit used the minimum historical monthly GDD totals, which were then summed up from 

March through October. An average growing season GDD was estimated using the 

average monthly GDD totals, summing up March through October together with half of 

the February and November values. With these assumptions, the upper limit for growing 
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season GDD in North Texas was 7885, the lower limit was 3348, and the average was 

4617. These values were compared with the model output from a 100-year simulation 

run (Fig. 7.11). 

 
Figure 7.11. Simulated annual GDD output. Modeled output of the growing season accumulation of GDD 
was compared to average, upper limits, and lower limits for growing season GDD estimated from the 100-
year historical weather data. The model output was substantially higher than the average calculated from 
the real weather history, but it was within the upper and lower limits. The model output came close to 
upper temperature tolerance limit for some of the cooler-temperature modeled species such as green ash 
and blackjack oak. The lower temperature tolerance limit for all of the modeled species was well below 
the simulated output. 
 

The model output of growing season GDD was too high when compared with the 

North Texas average; however, it fell easily within the upper and lower bounds 

estimated from the historical record. The simulated average GDD accumulated over the 

growing season was approximately 5000, about 400 higher than the estimated North 
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Texas average. Given this output and the species tolerance parameters for 

temperature, none of the Greenbelt species being modeled were at risk of cold 

temperature stress. However, several of the Greenbelt species (green ash, cottonwood, 

and blackjack oak from the shortened list) had upper limits set at around 5500 GDD, 

which was not much higher than some of the simulation’s warmest years were. It was 

possible this may have caused problems for these species as they competed with 

others that had higher temperature limits; however, most of the modeled years had 

GDD outputs well below this limit, and it may not have noticeably impacted them. 

To investigate why the simulated temperature output was too high, a quick check 

of monthly simulated temperature averages was performed and compared with the 

historical weather records. The simulated temperature averages for every month had a 

distribution that was statistically indistinguishable from the historical weather data 

(Mann-Whitney U test, with the smallest p=.22). All 12 sets of maxima and averages 

were very close between simulated and real weather. The bias in output GDD did not 

appear to be a result of bias on the modeled monthly temperatures. The modeled 

growing season did not appear to start too early, but the growing season did appear to 

end a little too late (Fig. 7.12). The average start of the growing season in the simulated 

weather was day 76, which was mid-March. By this time in most years, the Greenbelt 

area tree species had sprouted leaves and had begun photosynthesizing. However, 

some years freezing temperatures occurred well into March, so this growing season 

start day in the model was reasonable, although it was little late as an average as since 

in some years, the growing season did not start until April. The average end day in the 

modeled growing season was day 331, which was the end of November. In some 
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simulation years, the growing season did not end until late December, which was later 

than it should be, but probably enough to explain all of the excess in simulated GDD.  

  
Figure 7.12. Beginning and end of modeled growing season. Average beginning and end of the modeled 
growing season was examined to determine if it caused high annual GDD output. The average growing 
season start day was mid-March, and the average end day was in the beginning of December. Both dates 
were a little later than dates when most of the North Texas deciduous trees typically leaf out or drop 
leaves, respectively. However, this shift in the growing season was not likely what caused modeled GDD 
totals to be a little high. 
 
In fact, the entire growing season seemed to be shifted a little to the right in the 

calendar, which might have been caused from days in the month that were used to 

interpolate the temperatures between. However, shifting the temperature-based growing 

season left or right in the calendar would not impact the number of accrued GDD. Part 

of the explanation to the high model temperatures could be the lack of day-to-day 

variability in the hybridized daily and monthly temperature model. In real weather, 
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temperatures can go up and down from one day to the next. Cool fronts during summer 

months bring temperatures down below normal for days or more. The cooler days 

accrue a smaller number of GDD. The model allowed for monthly temperatures that 

were either above or below normal, but since the daily temperatures were interpolated 

between each pair of consecutive months, there was no fluctuation of the daily 

temperatures in between. Whether or not this helped explain why the modeled GDD 

output was too high was only a guess. One impact that most likely attributed to the 

monthly/daily hybrid temperature was the variation in both beginning and end day of the 

growing season. In this 100-year simulation, the earliest beginning day was 44, or 

February 13th, and the latest was day 98, or April 8th. These dates were too early and 

too late, respectively, for the start of the growing season. Since the daily temperatures 

for an entire month were determined from a single random draw, a result of an 

unusually warm February or of an unusually cold March could push the start of the 

growing season too far left or right. 

Overall, the FACETA weather model worked well. The output of precipitation at 

all three timescales fits pretty well to the historical weather record. One common 

difference was the variability. At the annual timescale, real annual precipitation totals 

were slightly more variable, with a lower minimum, a higher maximum, and a higher 

variance. The average annual total precipitation for real weather was also slightly 

higher. This same trend held for most of the monthly totals and for most months with the 

daily rainfall amounts, where the real weather tended to have higher maxima and larger 

variances. However, overall the simulated precipitation patterns appeared remarkably 

close to the historical records. One characteristic that was not examined or measured in 
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the output was droughts or dry spells, which should be done in the future to further 

verify the precipitation model. 

The temperature simulation was not as sophisticated of a model as precipitation; 

however, since it was only used to determine an accumulation of GDD, it was sufficient 

for its purposes. The model appeared to produce on average about 400 too many 

growing season GDD, and the modeled growing season ended on average too late. 

There was probably too much variation in the start and end dates of the growing 

season. Whether the high temperature bias negatively impacted modeled tree growth 

was difficult to predict as the trees responded to a combination of interacting factors. If 

tree growth became a problem, then the species parameters could be adjusted to 

provide some buffer, or the assumptions behind the species temperature tolerance 

parameters could be rethought. 

Results: Soil Water Dynamics 

Model output of soil moisture dynamics was analyzed for three different soil 

types: Ovan clay, Birome sandy loam, and Plot #9 (Fig. 7.2). Ovan clay was the most 

common of the bottomland soils in the study area. It was a deep, high-clay content soil 

with high levels of organic matter. The soil parameters for this soil were estimated from 

the county soil survey description of a typical pedon. Birome sandy loam was one of the 

most common upland soils associated with the post oak forests. It was a moderately 

deep, sandy soil with clay lenses. Its parameters were estimated from the soils survey 

description. Plot #9 was located in the Greenbelt in an area that according to the soil 

survey belonged to the Birome sandy loam soil series. The basic differences in the 

model parameters were summed up through ordered lists:  
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1. Depth: Ovan > Plot 9 > Birome 
2. Surface dry infiltration rate: Birome > Plot 9 > Ovan 
3. Saturated hydraulic conductivity: Plot 9 > Birome > Ovan 
4. Water-holding capacity: Ovan > Plot 9 > Birome. 
 

Of course, there were more differences, but these were some of the more important 

differences for the soil water dynamics. In order to compare the output of the soil water 

dynamics without potential problems with the forest model, simulation runs were done 

using a bypass of the tree model (e.g., interception and transpiration) that allowed for 

testing just the soil water dynamics. The impact trees would have was simulated using 

constants. At this step, no run-on water was added to simulate the topographical-

hydrological impact. The only water input into the soil was from the weather simulator. 

The output from the three soil scenarios were compared with each other for relative 

differences. 

While there were differences in the output between the three soils, but there were 

also notable commonalities. Some of the differences in output were a little surprising. A 

number of different output variables were examined and analyzed.  These included:  

1. fraction of holding capacity (a measure of how much water was in the soil 
relative to how much it could hold), 

2. extractable water minus potential evapotranspiration (a measure of potential 
moisture deficit), 

3. proportions of wet days and dry days (the metrics used to measure potential 
stress to trees due to flood or drought respectively), and 

4. runoff and deep percolation (two ways that rainwater input was lost from the 
plot or soil, respectively).  
 

Stress metrics were measured differently for trees and seedlings. For the latter, wet 

days and dry days were integrated across the top 20 cm of soil, while for trees it was 

calculated across the entire soil profile. A wet day was defined as a day that the 

moisture level exceeded field capacity, and a day with no extractable water was defined 
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as a dry day. The general trend for all three soils was that they were very dry. Fraction 

of hold capacity was low throughout, generally lower for trees than seedlings. This 

meant that the upper layers of soil were relatively moister than the deeper layers. 

Extractable water minus potential evapotranspiration was generally negative, meaning 

potential deficits. Wet days were low for all three soils, and surprisingly the Ovan clay 

was slightly lower than the other two soils. There were generally more wet days for 

seedlings than for trees, which coincided with the fraction of holding capacity results. 

Runoff and deep percolation were checked to see if water was being lost either through 

infiltration-saturation excess flow to groundwater. Both Plot 9 and Ovan clay had 

minimal deep percolation, and the percolation in the Birome soil was not enough to 

explain the low moisture. Runoff was high for all three soils, ranging from10 cm to 

40 cm per year. Results are summarized in Table 7.5, and examples of output graphs 

are in Fig. 7.13. 

Table 7.5  

Soil Moisture Metrics 
 Birome Sandy 

Loam 
Plot 9 Ovan Clay 

Fraction of holding 
capacity 

Seedlings: 0.25 
Trees: 0.3 

Seedlings: 0.45 
Trees: 0.25  

Seedlings: 0.45 
Trees: 0.15 

Extractable water 
minus PET 
(cm/day) 

Seedlings: -0.3 
Trees: -0.3 

Seedlings: 0.1 
Trees: -0.15 

Seedlings: 0.35 
Trees: -0.1 

Proportion Wet 
Days 

Seedlings: 0.1 
Trees: 0.02 

Seedlings: 0.1 
Trees: 0.02 

Seedlings: 0.1 
Trees: 0.01 

Proportion Dry 
Days 

Seedlings: 0.6 
Trees: 0.5 

Seedlings: 0.3 
Trees: 0.6 

Seedlings: 0.3 
Trees: 0.7 

Annual Run Off 
(cm) 

10 – 40 10 – 40 10 – 40 

Note: PET=potential evapotranspiration. A number of different metrics of output from the soil moisture 
model were examined for hospitality to trees or seedlings, and to assess and troubleshoot this component 
of the model. The results in this table summarize some of these. The values were constantly changing in 
the model as water was input from rain, lost through evaporation, or moved about in some other way. The 
values in the table are not specifically averages; rather, they are representative middle values. Fraction of 
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holding capacity is the proportion of space between wilting point and field capacity that is occupied with 
water. Extractable water minus PET is a measure of deficit. Proportion of wet days and proportion of dry 
days are the metrics used to measure water and drought stress to trees. The general trend for all three 
soils was that soil conditions were too dry, particularly for trees. 
 

 
Figure 7.13. Soil moisture outputs. The graphs are examples of several different soil moisture outputs and 
metrics that were analyzed. These graphs are all from the Ovan clay soil series. Soil moisture output 
could be examined at daily or annual timescales. Tree stress metrics were calculated from annual 
averages or totals. Both of these graphs were of annual output over a 100-year simulation. On the top left 
is annual extractable water (defined to be the water between wilting point and field capacity) minus PET, 
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with the condition for seedlings graphed in black and for trees in red. This value stayed positive as an 
annual average for seedlings, which implied there was usually extractable water available in the top 
20 cm of soil. Since the values stayed mostly negative for trees, there was a moisture deficit, and any 
additional water input into the deeper layers was quickly extracted. The graph on the top right is the 
proportion of dry days, which was the proportion of days during the growing season when soil moisture 
was at wilting point, for seedlings (black) and trees (red). This metric was used to measure the 
environmental stress due to lack of moisture. With levels staying between 0.6 and 0.8 for trees, none of 
the Greenbelt species would be able to grow large. The bottom two graphs show a daily time series of 
moisture levels in the third layer down during the first 240 days of the second simulation year. Wilting 
point for this layer was set as an input parameter at 5.31 cm (Fig.7-2), which was where the moisture 
level stayed most of the time in this layer. 
 

One commonality noticed was that in the deeper layers of all three soils, the 

moisture level stayed on or close to wilting point through the simulation except for 

immediately after a rainfall input. This was clearly visible looking at the daily output for 

the individual soil layers. Shortly after receiving some water input, the moisture level of 

the soil in the fourth or fifth layer on down would to drop to the wilting point and stay flat 

lined until the next rainfall provided a little input. A number of changes to the soil input 

parameters were made to see how they affected these outputs. Possibilities for the low 

soil moisture included: 

1. The soil may have been too deep and the rainfall was not sufficient to fill the 
deep soil enough to avoid tallying dry days. 

2. The hydraulic conductivity was too high causing deep loss. 
3. The hydraulic conductivity was too low causing too much runoff.  

 
None of the changes to the input file resulted in an appreciable difference in the low soil 

moisture levels. A completely different set of soil parameters estimated for a forest in 

Venezuela were also tested, and results were similar in that soil levels remained low, 

especially at the deeper layers (M. F. Acevedo, personal communication). It was 

possible the soil moisture model was accurate, and given the climate of North Texas, 

the model was simply reflecting the dry soil conditions that existed. However, the 

conditions seemed too dry for that to be the case. If the model was accurate, then the 
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model for moisture stress needs to be changed because with these soil conditions, 

trees could never grow big.  

The very odd finding of chronically dry deep layers with moisture in the upper 

layers, which was accessible to seedlings, could have been due to the assumptions 

used in the forest and tree growth bypass functioned used to test the soil moisture 

dynamics. With the bypass turned off and all other parameters set the same, the 

moisture conditions were reversed, and the drier soil was in the upper layers. However, 

the soil was still chronically dry throughout. The best estimate for the inverted soil 

moisture output was that the constants used by the forest bypass assumed a steady 

forest of mature trees drawing water from deeper layers of soil. Since the soil was dry 

already, the constant draw of the mature trees assumed by the bypass kept these lower 

layers completely dry other than immediately after a water input. Without the bypass, 

the model started tree growth with seedlings that had to be established. The seedlings 

drew water only from the upper layers. Thus, the seedlings constantly competed for the 

limited moisture in the upper layers, and it was difficult for any of the seedlings to reach 

the size required to extend to deeper soil. This result was seen in the forest output, 

which was examined next. 

Results: Terrain Types and Forest Growth 

Because of chronically low soil moisture levels seen in the model during the soil 

moisture testing, forest growth output was suspect. However, examining it still provided 

insight into the functionality of the model and provided information on how the model 

could be improved. Three different terrain types were evaluated for forest growth: 

Birome sandy loam in the medium topographic wetness index (TWI) class (Birome-2), 
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Ovan clay in the medium TWI class (Ovan-2), and Ovan clay in the high TWI class 

(Ovan-3). Birome-1 and Ovan-1 were two of the three terrain types with which the soil 

moisture dynamics were evaluated. Although not discussed in detail, forest growth for 

those terrain types were evaluated, and in all three of types, growth was limited to a 

large number of very small trees of the most drought tolerant species, post oak and 

blackjack oak. While the output was expected given the low moisture levels in the model 

for those terrain types, it was not realistic for post oak trees or seedlings to grow in the 

heavy clay soil of the Ovan series. The output indicated the initial assumption that a 

metric of soil moisture levels would be enough to prevent modeling post oak growth in 

the bottomland was incorrect. However, the moisture levels output by the model were 

also not realistic, making it difficult to assess the quality of the forest model output. 

Forest growth output was evaluated using two metrics, density and basal area. 

Density of each species was measured as the number of trees per hectare, and basal 

area was the amount of cross-sectional area of all tree trunks per hectare. High density 

meant a large number of trees. The basal area of a tree increased with the square of its 

radius, so it took a very large number of small trees to produce as much basal area as 

one large tree. High basal area values generally implied a much smaller number of 

larger trees. The expected progression of forest development from bare ground in the 

language of these two metrics was that both started as zero, and then density quickly 

increased as seedlings started to grow, but basal area stayed very small. As more 

seedlings started and existing seedlings grew and competed, density continued to 

increase rapidly while basal area starts increased a little more rapidly. Some of the 

seedlings managed to out-compete others and gain a size advantage. Those trees 
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started to grow basal area more rapidly, the outcompeted seedlings started to die off 

because of stress, and density started to drop. In addition to this general expected 

behavior, there were species characteristics, as defined by the silvics parameters in the 

model, which influenced the species composition dynamics as the forest developed. For 

example, fast growing trees typically won the early competition to become the first large 

trees, but then shade tolerance typically determined the second generation of large 

trees. Characteristics of drought or saturation tolerance, or tolerance to other soil 

condition, determined the locations favorable or not favorable to different species.  

To get a sense of the types of forest development that can occur in the three 

modeled terrain types, results of a tree survey conducted in the Greenbelt were 

displayed. These results were just examples each consisting of a single, 25-m x 25-m 

plot. The survey within the Birome-2 terrain type was conducted in an area of old post 

oak forest located close to the bottom of a hillslope on moderately deep, sandy loam 

soil (Fig. 7.14). The survey found almost exclusively post oak and cedar elm, roughly in 

the same number as seen in the density graph, but with the post oak being the much 

larger trees, as seen in the basal area graph. 

 
Figure 7.14. Density and basal area in sample Greenbelt plot in Birome-2. In a tree survey conducted 
within the Greenbelt, density and basal area were measured in different 25-m x 25-m plots. Density was 
defined as the number of trees per hectare, and basal area was the cross-sectional area per hectare. In a 
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plot located in an area identified as the Birome-2 terrain type, almost all of the trees were post oak or 
cedar elm. Post oak had a slightly larger number of trees as shown in the density graph. Additionally, it 
had much larger trees as shown in the basal area graph. Eastern redcedar and hawthorn were present as 
1 and 2 individuals, respectively. A snag is a standing dead tree of any species. 
 

Large parts of the Greenbelt bottomland fell into the Ovan-2 terrain type, and 

green ash, cedar elm, and sugarberry typically dominated these areas. Other species 

found in this terrain type included red mulberry, boxelder, American elm, swamp privet, 

and Osage orange. The sample plot surveyed in the Ovan-2 terrain type was in an area 

in the floodplain flat with approximately 50-year-old forest growth (Fig. 7.15). This 

particular plot was dominated by cedar elm, which had both the largest number of 

individuals and the largest trees. Sugarberry was present in large numbers, but all of the 

trees were small, in the 5-cm to 10-cm DBH size class. Few green ash were in this plot, 

but the ones present were greater than 50 cm DBH. While these three species were 

found throughout the Greenbelt bottomland, sugarberry tended to favor the higher and 

drier land. Green ash was the most adapted of the three species to swampier positions. 

It was unclear why cedar elm dominated some positions in this plot, but of the three 

species, it had the broadest range of tolerance to soil moisture conditions. 

 
Figure 7.15. Density and basal area in sample Greenbelt plot in Ovan-2. In a tree survey conducted within 
the Greenbelt, density and basal area were measured in different 25-m x 25-m plots. Density is defined 
as the number of trees per hectare, and basal area is the cross-sectional area per hectare. A plot 
identified to be in the Ovan-2 terrain type contained a mix of bottomland species. Like much of the 
Greenbelt bottomland, this plot was dominated by cedar elm, green ash, and sugarberry. The largest 
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trees were green ash, sugarberry made up a large number of small trees, but cedar elm made up the 
largest number of individuals and represented a large range of sizes. 
 

The Ovan-3 sites included the wettest parts of the bottomland such as sloughs 

and wetlands, as well as parts of the flats. These areas contained the green ash, cedar 

elm, and sugarberry, but some parts were dominated by swamp privet. Black willow was 

also more likely in these positions. In a sample plot surveyed in the Ovan-3 terrain type, 

swamp privet made up more than half the trees (Fig. 7.16). The largest part of the basal 

area in this plot consisted of standing dead trees or snags. It was important to stress 

that the survey results presented in these graphs were each of a single 25-m x 25-m 

plot, so they were considered only as examples of possible forest development in the 

different conditions rather than some kind of representative average. 

 

 
Figure 7.16. Density and basal area in sample Greenbelt plot in Ovan-3. In a tree survey conducted within 
the Greenbelt, density and basal area were measured in different 25-m x 25-m plots. Density is defined 
as the number of trees per hectare, and basal area is the cross-sectional area per hectare. In parts of the 
Greenbelt representing the Ovan-3 class, swamp privet, green ash, and black willow were likely to be the 
common species. This plot measured in an Ovan-3 area was representative of that combination. A snag 
is a standing dead tree of any species. The survey result indicated that the largest trees in this plot were 
snags, and swamp privet made up the largest number of trees. 
 

FACETA simulation runs using the parameters defined by these three terrain 

types were evaluated for density and basal area of each species present. Because of 

the model’s chronically dry soil conditions, the run-on parameters (described in 
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Table 6.6) were implemented with the scalar multiplier c set equal to 1. In other words, 

the parameters were implemented in such a way to maximize the parameters’ effects on 

soil moisture; the original intention was for the multiplier to equal less than 1. Numerous 

runs were performed using different random weather seeds to verify consistency of the 

results. Each run simulated 300 years. Generally, the output highlighted the problem 

noted with modeled soil moisture—trees struggled to grow. As the model was designed, 

seedlings of all species attempted to grow and establish themselves in all simulations. 

Any species without high drought tolerance parameters set (e.g., green ash and black 

willow) were almost completely unable to establish themselves with the additional water 

input from the run-on parameter. Except in the driest of the modeled terrain conditions, 

once any tree was established, it had a chance to grow big if it could attain a size 

advantage over the other individuals in its plot. 

The most upland of the three terrain types evaluated was Birome-2. This was 

generally described as a moderately deep, sandy soil that was not in the driest 

positions, for example on slope sides or hilltops. This terrain position typically developed 

into a post oak forest but with enough soil moisture to allow some other species. The 

FACETA simulations on this terrain type resulted in very believable output in terms of 

species composition, basal area, and density (Fig. 7.17). Both black willow and 

cottonwood made a brief appearance as established small trees in the simulation, but 

they were outcompeted by the more drought tolerant post oak and blackjack oak. The 

densities for both oak species spiked early in the simulation as many new young trees 

struggled to become dominant big trees. By about 150 years into the simulation, 

densities dropped as some trees matured and grew, and the small ones died off. This 
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drop in density coincided with an increase in basal area. The long run projection of a 

post oak dominated forest, with a total basal area about 30 m2/ha and a total density of 

about 400 trees/ha, matched reasonably well with the sample tree survey of the Birome-

2 plot (Fig. 7.14). 

 
Figure 7.17. FACETA results, Birome-2 terrain class. The FACETA simulations run on the Birome-2 
terrain class yielded convincing results. The top two graphs show the modeled trajectory starting from 
bare ground through 300 years of simulated growth. The bottom two graphs summarize the density and 
basal area at the end of this 300-year trajectory. Species composition, density, and basal area results at 
the end of this period agreed fairly well with the forest development that would be expected in this terrain 
class. The results also agreed well with the sample tree survey conducted in a similar terrain position. 
 

Unfortunately, the FACETA forest results were not as promising for the two Ovan 

terrain classes. In the Ovan-2 class soil, even with the added moisture input, soil 

conditions were too dry to allow for growth of any species except the two upland oaks 

and cottonwood (Fig. 7.18). Cottonwood, which was relatively drought tolerant for a 
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bottomland species, came into the simulation and eventually co-dominated with post 

oak in the basal area, but it remained at a very small number of individuals.  

 
Figure 7.18. FACETA results, Ovan-2 terrain class. FACETA simulation runs in the Ovan-2 terrain class 
did not yield desired results. The result appeared as an upland post oak forest with a mix of a few very 
large cottonwoods. Moisture stress in the model prevented many of the bottomland species that would be 
expected in this position from being established. 
 
The characteristic of rapid growth rate allowed cottonwood to co-dominate in the model. 

A few green ash trees were established from seedlings, and they grew to tree status in 

the simulation. However, because of the dry soil conditions, they quickly died off. The 

other species expected in this terrain type, sugarberry, never managed to establish 

itself. The final results would actually not be that bad if the modeled position were a 

sandy upland one, but in reality post oaks would never be able to become established in 

Ovan clay soil because of the lack of aeration. While occasionally cottonwoods can 
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become established in upland positions near post oaks, they would only do so as a very 

minor component and probably only in more topographically favorable positions. From 

the combination of low density and high basal area, it was clear that the big trees in this 

simulation were the cottonwoods, and the post oaks were the much smaller but more 

plentiful trees. Cottonwood thrived best in looser, aerated soils similar to where post 

oaks grow, but the water demand by cottonwood was much higher. The fact that post 

oaks thrived in the modeled Ovan-2 position brought into question the original thinking 

of how to implement flood and aeration stress response into the model. The model 

could be designed so extra moisture found in the bottomland sites would prevent post 

oak establishment. Due to issues with soil moisture in the model, extra moisture was not 

an issue in the Ovan-2 terrain class. However, the soil conditions alone should have 

prevented post oak development. To capture better this response it is possible that 

aeration and flood needed to be treated as separate stressors in the model. 

The wettest simulated position run was Ovan-3 (Fig. 7.19). Because the scalar 

multiplier, c, applied to the run-on parameter was set to 1, the amount of additional 

water added to this site in the simulation was by a factor of 3, which was clearly 

unrealistic; however, moisture conditions were still too low for good establishment of 

trees. The soil moisture conditions in the different layers and the wet day and dry day 

calculations for tree stress response were examined. It was clear the additional water 

added in the simulation was enough to keep the deeper levels of soil accessed by 

mature trees from becoming dry; however, dry day proportions in the upper, seedling-

accessible soil layers were still typically around 0.5.  
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Figure 7.19. FACETA results, Ovan-3 terrain class. The Ovan-3 class in the real world would be areas 
that in some year could experience flooding for weeks or even months. While not all of Ovan-3 could be 
classified as a wetland, the class did contain then. The simulation for this class used three times the 
additional amount of moisture as the weather simulator produced, yet the model output resembled a mix 
of upland post oak and bottomland forest. At the end of this simulation, cottonwood dominated in size, 
and post oak dominated in numbers. 

 
It seemed incorrect that bottomland Ovan clay soils would be at wilting point for 

half of the growing season, especially with so much additional water being simulated. 

The forest results for this terrain class appeared a little more like a bottomland forest, 

with all of the species in the simulation making an appearance except for black willow. 

In reality, black willow seeds need to become wet within just a couple of days after 

falling from the tree in order to germinate.  Thus, black willow is often found growing in 

ditches and wetlands. In this simulation, the added water failed to make the upper part 

of the soil moist enough for the modeled black willow to establish. Post oak not only 

made an appearance again in this bottomland terrain position, but in fact, it was the 
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species with the highest density. In the end, cottonwood dominated in basal area. This 

particular composition did not look like any expected forest in the study area, but the 

problems with proper growth were a result of the model problems with soil moisture. 

Conclusions: FACETA Results 

FACETA results were somewhat mixed. The precipitation component of the 

weather model captured month-to-month rainfall patterns. The only notable difference 

between the real and simulated weather was that for most months, the simulation was 

unable to capture the full range of variability seen in the real weather. The temperature 

component of the model was much more simple in structure but still adequate for the 

way temperature impacted trees in the model. Two problems were noted with the 

temperature model.  The model tended to produce about 10% too many GDD per 

season as compared to the real weather, and it tended to start and stop the growing 

season a little late. Of note, at least one random weather seed simulation resulted in 

years where the growing season both started and stopped in February. This was likely 

due to a logical counting error in the code for determining growing season, and all 

growing season and temperature issues with the model could likely be fixed. 

The soil moisture component of the model yielded unsatisfactory results. Any 

terrain type tested without additional simulated run-on water had soil conditions too arid 

for anything but the growth of tiny post oak and blackjack oak. Running the model with 

the tree and forest simulation bypassed resulted in soil conditions quite hospitable for 

seedlings, but with essentially no available water at deeper soil layers accessed by the 

mature trees. This likely occurred because the forest bypass function assumed a steady 

draw of moisture from the deeper levels. Running the simulation with the trees included 

308 



resulted in thousands of seedlings competing for the very limited moisture in the upper 

layers. None of the seedlings were able grow enough to reach deeper soils and become 

large trees. Adding extra moisture in the simulation did finally allow for mature tree 

growth. The species composition in the output did not match reality for any of the 

bottomland terrain positions because even with the added moisture, the conditions were 

dry enough that post oak with its drought tolerance was competitive. This result was 

unwanted because post oak would be restricted from the bottomland positions due to 

soil texture alone; therefore, a rethink of the approach used here in how to model 

aeration stress response became necessary. Overall, the FACETA model appeared to 

show promise towards this application. The results from Birome-2, for example, were 

encouraging. The temperature component of the model needs to be examined further 

and probably adjusted, and the soil moisture conditions need to be investigated more 

thoroughly. The metrics used for determining soil moisture stress need to be 

reconsidered, but with some work, FACETA can be adjusted to produce reasonable 

results for modeling different soil types within the Cross Timbers ecoregion. 
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CHAPTER 8 

CONCLUSIONS 

A method for extending a plot-scaled forest model to a watershed-scaled 

landscape was investigated in this study. The forest model FACETA simulates weather, 

soil moisture dynamics, and tree growth and competition, but it does not include a 

spatially distributed hydrological model. Terrain types were defined across the study 

area watershed through a combination of soil and topographic characteristics. This 

combination of characteristics was selected based on the understanding of how the 

different vegetation patterns develop in the Cross Timbers and Prairies ecoregion, and 

more specifically in the Eastern Cross Timbers ecoregion. FACETA requires numerous 

inputs describing soil physical properties. In order to simulate the topographic effects on 

hydrology without developing a spatially explicit hydrology model, an approach using 

the concept of hydrologic similarity was taken through the use of a topographic wetness 

index (TWI). 

Soil series as defined in the Denton County soil survey provided by the Natural 

Resource Conservation Service (NRCS; USDA, 2010) together with categories of TWI 

were used for partitioning the study area map into terrain types. Different issues behind 

developing the TWI map were considered and analyzed including different sources of 

elevation data, grid sizes, and grid processing used in the hydrological analysis. Light 

detection and ranging (LiDAR) derived digital elevation model (DEM) in 5-m, 10-m, and 

29-m grid sizes and contour-derived DEMs with 10-m and 29-m resolutions were 

obtained, depressions were removed to make the DEMs hydrologically correct, and the 

DEMs were processed using both a single directional flow direction algorithm and a 
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bi-directional flow algorithm. Ten different DEMs were used to produce TWI grids that 

were analyzed at multiple steps in the process for their appropriateness in FACETA 

terrain type definition. Slope, flow accumulation, and TWI grids were all compared. 

A difference noted between the contour-derived slope grids and the LiDAR-

derived slope grids was LiDAR’s ability to detect changes accurately in topography. 

Especially with the smaller grid sizes, the LiDAR-derived DEMs identified relatively 

subtle changes in elevation and slope. The small grid, LiDAR-derived DEMs detected 

microtopographical changes; however, that may not be needed when considering 

terrain types linked to vegetation covers across a watershed-scaled landscape. The 

slope grids revealed unfortunate errors contained in the contour-derived DEMs 

introduced at the time of production. These errors, known as striping artifacts, appeared 

in some of the grids as artificial parallel lines that crisscrossed the grid. The striping 

artifacts were more apparent in the 10-m grid than the 29-m grid and more apparent in 

the bi-directional D∞ processed grid than the single directional D8 processed one. 

The different flow accumulation grids were compared with the location and shape 

of surface water features. Generally, accuracy increased with the finer grid resolutions, 

the LiDAR-derived grids were more accurate than contour-derived, and the D∞ 

processed grids were more accurate than D8. However, there was little difference in 

accuracy between the 29-m LiDAR-derived D8 map and the 29-m contour-derived D8 

map. A problem was noted in some cells found in high flow accumulation areas using 

the D∞. The calculations somehow became undefined, and those grid cells ended up as 

holes of missing data within the landscape map. Although the D∞ algorithm was more 

311 



accurate at locating surface water than D8, since implementation of D∞ resulted in 

missing data cells, a multi-directional flow (MDF) algorithm should be considered. 

The striping artifacts that first became apparent in the contour-derived slope grids 

became much more prevalent and obvious through the calculation of the TWI grids. The 

errors were prevalent enough that they showed through even after grouping the TWI 

values into three categories. The striping artifacts could be removed through filtering 

techniques, but without such correction, the contour-derived DEMs were determined 

inadequate for partitioning the landscape into terrain types. Since LiDAR availability was 

limited in many places, a filtered version of the 10-m contour-derived DEM was added 

to the analysis. The filtering in this case was accomplished through resampling or 

resizing the DEM grid cells from 10 m to 29 m. This removed the striping artifacts, but it 

also caused a loss in accuracy, and the contour-derived DEMs were abandoned.  

In comparing different grid sizes, the small-grid DEMs were more accurate. 

However, they were also sensitive to relatively small changes in elevation. Small 

changes in slope of short distances were detected and seen in the TWI grid. The finer 

grid resolution DEMs resulted in a great deal of patchiness. Individual pixels or patches 

of low (i.e., dry) TWI values were left isolated within the floodplain. Likewise, channels 

of higher (wet) TWI values showed up in distinctively upland hilly areas. The 5-m grids 

were patchier than the 10-m ones, and the D8 flow direction algorithm produced less 

patchiness in the flats and bottomlands while the D∞ algorithm was less dendritic in the 

hilly areas. In all four of the finer resolution grids, the patches were still apparent after 

reclassifying the TWI grid for terrain type definition. They also resulted in a patchy 

terrain type map. Since this patchiness did not correspond to changes in terrain or 
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vegetation cover on the ground, the smaller grid sizes were determined to be less 

appropriate for this application. The two LiDAR-derived 29-m grids were relatively 

similar to each other; however, the D∞ processed 29-m grid was patchier than the D8 

processed map in flat areas and had more isolated pixels of low TWI values scattered 

within the wetlands. The D∞ processed grid also contained missing data cells in areas 

of high accumulation. Because of its better representation of flat, bottomland areas, the 

D8 29-m grid was determined to be best one available for this application. 

After comparing different ways to classify TWI cells, a relatively simple approach 

was used to group cells into three TWI categories of high, medium, and low. The 

FACETA terrain type map was generated by partitioning the study area through the 

different combinations of soil series and TWI categories. Initial values for the break 

points used to classify the TWI grid into groups were determined from the 20th and 80th 

percentiles. While this particular division produced a satisfactory visual comparison with 

terrain and vegetation features on the ground, the break points themselves were 

considered landscape model parameters that needed calibration to every new situation. 

Biological parameters needed by FACETA included a list of species and 

numerous parameters that described their growth rates, geometry, and tolerances to 

environmental conditions. Allometric parameters used by FACETA defined the height to 

diameter relationship for each modeled trees species. These parameters were 

estimated by measuring the heights and diameters of a number of different sized and 

then performing a nonlinear regression on this data. Other parameters were estimated 

from qualitative descriptions of species for lack of more qualitative information. Growth 

rate parameters were estimated from measuring growth rings. However, some 
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questions regarding model assumptions arose while estimating all required parameters. 

The model assumed a straight, cylindrical trunk, and the allometric parameters were 

linked through model equations to the maximum height, growth rate, and maximum 

diameter parameters. Information for many of the tree species on characteristics such 

as maximum size, particularly the commercially less important species, were either 

missing or in conflict. Additionally all of the model parameters were linked together, and 

there was mutual sensitivity of the different parameters reached throughout the model. 

Changes in one parameter, for example maximum height, could impact the allometric 

equation, which could then impact the optimal growth equation, which in turn impacted 

how successful any species was in the model. 

The way the growth rate parameter was estimated in this study represented a 

new approach. While the growth rate parameter was in units of volume of wood per unit 

leaf area, under the assumptions used in the model the growth equation was expressed 

in such a way that the growth parameter was viewed as being in units of diameter 

growth as a function of the current diameter. It was found that the best way to measure 

for this parameter, assuming no trees were cut down for the study, was to measure 

growth rings from trunk cross sections. Using tree cores such as is typically done in 

dendrochronology could result in a large error in estimating the growth rate parameter. 

Another interesting outcome of this exercise in measuring growth rings for growth rate 

estimation was that it was best to measure trees that exhibited something close to 

optimal growth. This parameter was supposed to represent the full growth potential of a 

species given optimal conditions, but optimal conditions were not found in places with 

water stress or too much competition, for example in upland forests in North Texas. 
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Robust growth of upland species like post oak and blackjack oak was more likely to 

occur on developed land where competition had been thinned and extra water received. 

The environmental tolerance parameters were in many ways the most difficult to 

quantify. In many cases the information available did not allow for anything more 

accurate then producing a relative ranking between species. The new wet-day and dry-

day response to soil moisture stress incorporated into FACETA was out of an effort to 

base the response more on the actual physical moisture conditions being modeled in 

the soil. However, because of the way the response and parameters worked, there are 

limitations. Wet-days or dry-days within the growing season were not differentiated by 

when they occurred or how they were distributed, and data available to base the 

parameter values on was limited at best. Considering that the definition of a dry day was 

that the moisture level had been reduced to the wilting point, few plant species could 

withstand very many consecutive dry days within the growing season. All of the 

environmental stressor response curves were by their mathematical nature very steeply 

sloped at the edges, so species that experienced conditions close to their tolerance 

struggled to grow. This problem was accentuated when the model was inaccurate in a 

physical characteristic such as the number of accrued growing degree days (GDD). 

Environmental parameters needed by FACETA included climatic statistics, soil 

parameters, and the new hydrologically based terrain parameters. Compared to 

determining biological parameters, finding climatic parameters was very straightforward. 

A 100-year historical record of daily weather data was employed in this case. Much 

work had been done on increasing the fidelity of the FACETA weather simulator. Thus, 

the parameters for it were derived in the most accurate way possible. Soil parameters 
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on the other hand were more difficult to estimate with confidence. The model used soil 

parameters that could be measured in theory, such as field capacity or available 

porosity. However, measuring these parameters across a watershed was far too costly. 

Therefore, the soil parameters were estimated based on the physical properties 

described for each soil series in the USDA (2010) Denton County soil survey. One 

problem with this method was that the soil survey described properties such as soil 

texture, and organic content, not field capacity or wilting point. However, these values 

were estimated from properties described in the soil survey. This of course gave more 

opportunity for error, because the description in the soil survey itself was already an 

estimation of the actual soil on the ground, and then the model parameters were 

estimated from that. In order to get a sense of how different model parameters could be 

estimated from actual field measurement versus a soil survey description, soil 

parameters were estimated for some soils from measurements done on cores taken 

from the actual Greenbelt study site. These estimated soil parameters were quite 

different from the ones gleaned from the soil survey, but it was difficult to assess how 

much these soil parameter differences impacted model performance due to problems 

encountered with the FACETA soil moisture model. 

FACETA’s new terrain parameters were implemented to simulated 

topographically based, hydrologic conditions within the modeled watershed. The 

implementation of these topographic and hydrologic parameters was simple, but 

devising a systematic approach to determining the terrain parameters was not as easy. 

The goal was to allow the physical properties such as slope and upslope catchment 

area that were representative of each terrain type to define the parameters. Since the 
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model did not use an actual spatially distributed hydrological model and slope was only 

used in the solar radiation component of the model, the approach of devising the terrain 

parameters seemed convoluted. However, it allowed terrain types with large 

representative upslope catchment areas to receive more moisture, and those with large 

representative slope to receive less. 

The FACETA model was evaluated after all of the changes and enhancements. 

The enhanced daily precipitation model performed above expectations, and it was 

declared a success as a standalone weather generator. Because of problems with the 

soil moisture component of the model, it was difficult to determine how much it improved 

the FACETA forest model. The modeled soil moisture levels stayed too low, even in 

terrain positions that received a large amount of simulated run-on water. While the initial 

appearance of this issue was a problem with modeled soil moisture, it was not clear this 

was the problem. The problem might also lie in how the model initiated seedlings and 

how seedlings and trees were able to extract soil moisture. The forest model did not 

produce the results in species composition that were expected. The general trends of 

density and basal area during forest development were simulated pretty well, but due to 

the soil conditions, only the most drought tolerant species were able to survive in the 

simulation. The results, however, were promising. As mentioned before, the general 

patterns of forest development were good, and using a very limited subset of modeled 

species produced reasonable results in some scenarios. This study confirmed the proof 

of concept behind this approach. With continued effort, model analysis and 

improvement, and a higher fidelity of information to base model parameters on, 

FACETA will become a good landscape forest model. 
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