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Epidemiologists engage in the study of the distribution and determinants of 

health-related states or events in human populations. Eventually, they will apply that 

study to prevent and control problems and contingencies associated with the health of 

the population. Due to the spread of new pathogens and the emergence of new bio-

terrorism threats, it has become imperative to develop new and expand existing 

techniques to equip public health providers with robust tools to predict and control 

health-related crises. 

In this dissertation, I explore the effects caused in the disease dynamics by the 

differences in individuals’ physiology and social/behavioral characteristics. Multiple 

computational and mathematical models were developed to quantify the effect of those 

factors on spatial and temporal variations of the disease epidemics. I developed 

statistical methods to measure the effects caused in the outbreak dynamics by the 

incorporation of heterogeneous demographics and social interactions to the individuals of 

the population. Specifically, I studied the relationship between demographics and the 

physiological characteristics of an individual when preparing for an infectious disease 

epidemic.  
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CHAPTER 1

INTRODUCTION

Epidemiology was first established when Aristotle started questioning the magical

aspects of illness and noticed that some diseases appeared more frequently in some areas than

others [66]. Ever since, epidemiologists have been engaging in the study of the distribution

and determinants of health-related states or events in human populations. Eventually, they

will apply that study to prevent and control problems and contingencies associated with the

health of the population[61]. Because of the spread of new viruses such as H1N1 in 2009 and

the emergence of new bioterrorism threats, it has become imperative to develop new and

expand existing techniques to equip public health providers with robust tools to predict and

control health-related crises.

Mathematical and computational models for different types of infectious diseases,

including vector-borne and airborne transmitted illnesses, are based on the concept of in-

teractions or contacts. For person-to-person transmitted diseases, a contact can be thought

as an abstraction of human interaction, including attendance at the same social event, the

same conference or any other situation that could involve a close encounter between two

individuals. Such relationships are developed in accordance to the structure of the social

networks to which the individual belongs. Chances and frequencies of interactions between

individuals will change according to the proximity of their social networks, their association

and affinities [34][44].

Early mathematical and computational models consider interactions between ele-

ments to be homogeneous, implying that all of the elements have the same likelihood to

contact others and to be contacted. Real life behavior, however, indicates that this is not

necessarily true; People create social clusters in which the chances of contacting others change

according to affinities, geographic location, social position, etc. Creating models that incor-

porate parameters to create non-homogeneous populations is of uttermost importance to

answering questions regarding existing and emerging health concerns.
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The most recent approach to infectious disease outbreak modeling incorporates non-

homogeneous components to the individuals to be modeled. Studies of the effects of non-

homogenous populations on the dynamics of infectious outbreaks have shown the importance

of integrating individuals with heterogeneous characteristics [84]. Although the amount of

time a person is capable to transmit the disease varies among individuals, many models set

that value to be homogeneous for the population. Season and temperature are some of the

sources that influence that difference [4] [91]. However, we highlight the capacity of the

immune response to diminish the pathogen as a crucial component for that variation as well.

The immune system of an organism provides an extraordinary defense against foreign

attacks. Once it recognizes matter as non-self, it activates multiple chemical and physiolog-

ical processes to control and eliminate the pathogen [47]. These processes are collectively

known as immune response. The immune system mounts a response in an attempt to stop

the growth of an invading organism in order to retain optimal functionality of the host. Con-

trolling such proliferation is beneficial for the organism, since the quantity of foreign material

affects the amount of time during which the organism experiences infection. Further, the

duration of the infectious period, during which an organism might transmit the infection to

others, is directly related to the quantity of foreign material in the host. Hence, we conjec-

ture that the dynamics of an infectious disease epidemic in a population are driven, among

other things, by the organism’s immune response. This research establishes this relationship

through the integration of immune response into the population at large.

There is an endless number of factors that can contribute to variations in immunucom-

petence among individuals. However, we concentrate in the elements associated with the

host. Age, physical fitness, gender, and nutrition are some of the most commonly studied

factors [57]. Further, we examine the role of those demographic characteristics to determine

the immune response quality of the different segments of the population. Incorporating the

quality of the immune response of a population in epidemiological models could lead to

variations in the geographic progression of the epidemic. To analyze those variations, we

introduce the concept of epidemic trajectory and define its properties. In order to measure
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the properties of the trajectory of an epidemic, we developed a model of the spread of a

disease within a population that is located in a realistic geographic space. This model allows

the incorporation of individuals with unique demographic characteristics and, consequently,

different immune response qualities. To capture the effects of the immune response on the

epidemic trajectory, we implemented the model and simulated multiple disease outbreaks in

distinct populations. Those populations include important variations on their demographic

characteristics. Ultimately, the analysis of the properties of the epidemic trajectory in those

simulations will highlight the role of the immune response in the progression of an epidemic.

In general, the connection between population immune response and the disease trajectory

will reveal any relationships between population demographics and disease prevalence and

propagation from an immunological perspective.

The interdisciplinary nature of this research requires multiple areas of science to

collaborate. In the following section, we describe the contribution of those areas to this

research.

1.1. Areas of Study

Every year new public health policies are being implemented to improve the quality of

life of individuals. In recent times, enforcement of the use of car seat belts and the creation

of anti-smoking legislations have resulted in multiple positive outcomes for society[1][83].

However, public health professionals still need to address many other issues. To undertake

this massive task, public health officials started collaborating with experts from others areas

of knowledge. Computer science, biology, mathematics, among others areas, are some of the

contributors to the development of new guidelines. The partnership among these disciplines

has resulted in a the commencement of a new era of public health.

Epidemiology is one of the areas from public health that has obtained great benefits

from the collaborations with other areas of knowledge. Experts from mathematics and

computer science have supported epidemiologists in the creation of models and simulations

of infectious disease outbreaks. The development of these models require comprehension

of the biological processes and sociodemographic components associated with an infectious
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epidemic. To understand those concepts, epidemiologists obtain assistance from experts from

the medical field and biology.

Figure 1.1 depicts the interaction between Computer science, medical field and public

health and the contribution of each area to this research. The figure illustrates the augmented

role of computer science. computer science provides modeling and simulation techniques

that can be implemented to build a system to simulate biological processes. The system

is composed of two modules: A model to simulate the immune response of an individual

during disease and a model to simulate the transmission of disease among individuals within

a population. For this research, the medical field provides biological descriptions of the

disease, the immune system and the immune response. Similarly, public health supplies

demographic distribution information and epidemiological data.

Figure 1.1. Areas of study and their contribution to the research

1.2. Contributions

This dissertation is divided in five main sections: Epidemics in Time and Space,

Modeling Social/Behavioral Characteristics, Modeling Physiological Differences, and Mod-
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eling Outbreaks in Geographic Context. Following, we present a brief description of each

section and their contributions.

1.2.1. Epidemics in Time and Space

Epidemiologists build models to simulate the progression of a disease in populations,

with special emphasis in infectious diseases. These experts use methods to measure the

impact of assigning unique characteristics to the hosts [38], changing the environment [5],

among others. A recurrent method to measure the effect caused by those parameters is by

assessing the variations in disease incidence caused by their incorporation. However, this

methodology completely omits the spatial component of the epidemic. In this section we

define the concept of epidemic trajectory and a methodology to measure differences in the

properties of the trajectories of different epidemics.

1.2.2. Modeling Social/Behavioral Characteristics

Mathematical and computational models for different types of infectious diseases,

including vector-borne and airborne transmitted illnesses, are based on the concept of in-

teractions or contacts. For person-to-person transmitted diseases, a contact can be thought

as an abstraction of human interaction, including attendance at the same social event, the

same study groups or any other situation that could involve a close encounter between two

individuals. Such relationships are developed in accordance to the structure of the social

networks to which the individual belongs. Chances and frequencies of interactions between

individuals will change according to the proximity of their social networks, their association

and affinities [34][44].

The majority of the mathematical and computational models in literature consider

interactions between elements to be homogeneous, implying that all of the elements have

the same likelihood to contact others and to be contacted. Real life behavior, however,

indicates that this is not necessarily true; People create social clusters in which the chances

of contacting others change according to affinities, geographic location, social status, etc.

In this section, we introduce important epidemiology concepts and highlight the importance
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of incorporating social/behavioral characteristics in epidemiological models. Additionally,

we present a model that incorporates social/behavioral characteristics, and a quantitative

analysis of the importance of the incorporation of those characteristics.

1.2.3. Modeling Physiological Differences

The infective process in the host is driven by the competition of the pathogen and

the immune system. Once a pathogen starts replicating in the host, the immune response

attempts to stop its proliferation. During this process the amount of pathogen load in the

blood can be quantified. This value is used to measure the disease severity and the capacity

of the host to transmit the disease. Additionally, in this research we analyze its role to

determine the duration of the infectious periods.

Every individual is different. Due to this distinctness, their immune system is differ-

ent as well. The quality of the immune response of an individual is determined by multiple

demographic characteristics, among other factors. Age, physical fitness, gender, and nutri-

tion are some of the most commonly studied factors. This research explores and discusses

the importance of considering the variation in the immune response quality caused by the

characteristics of the population and their impact in the epidemics.

The concept of population immune response (PIR) is introduced and its contributions

to the infectious outbreak modeling are highlighted. Population immune response (PIR) is

a new concept that captures the collective immune response (IR) of individuals in a popu-

lation represented by the superposition of individual immune responses. To represent this

concept, a computational model is proposed in which three modules are required: population

and disease database, immune competence and infectious disease outbreak simulation. The

computational model is implemented to highlight the importance of PIR.

1.2.4. Modeling Outbreaks in Geographic Context

This research highlights the crucial role of the demographic characteristics of the

population during the progression of an epidemic in a geographic space. In this section, we

present a model that simulates the interactions of a population at the census block level. This
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model is used to measure the properties of the spatial progression of an epidemic in a specific

geographic location. The properties of the trajectory are captured in the force of infection and

the transmission trend of the census blocks of the geographic space. Further, the properties

of the trajectory are analyzed to measure variations in the outbreak dynamics caused by the

effects produced by PIR. Ultimately, this study compares the effects that multiple geographic,

immunological, and socio/demographic characteristics have on the disease dynamics.

1.3. Overview

This dissertation is divided in six chapters. Chapter 2 presents a background re-

view of concepts and literature relevant to this research. The chapter is divided in sections

that specifically address each chapter of this document. Chapter 3 describes a method that

captures the underlying process of the trajectory of an epidemic in a population with the

introduction of the concept of epidemic trajectory. Further, that concept is employed to

define a methodology to measure differences in the properties of the trajectories of different

epidemics. In chapter 4, the importance of social/behavioral characteristics in epidemio-

logical models are studied. In this chapter a computational model to simulate the spread

of infectious epidemics in a heterogeneous population is presented. This model is used to

highlight the importance of incorporating heterogeneous contact rates and affinities between

individuals during simulations of infectious outbreaks. In chapter 5, we describe several phys-

iological characteristics of an individual and investigate their role during infection. Further,

we highlight the importance of understanding and integrating the immune response effects

to the study of an infective process and its relationship to an infectious outbreak. In this

chapter we introduce the concept of population immune response and present a framework

to build a computational implementation. Finally, in chapter 6 we highlight the crucial role

of the demographic characteristics of the population during the progression of an epidemic in

a geographic space. A computational model is implemented to compare the effects that mul-

tiple geographic, immunological, and socio/demographic characteristics have in the disease

dynamics. Ultimately, this model is used to compare the effects of PIR in two populations

with distinct demographic distributions.
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CHAPTER 2

BACKGROUND

The multidisciplinary nature of this research requires the study of different concepts

from multiple academic disciplines. In the following sections, we present a review of the

previous work and background concepts of importance for this research.

2.1. Epidemics in Time and Space

An epidemic is the occurrence in a community or region of cases of an illness, specific

health-related behavior, or other health-related events clearly in excess of normal expectancy

[90]. Although the majority of epidemics are caused by non-infectious agents, the impact of

infectious epidemics in history has been of colossal importance. McNeill [58] lists historic

events in which the presence of infectious pathogens have affected the course of human

history. The presence of an epidemic results in great expenses in different types of resources,

including time, wealth, and loss of life [22][81]. Implementing measures to limit and stop

epidemics is part of the role of epidemiology and epidemiologists.

Understanding the intrinsic characteristics of an epidemic is crucial to implement

strategies to attempt to control or stop it. Determining the nature of the source of trans-

mission for the disease causing the epidemic is one of those characteristics. Epidemiologists

consider four types of transmission sources: fomites, vector, reservoir, and carrier [90]. A

fomite is an object that can harbor a disease and is also capable of transmitting it. A vector

is an invertebrate animal capable of transmitting the disease. A reservoir is the habitat in or

on which the infectious agent lives, grows, and multiplies. As infectious organisms reproduce

in this reservoir, they do so in a manner that allows disease to be transmitted. Finally, a

carrier contains, spreads, or harbors an infectious organism. The carrier is later capable to

transmit the disease.

In this research, we consider epidemics in which transmissions occur through contacts

between carriers and susceptible individuals (an individual that does not carry the disease

and could be infected). However, independent of the method of transmission, for an epidemic
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to flourish it is necessary the presence and interaction of the four epidemiological factors:

environment, time, host, and agent [90]. Figure 2.1 depicts the interaction and interde-

pendence of those factors. The environment is the cluster of conditions and surroundings

external to the human or animal that cause or allow disease transmission. It can include

biological aspects as well as the social, cultural and physical aspects of the environment.

The host is the organism that harbors the disease, e.g. human, animal, etc. The agent

is the cause of the disease, e.g. virus, bacteria. Finally, the time accounts for incubation

periods, life expectancy of the host or pathogen, and duration of the course of the illness or

condition. The primary goal of epidemiology is to perturb the triangle of epidemiology to

stop the spreading of the disease.

Figure 2.1. Epidemiological triangle

2.2. Heterogeneous Populations Modeling

Most epidemiological mathematical models are based on the interaction principles

between groups of susceptible(S), latent(L), infectious(I), and recovered/removed(R) indi-

viduals, i.e., the SIR/SLIR model. Susceptibles are members of a population who can be
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infected by the disease. Infectious individuals have been previously infected and are now

themselves contagious. Latent individuals are infected, however cannot yet transmit the dis-

ease. Recovered/removed include individuals that are incapable of transmitting the infection,

and are currently recovering, have fully recovered or have deceased from the disease. In more

complex models, the recovered/removed can return to the susceptible stage if they do not

gain immunity after being infectious. The SIR model is based on the Kermack-McKendrick

threshold theorem in a closed homogeneous population [13]. This threshold theorem is used

as an epidemiological indicator to estimate the probability that an infectious disease will

produce an epidemic in a completely susceptible population [3]. The model utilizes a closed

population since it assumes the epidemic spreads sufficiently quickly that the changes intro-

duced by births, deaths, and migration are negligible. The SLIR model is depicted by the

following set of differential equations:

(1)

dS
dt

= −βIS

dL
dt

= βIS − ǫL

dI
dt

= ǫL− γI

dR
dt

= γI

In this model, the number of individuals in each compartment fluctuate through time

depending on the latency rate (ǫ), the recovery rate (γ), and the force of infection (β). The

latency rate, ǫ, is the proportion of individuals that depart the latent compartment to enter

the infectious compartment. This rate is used to define the latent period. The latent period

is the time an infected individual requires to become infectious after being infected. The

recovery rate, γ, is the proportion of individuals that migrate from the infectious compart-

ment to the recovered compartment. This rate is applied to define the infectious period

(IP). The infectious period is the time extent that an individual from the infected compart-

ment remains infectious. Finally, the force of infection is a transition rate that determines

the number of susceptible individuals that are moved to the infectious compartment every
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time step. This rate represents the number of interactions between infected and susceptible

individuals that lead to transmission of disease.

The SIR model provides a simple framework to represent the spread of a disease.

However, it does not provide sufficient detail to study outbreak dynamics and, consequently,

lacks flexibility to be used as a policy or a planning tool. For example, the SIR model

neither considers the regional geography or demographics of the population, nor does it

consider differences between the individuals and their interactions.

Cellular automata (CA), agent-based models (ABM), and hybrid models, which com-

bine two or more models, are some of the computational techniques that have been utilized

to model the spread of infectious diseases in populations. The implementation of CA consists

of a grid of cells, each cell representing an individual or a group of individuals from a popu-

lation. At the beginning of this process, each cell is assigned a specific state representing its

disease status. As the simulation progresses the system will examine the state of each cell

and determine all possible state changes according to its own set of rules. Situngkir [87] uti-

lized the cellular automata approach to simulate the spread of avian influenza in Indonesia.

Mikler et al. [63] introduced an extended cellular automata paradigm, the global stochas-

tic cellular automata (GSCA). The authors analyzed the interaction of cells based on the

saturation of the neighborhood and the distance between elements to represent geographic,

demographic, and migratory constraints. Gagliardi et al. [39] recreated the propagation of

dengue in a population by overlapping two cellular automata grids, in which one grid rep-

resents the mosquito population and the other one the human population. The simulation

computes the proximity between elements from different grids to symbolize the interactions

between humans and mosquitoes.

Agent-based modeling has been widely used in epidemiological simulation [6][76][11].

This modeling technique represents each individual as an independent entity with properties

or characteristics that can affect the spread of a disease. For instance, Barret et al. [15] de-

veloped a simulation environment, episimdemics, that is based on the agent-based paradigm.

This model reproduces infectious outbreaks in large populations with elements that include
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characteristics based on social-behavioral studies. Tian et al. [94] developed a computational

model to simulate an infectious outbreak that incorporates a surveillance system. In this

model, the severity of the pandemic is reduced by triggering the allocation of health care

providers and drugs to the disaster areas once a threshold of infectious elements is reached.

Bouden et al. [21] incorporated an agent-based approach to the simulation of the propaga-

tion of West Nile virus by replicating the interaction of mosquitoes and birds in different

climates and different location distributions. Venkatachalam et al. [97] constructed a hybrid

model, the global stochastic field model (GSFM), that included geographic and demographic

information in the analysis of the spread of diseases. This model determines the probability

of interactions between elements based on census information and their neighbors’ status

and characteristics.

Different models have been proposed to study the inclusion of differentiated popula-

tions in the simulation of an infectious outbreak. Wallinga et al. [99] concluded that contact

patterns are heterogeneous and that incorporating non-homogeneous parameters into models

could lead researchers to more realistic results. Some of the parameters considered in the

model resulted in age stratification and a differentiation between local and global contacts.

Mossong et al. [68] quantified various contact patterns according to different criteria, in-

cluding age, gender, nationality, size of household, and day of the week. Other models focus

on the geographic location of individuals, since the physical position alters the likelihood of

contacting certain individuals. Avilov et al. [12] studied the spread of tuberculosis in dif-

ferent regions in Russia. The authors showed how location can affect the types of contacts,

as well as the morbidity of the bacteria. Melnichenko et al. [59] incorporated socioeconomic

parameters in similar geographical regions, indicating that the socioeconomic level of indi-

viduals will create affinities among them. Individuals status can affect the quality of health

service they can obtain, hence changing the morbidity of the infection. Kress [49] applied

a time-schedule driven simulation, in which the elements can be located in three types of

places : households, meeting places, and schools, or workplaces. The simulation indicated

that location determines the probability of contacts.
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Studies have shown that particular age groups have different infection and mortality

rates [7]. This has motivated the inclusion of differentiated age groups into the simulation

of disease progression. Li et al. [54] developed a model to incorporate age-structured groups

of elements to represent the spread of HIV/AIDS. This approach was further extended to

incorporate two-age and multi-age group individuals in a malaria simulation. Pertsev et al.

[78] created a mathematical and computational model that simulate the spread of diseases

in populations, in which individuals are assigned specific locations, age, and a disease status.

2.3. Immunity and Infection Models

Immunological mathematical modeling is a relatively new research technique to at-

tempt to understand the functionality of the immune system [30]. Multiple models have

been developed to simulate immune processes before, during, and after infection. Forrest et

al. [36] presented a review of the different modeling techniques that are used to model the

immune system. These models can be divided in three groups:

1. Models of the immune system functionality.

2. Models of the immune response of a host during disease.

3. Models of the immune response of a host during a pathogen-specific infection.

The first group depict specific processes of the immune system. These models are

implemented to obtain a greater understanding of specific functionalities of the immune

system and its components. An example for this group of models is presented by Wilson et

al. [106]. Wilson et al. developed a T-cell expansion/contraction model in which contraction

is managed by adaptive regulatory T-cells instead of being a predetermined process. This

model was used to augment a paradigm already utilized in other models [46]. Terry et al.

[92] present another example of this type of models. The authors developed a mathematical

model of a primary CD8 T-cell response during an infection in which the developing phases

of the CD8 T-cells and their role during infection are replicated.

The second group of models replicate the processes during the interaction of an in-

dividual immune response with a disease. These models highlight different aspects of the
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immune system based on the agent of study. The pathogen behavior in models of this group

does not mimic a specific agent, but a type of organism or disease. Virus, bacteria, and

parasites are some of the most commonly researched pathogens. For instance, Nowak et

al. [73] presented a description of the basic viral dynamics model to further extended it to

include T-cytotoxic lymphocytes (CTL) to eliminate infected cells. Further, Wodarz et al.

[108] also expanded the basic viral dynamics model by introducing antibodies to block and

destroy viruses. Additionally, Chao et al. [26] presented a stochastic model of cytotoxic

T-cell responses to a viral infection. This model depicts the cellular interaction between im-

mune and pathogen cells. The model considers the role of pathogen-independent and plasma

cells, as well as possible effects of different drug therapies.

Wodarz [107] presented a review of different immune-viral models that incorporate

lytic and non-lytic responses to defend against the pathogen. Lytic responses control viral

growth by destroying infected cells, while non-lytic responses inhibit viral growth without

killing the cell. In this review, combinations of both types of responses are studied to

spotlight the optimal response based on the characteristics of the virus. An analysis of both

cytopathic and non-cytopathic viruses is presented. Cytopathic viruses destroy cells during

infection and they are represented in the model by equating the life-span of an infected

cell with that of a susceptible cell. Analogously, non-cytophatic viruses in the model are

implemented by assuming the natural death rate of infected cells to be equal to the death

rate of uninfected target cells.

This type of model is not unique to infectious diseases, chronic diseases are also sim-

ulated. For instance, Bianca et al. [18] presented a mathematical model of the competition

of the immune system and mammary cancerous cells. The immune system is represented by

B-cells, T-helper cells, antibodies, Cytotoxic T-cells, antigen presenting cells, and Interleukin

12 and 2. The model incorporates the effects of three preventive vaccine (triplex) protocols.

The third type of models are used to study the processes during the interaction

between the immune response and a specific pathogen during an infective process. These

models incorporate specific processes of the immune system that are crucial to defend against
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each respective pathogen. Some models replicate specific behaviors of the pathogen, while

others study the illness afflicted to the host during infection. Influenza [53] and HIV are

the most common pathogens modeled by immunologists. HIV models range from infection

[89][77], treatment [102], co-infection [17], and testing strategies simulations [40], etc. Wodarz

and Nowak [109] presented a review of different HIV viral dynamics, progression and therapy

models. In this review, the authors describe a basic model of viral dynamics during infection

without immune response to later expand it with anti-viral therapy effects. Lastly, a final

model is introduced in which the viral replication in a host is simulated with two antagonists:

CTL-mediated immune response and anti-viral therapy.

Multiple bacterial diseases have also been modeled, including chlamydia [105] and

tuberculosis [101]. Wigginton et al. [104] presented a model to simulate the interaction

between Mycobacterium tuberculosis and the host. This model is depicted at the cellular

level and is divided in six cell populations, two bacterial populations and four types of

cytokines. The mathematical model is divided in 12 differential equations with fifty six

parameters. All the parameters were estimated from experimental data. The experiments

consisted of solving the model to investigate different disease trajectories, damage induced

by the immune system, and virtual deletion and depletion simulations.

2.4. Immune Response and Epidemiology Models

Epidemiologists have made use of different approaches to incorporate immunological

factors into their models. Some models implement immunity as an effect of a vaccination

strategy [60] or as a period in which the individual cannot be infected after a primary

infection [51]. Moreover, other scientists have engaged in a comprehensive study of the re-

lationship between immune response and the population. Hellriegel [45] presents a review

of that relationship. In this review, the importance of integrating immunity and epidemi-

ology (immunoepidemiology) is highlighted. The author defines three different approaches

for this integration: within-host, between-host and individual-to-population dynamics. Fur-

thermore, the author proposes different combinations of those approaches to assess the role

of immunity in determining epidemiological patterns. Following, we present a description of
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multiple epidemiological models that incorporate immunologic factors.

Dushoff [33] depicted a model in which the probability of the disease progressing in

an infected individual is not only determined by its own characteristics, but by the level

of disease in the population. That assumption is based on the suggestion that an exposure

with low pathogen load may lead to immunity or short lasting infection and minimum disease

transmission, while an exposure with high pathogen load may lead to a longer infection and

to greater transmission of the disease. To implement that assumption, the model contains

two individual classes: heavily infected and lightly infected. Individuals can depart from one

class to another as a function of the force of infection.

Martcheva and Pilyugin [56] presented a susceptible-infectious-recovered model in

which the immune status of the individuals increases during the infectious period. In this

model, the initial absence of immunity of individuals sets all of them in the susceptible group.

However, once an individual becomes infected its immune status increases over the course of

infection. After an individual recovers from the disease, a possible reinfection its restricted

by its immune status. However, the immunity may decrease as a function of time, increasing

the probability of a secondary infection.

Vickers and Osgood [98] introduced a mathematical framework of population infection

dynamics in which individuals mount an immune response in response to infection and the

contacts between them are distributed in a simple contact network. The immune response

is represented by a population of differentiated and non-differentiated cytotoxic immune

cells. The social network is implemented by placing each individual in a Poisson distributed

network such that the incoming viral load of an individual is proportional to the viral load

of its neighbors. Each individual has a coefficient of connectedness to determine the weight

of the connection with each of its neighbors.

2.5. Modeling Outbreaks in Geographic Context

Epidemiologists have introduced multiple methods to study the progression of epi-

demiological outbreaks in a geographic space. A major method to study that progression is

contact network epidemiology. Contact network epidemiology is a framework that is used
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to study epidemiological progression by the implementation of networks that reflect the as-

sociations between individuals involved in the outbreak [62]. The networks are constructed

following the patterns of interactions within communities. Those networks are analyzed

to determine their topological properties and, further, make epidemiological predictions or

incorporate intervention strategies. Ultimately, this approach provides analytical tools to

explicitly capture the diverse interactions that underline the spread of the disease in a pop-

ulation.

Newman [71] introduced an influential mathematical model in the contact network

epidemiology area. This model is based on the SIR and its elements are individuals from a

structured population that interact among themselves in a network. In this model, the inter-

actions are designed to be non-homogeneous by allowing individuals to interact only along

the links of their networks. Further, individuals in the network are assigned probabilities to

determine the chances of their interactions. A simulation of this model results in analytic

expressions that describe the size of the epidemic outbreak and the position of the epidemic

threshold, as well as multiple network measures. Finally, the author presents a method to

explore the significance of the analytic expressions to make specific suggestions for different

strategies to control the epidemic.

Meyer et al. [62] presented a model in which the basic contact network is modi-

fied to incorporate geographic locations that mimic the areas in which individuals interact.

Additionally, a thorough analysis of the role of the destination and direction of disease

transmission (contact patterns) during an epidemic is presented. This analysis includes a

comparison of the use of the basic reproductive number (R0) to estimate the intensity of

the epidemic as opposed to the contact patterns. The comparison consisted in using two

different pattern networks of a patient zero while using the same R0 during an outbreak.

As a result, the outbreaks are significantly different resulting in inaccurate measurements of

the prediction of the number of expected infections during the epidemic. Consequently, they

propose the use of the estimated number of contacts during infection in conjunction with

R0, as a parallel method to the use of R0 alone, to predict the expected number of cases at
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each generation of transmissions.

Multiple computational models have also been proposed to study the progression of

epidemiological outbreaks in a geographic space. Eubank et al. [35] introduced an agent-

based model that includes population mobility such that each individual is assigned a position

and activity every second. In this model, the characteristics of the population are calculated

with the use of census, land-use, and transportation data. This information is used to

construct a social network in which individuals and locations are represented with vertices

and their interactions are the edges of the network. This network is used to simulate the

spreading of a disease and to analyze the use of different mitigation methods to stop its

progression. The simulation indicates that a more effective mechanism to stop the spread of

an epidemic is the implementation of a program of targeted vaccination and early detection,

as opposed to the traditional method of mass vaccination.

Borkowski et al. [20] outlined an agent-based epidemic simulator of the spread of a

disease within an urban environment. The model is built using the discrete-space scheduled

walker simulation engine. In this engine, the topology of a region is simulated based on

geographic information. The agents are located in that region and their interactions are

limited by their radius around their workplace or school. The radious varies depending

on the day of the week. The model incorporates public and private transportation, agent

schedules, and demographic information that determines the residence of the agent and its

behavior. Ultimately, the model is used to simulate the spread of HIV in the Bronx in New

York City.

Balcan et al. [14] introduced a data driven epidemiological simulation model called

the global epidemic and mobility model. This model is a SIR implementation in a spatially

structured geographic space that represents earth. The realism of this model is augmented

by the use of multiple layers. The population layer amplifies the characteristics of the

individuals of the population. These characteristics are determined based on demographics

and scheduling data. Further, the mobility layer depicts a network in which the population

interacts. This network includes populations (countries) that are divided in subpopulations
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(cities). The nodes in the network are connected following airport and commuting network

information. Finally, examples with seasonality, age-structure, and a specific disease are

presented to show the functionality of the model.

2.6. Summary

In this chapter, we presented a summary of concepts and reviewed literature relevant

to this research. We studied various epidemiological models in which the role of the geo-

graphic space and social networks is restricted to operate as a vehicle for the transmission

of the disease. However, we expand that schema by implementing a method to use the

geographic space to measure the progression of the disease and compute variations on the

epidemic progression. The goal of this method is to provide an alternative measurement to

traditional methods to analyze outbreak dynamics. Furthermore, we use those measurements

to emphasize the use of heterogeneous characteristics in epidemiological models.

We also presented different models that imitate the dynamics of the progression of

a pathogen in a population. The epidemiological models reviewed present an important

variation on the characteristics assigned to the individuals of the population. In this research,

we highlight the importance of consistently including heterogeneous characteristics to the

population. we measure the variations caused on the outbreak dynamics by introducing

changes in the social networks and interaction coefficients of a population.

Additionally, we reviewed multiple epidemiological models in which individuals are

assigned an immune response. In these models, immunity is incorporated as a value that

restricts the capacity to become infected or as a parameter that increases the capacity to

infect other individuals. In reality, the immune system possesses many complex mechanisms

that can be abstracted and incorporated into these models. We highlight the augmented

role of the immune response as a function of the socio-demographic characteristics of the

population and its prominent role during the epidemic progression.

Finally, we presented multiple epidemiological models that incorporate a realistic

geographic space. In those models, the geographic space is used uniquely as the area in

which individuals interact. However, in this research, we expand that role by analyzing
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the effects demographics and immunological characteristics incur on the disease dynamics.

Ultimately, we present a comparison between two distinct regions to highlight the crucial

role of those characteristics.
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CHAPTER 3

EPIDEMICS IN TIME AND SPACE

Capturing the underlying process of the trajectory of a epidemic in a population is a

complex task. During an epidemic, the interaction of the four epidemiological factors lead to

a process that progresses through time and space. In this process, the hosts determine the

direction of the trajectory based on the interactions among them. Likewise the type of agent

establishes the method of transmission and the environment provides the conditions for the

epidemic to flourish. Therefore, the epidemic trajectory of an infectious disease progresses

every time a host successfully transmits the disease to another. The trajectory will terminate

when there are no more infectious individuals present in the population.

During an epidemic in which the pathogen is disseminated from interactions among

hosts, the infectious individuals determines the trajectory of the epidemic. This leading role

is assigned to the infectious hosts since they are the only individuals capable of transmitting

the disease. Assuming that infectious individuals can infect at most a single individual during

their infectious period, a trajectory would be a non-branching path. Figure 3.1.a depicts an

example of this type of path. However, an infectious host is capable of transmitting the

disease to multiple other hosts. This occurs since the infected host could interact with more

than one person during its infectious period, hence causing the trajectory to diverge and

separate into multiple paths. The generation of those numerous paths causes the trajectory

to become a process that progresses into multiple branches simultaneously. Figure 3.1.b

depicts an example of a multiple branching path.

Understanding the spatial progression of the epidemic requires the definition of the

geographic space in which the population interacts. Such geographic space may represent a

school, census block, country, etc. We assume the geographic location of an individual to be

its permanent residence. Additionally, the residence of an individual is used as origin and

destination of a transmission, independent of the location in which the interaction occurs.

For example, let p1 be an infectious individual that resides in region r1 and let p2 be a
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Figure 3.1. Single branch and multi-branch paths example

susceptible individual that resides in r2. For an interaction in which p1 infects p2 in region

r3, we consider the origin of this transmission to be r1 and the destination r2, despite of

the transmission having occurred in region r3. This event represents the interaction of

two individuals, that reside in different locations, at a social event outside their regions of

residence.

Once the geographic space has been defined, the interaction space for the individu-

als of the population must be determined. The interaction space is the geographic area an

individual can traverse from its geographic location to interact with other individuals. A

naive assumption would allow individuals to only interact with individuals in their region

and in regions which whom they share borders with. However, during the transmission of

a disease this assumption is not precise since individuals are mobile entities and interac-

tions may occur between individuals in regions that do not share a border. In a second

interpretation, individuals are capable of transmitting the disease globally in the geographic

space. Figure 3.2 depicts the trajectory of an epidemic following the two definitions of inter-

action areas previously described. Figure 3.2.a shows a single path trajectory with the naive

interpretation and 3.2.b portrays a single path trajectory with the second interpretation.
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Figure 3.2. Different epidemic trajectories based on the interaction space interpretation

The second interpretation of the interaction space mimics the behavior of individu-

als with higher fidelity, but does not account for any restrictions in the movement of the

individuals in the geographic space. Djist and Vidakovic [32] describe those restrictions as

“potential action space” or the area in which individuals perform their daily activities. We

incorporate that concept by integrating a fuzzy neighborhood. Mikler et al. [63] describe the

fuzzy neighborhood as a network in which an individual from a region can reach each other

regions based on a probability function. This function sets the likelihood for a region to reach

any other region within a probability between 0 and 1. In general, we define the trajectory

of an epidemic as the path, with multiple branches, of an contagion process that spreads

in a fuzzy neighborhood. In the following section, we introduce a model and exemplify this

definition.

3.1. Infectious Epidemic Progression

To understand the complex process of an infectious epidemic trajectory, we developed

a model to simulate the spread of a pathogen in a population. This model mimics the

mechanics of the susceptible-latent-infectious-recovered model (SLIR). As described in the

previous section, the SLIR model divides the population in four compartments according to

their disease status. In our model, individuals can transmit the disease by interacting with

each other. Interactions in this model are represented following the interpretation of contact

rate defined in Chapter 4. The contact rate follows the assumption that every individual
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has a constant number of interactions or contacts per time interval. However, in this model

the interactions are not assumed to be between individuals, but between regions; such that,

individuals from every location contribute to the total number of interactions their region

initiates. This assumption is based on the model proposed by Mikler et al. in [64].

In our model, the geographic space is represented as a rectangular grid. In this

grid, every location represents a region in which individuals in groups of various sizes are

accommodated. To represent unoccupied locations, we set the number of individuals in that

region to be zero. Figure 3.3 depicts an example of a geographic space represented as a

grid with 66 regions. In the figure, each location is assigned a random number to represent

a non-homogeneous geographic distribution of the population. This random number is a

value between 0 and 100 that is obtained from a uniform distribution. Therefore, each grid

location hosts a region with a group of individuals of size between 0 and 100.

Figure 3.3. Example of a geographic space represented as a grid

As described previously, the contacts initiated by a region are calculated by adding all

of the contact rate values of all of the individuals in that region. However, the computation

of such calculation might result too expensive. For instance, if a region from a geographic

space R hasM individuals and they interact with a constant contact rate of CR1, calculating

all contacts of this region will generate a total of (M ∗ CR1)/2 contacts per time frame.

Furthermore, if we assume each region R in the geographic space has N individuals and all

interact with an equal contact rate CR2, then calculating the number of interactions in all

regions require (|R| ∗N ∗CR2)/2 contacts per time frame. At the end of the epidemic (tπ),
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the system will have computed a total of (M ∗ CR1)/2 ∗ tπ random contacts for one region

and (|R| ∗ N ∗ CR2)/2 ∗ tπ for the total geographic space. In a population of just 2,500

regions with 400 individual in each region and with a constant CR2 of 40, the system would

have to compute 20,000,000 contacts per time frame. The number of calls to the random

number generator is a function of the number of contacts generated each time step. Hence

in a simulation that takes 100 days we will have to generate 2 × 109 random numbers just

for the purpose of contact generation. Consequently, in this model we only consider contacts

that are initiated by an infectious individual, since those type of contacts are the only

interactions that could lead to transmission of disease. Additionally, only considering the

infectious contacts always results in a reduced number of computations than by calculating

all contacts, except for the case in which the total population is infected at the same time

[84].

In our model, the infectious contacts are distributed in the geographic space by im-

plementing a fuzzy neighborhood. The fuzzy neighborhood in this model is represented with

an interaction coefficient. The interaction coefficient is formally described in section 6.2.3.

By implementing the interaction coefficient we obtain an array of matrices in which every

element of the array is a matrix for an specific region. Each matrix contains the interac-

tion probabilities for a region within all other regions based on their population and the

distance among them. Therefore, whenever a region is set to seek a destination for one of

its interactions, these probabilities are applied as bias in a random selection.

After an interaction between two regions has taken place, it is necessary to direct that

interaction to an individual in contacted location. In order to determine the target of such

interaction, we randomly select an individual from the population of the targeted location. If

the selected individual is part of the latent, infectious, or recovered compartment we disregard

that interaction since it cannot lead to transmission. However, if the interaction is directed to

a susceptible individual we will determine if the interaction led to transmission of disease with

a random experiment. This random experiment considers the infectivity of the disease to

determine the probabilities of transmission. In the next section we introduce a methodology
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that utilizes this model to quantitatively measure the properties of the progression of an

epidemic.

3.2. Measuring the Properties of the Epidemic Trajectory

To measure the properties of the epidemic trajectory during an epidemic we analyze

the geographic progression of a disease ǫ within the population P . Let ra and rb be two

distinct regions in the geographic space R and let Mt be a matrix of order |R| X |R|. Each

element in the matrix Mt represents the number of interactions between two specific regions

during an epidemic such that the number of interactions originating in region ra to region rb

are stored in Mt(ra, rb). Following the methodology described in the previous section, once

an individual from region ra transmits the disease to an individual in region rb we consider

that the disease progressed from ra to rb. To capture the occurrence of such event, we

increment the numerical value of Mt(ra, rb) by one. The resulting Mt is a sample trajectory

t ∈ TP,R,ǫ of the total possible trajectories TP,R,ǫ for a specific disease within that population

and geographic space.

To analyze the role of each region during the epidemic, the matrix Mt can be adapted

into a complete directed weighted graph G(t). In this graph, each region of the geographic

space R = {a, b, .., ζ} is a vertix such that the set of vertices V = {ra, rb, .., rζ}. Since G(t) is

a complete graph, each node has an edge within all other edges such that the set of ordered

pairs E = {{ra, rb}, {ra, rc}, .., {rb, ra}, ..., {rζ, rζ}}. The weight of each edge is given by the

number times the initial vertex transmitted the disease to the terminal vertex during the

epidemic, e.g. for edge {ra, rb} its weight is Mt(ra, rb). An example of a Mt represented as

a graph G(t) is presented in Figure 3.4

BothMt and G(t) are used to analyze the progression of the epidemic in the population

by evaluating the interactions every region made with the rest of the population. We obtain

two parameters from a resulting trajectory t: δ(t, i) and γ(t, i). For any given matrix Mt

and graph G(t) in which the regions i, j = {1, 2, 3, ..., ζ}:
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Figure 3.4. Example of a Mt represented as a G(t)

(2) γ(t, i) =

|R|∑

j=1

Mt(ri, rj) = deg+(i)

(3) δ(t, j) =

|R|∑

i=1

Mt(ri, rj) = deg−(j)

such that for a trajectory t, γ(t, i) is the total number of interactions initiated by

individuals from region ri or the out-degree deg+(i) of vertix i. Similarly, δ(t, j) is the total

number of interactions in which individuals from rj were contacted or the in-degree deg−(j)

of vertix j.

For a given region ra ∈ R, the value δ(t, a) represents the degree to which that region

is attracting the rest of the population. Further, the set with the number of transmissions

attracted by each region ∆(t) = [δ(t, a), δ(t, b), ..., δ(t, ζ)] represents the transmission trend

of the epidemic for trajectory t. In this research, we use ∆(t) to study changes in the

outbreak dynamics caused by the social/behavioral characteristics of the individuals since

this parameters represents the transmission trend of the epidemic. Any changes in appeal

or affinity of a region ra could result in changes in the degree in which a population attracts

other regions, thus, resulting in variations of δ(t, a) and consequentially in ∆(t).

The value γ(t, a) represents the degree of contribution from region ra towards the

progression of the epidemic. The contribution of a region is measured with the number of
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transmissions initiated by that region. Moreover, the set with the total number of trans-

missions initiated by each region is Γ(t) = [γ(t, a), γ(t, b), ..., γ(t, ζ)]⊺. Since Γ(t) reflects the

force of infection of R, in this research we use this parameter to study changes in outbreak

dynamics caused by physiological characteristics of the population and by the interaction

coefficient and geographic distribution of individuals. As it will be detailed in Chapter 5, the

physiological characteristics of an individual can affect the duration it is capable of trans-

mitting the disease. As a result of those variations, the contribution of individuals to the

epidemic is altered. Similarly, variations on the interaction space on which an individual

is capable of transmitting the disease impact its contribution to the epidemic. Ultimately,

both of these factors affect Γ(t).

In this model, a disease ε spreads within a group of individuals P in a geographic space

R. For a given combination of those three characteristics, the population of the properties

of all possible trajectories is represented with τ(P,G, ε) and Υ(P,G, ε). The set τ(P,G, ε)

consists of all possible sets Γ(t) that result from an specific value for ε, P , and G. Similarly,

the set Υ(P,G, ε) incorporates all feasible combinations of ∆(t) for the a given set of values

for disease, population, and geographic space. In general, considering that τ(P,G, ε) and

Υ(P,G, ε) are the population of all possible combinations for the properties of the disease

trajectory for a given set of values for disease, population, and geographic space, Γ(t) and

∆(t) are a sample trajectory from their respective sets for a given P , G, and ε. In a given

experiment, both ∆(t) and Γ(t) are the result from the same experiment; however, each value

is analyzed independently. A naive approach to capture all possible τ(P,G, ε) and Υ(P,G, ε)

for a P , ε, and G requires all possible trajectories. However, this is not a feasible approach

since computing all those values is an stochastic process that would require a simulation that

considers all random sequences. Thus, we require a different method to accurately capture

those values without losing precision. This method captures the distribution of τ(P,G, ε)

and Υ(P,G, ε) by the use of sampling statistics.

In general, for a given trajectory s, Γ(s) and ∆(s) are a sample, respectively, of

τ(P,G, ε) and Υ(P,G, ε) for a particular disease ε within population P and geographic
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space G. To acquire the distribution of τ(P,G, ε) we capture |E| number of out-degrees

using the same set of parameters ε, P ,G but with different random seeds. Each experiment

ei ∈ E outputs a sample Γ(i) such that its arithmetic mean x̄i is an approximation to

the population mean µ with a standard error[88]. The same process is used to obtain the

population distribution of Υ(P,G, ε).

Figure 3.5 depicts three approaches to capture the distribution of 500 Γ(i) for a

particular disease ε within population P and geographic space G. In this figure, each line

is the density curve of one Γ(i). The density curve depicts the probability an out-degree

takes in an interval [a,b] for any two number a and b with a ≤ b. Additionally, the vertical

dashed line superimposed in the curves displays the arithmetic mean of the distribution. For

this set of experiments |P | = 27000, such that 300 individuals reside in each region. The

geographic space G consists of 100 regions from which 10% of them have a population of zero

individuals. Any unpopulated region has an out-degree and in-degree of zero such that those

areas have no individuals to infect and, consequently, nobody could transmit the disease.

Each experiment starts with the insertion of a random initial infectious individual in one of

the regions. The rest of the simulation follows the methodology previously presented in 3.1.

Due the random nature of the simulation some experiments may result in ”no-outbreaks”.

A no-outbreak is an experiment that does not reflect the behavior of an epidemic. For this

model, we consider a no-outbreak as an experiment in which less than 10% of the population

is infected.

Figure 3.5.a depicts an approach that includes all Γ(i) including those that represent

no-outbreaks. We observe that a no-outbreak simulation results in out-degrees that converge

close to zero. Since we are only interested in studying experiments that mimic an epidemic,

we disregard those simulations. Figure 3.5.b depicts the distribution of Γ(i) disregarding

out-degrees that are extracted from experiments that resulted in no-outbreaks. We can

observe in the figure, that regions that have zero individuals greatly influence the value of

the mean. To remove that disturbance, we disregard all out-degree values that are smaller

than 10. The result is presented in Figure 3.5.c. The data presented in Figure 3.5.c is
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Figure 3.5. Distribution of 500 ∆(t) from τ(P,G, ε)

subset π(i) ⊂ τ(P,G, ε). Since τ(P,G, ε) is the collection of values that represent the

force of infection, we determine that π(i) represents the properties of the force of infection

of an epidemic trajectory. Similarly, the subset η(i) ⊂ Υ(P,G, ε) is obtained following

the methodology used for τ(P,G, ε). Furthermore, given the characteristics represented by

Υ(P,G, ε), the subset η(i) represents the properties of the transmission trend of an epidemic

trajectory.

Further, the distribution of the sample is obtained by capturing multiple sample

means and, if |E| ≥ 30, the distribution can be approximated to a normal distribution in

accordance with the central limit theorem [41]. Figure 3.6 depicts the sample distribution of

100 sample means obtained from samples of size 100 from the same population of 500 Γ(i)

30



depicted in Figure 3.5.c. In the figure we observe that the mean of the sampling distribution

of the mean is the mean of the population of the data sets. We are interested in comparing

the population means of two data sets that originate from experiments that have differences

in intrinsic characteristics between them. In the following section we describe a methodology

to compare the properties of two trajectories.
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Figure 3.6. Distribution of the sample mean for 100 samples

3.3. Comparing the Properties of Two Epidemic Trajectories

We are interested in measuring the differences caused in the properties of the trajecto-

ries of two epidemics after modifying some of the characteristics that determine the epidemic

trajectory in one of the epidemics. As described previously, the characteristics that deter-

mine the epidemic trajectory are: disease ε, characteristics of population P , and shape of

the geographic space G. The methodology we present in this section refers to τ(P,G, ε),

however, the same process is required to study differences in Υ(P,G, ε). From τ(P,G, ε) we

are interested in its subset π(t). From each ei ∈ E we calculate the arithmetic mean x̄i of the
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resulting subset π(t) of that experiment. All arithmetic means from a group of experiments

E for a trajectory t are contained in X(E, t). Further, since, as previously described, π(t)

represents the properties of the force of infection of the epidemic trajectory, x̄i portrays the

mean force of infection for that experiment and X(E, t) represents the mean force of infection

(MFI) of the trajectory. We are interested in the arithmetic mean since each sample mean

is an approximation to the population mean. For a given trajectory, the population mean is

the measurement of central tendency for the properties of the epidemic trajectory. Hence,

the sample mean x̄i is a sample of the properties for the epidemic trajectory in experiment

ei. Considering the relevance of the population distribution of sample means, significant

variations in the distributions of two populations highlight the importance of analyzing the

sources that caused the fluctuation. In general, if two populations are statistically similar

after incorporating changes in one of them then, basically, it is unnecessary to incorporate

the characteristics initially contemplated.

The methods used to measure the statistical variations are: Welch’s t-test and Lev-

ene’s test. Both methods are used to evaluate whether two unrelated groups are significantly

different. The statistical significance represents the probability that an effect in a group is

not caused by randomness [111]. To determine similarity, the null hypothesis, H0, must

be accepted with a level of significance. The null hypothesis is a statement that indicates

no change between populations. The level of significance α is the probability of wrongly

rejecting a null hypothesis H0, if it is in fact true. The level of significance used in these

experiments was set to 95% or α = .05. This indicates that the result of a test was not due

chance or randomness with a confidence of 95%.

The two tailed Welch t-test evaluates whether the population mean of two unrelated

groups is significantly different. This test is an adaptation of the t-test for which homogeneity

of variance of the samples is not required. The Welch t-test assumes independence and

normal distribution of the data to compute accurate results. In our model, independence is

established since each experiment represents a unique event that results from a simulation

with a random seed. For two simulations, A and B, the computation of an event in A does
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not change the probabilities of an event to occur in B. In general, a resulting τ(PA, GA, εA)

does not affect the probability distribution of a τ(PB, GB, εB). Further, since π(A) and π(B)

are the result of a simulation of specific τ(PA, GA, εA) and τ(PB, GB, εB), we conclude that

the data is independent. In a Welch t-test, any violation to the assumption of normality

results in little effects to the test given the robustness of the test[111]. Additionally, the

test is relatively insensitive to any variations of normality since, in our tests, the size of each

sample is greater than 30 and the sample sets are of the same size [74]. In general, the size

of the samples is considered equal if the size of the larger group is not more than 11
2
times

larger than the size of the smaller group[67]. The hypotheses for the Welch t-test are:

• H0: The two samples have the same population mean (µ1= µ2).

• Ha: The two samples do not have the same population mean (µ1 6= µ2).

This test requires the calculation of a test statistic (tw) to compare with the t distri-

bution. The test statistic tw is:

(4) tw =
x̄1 − x̄2√
s21
n1

+
s22
n2

Such that x̄i, s
2
i ,and ni are the sample mean, sample standard deviation and the

sample size for sample i. To determine the t distribution used to compare with tw, we

calculate the degrees of freedom (v). In a Welch t-test the value of v is:

(5) v =
(
s21
n1

+
s22
n2
)2

1
n1−1

(
s21
n1
)2 + 1

n2−1
(
s22
n2
)2

Typically v is not an integer and computer software is required to find the critical value

t(α
2
, v). The critical value is a boundary between the acceptance region and the rejection

region for a given test. The value of α is divided in half since this is a two-tailed test.

The critical value is calculated with the use of computer software and is used to determine

the validity of a hypothesis. Additionally, the critical value is used calculate the confidence

interval CI. The confidence interval shows the range in which the true mean is likely situated.
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Furthermore, the width of the confidence interval determines the precision of the result.

Obtaining a large width between the lower and upper bound indicates that the sample set

is small and more samples are required [111]. The CI for a Welch t-test is:

(6) CI = x̄1 − x̄2 ± t(
α2

2
, v) ∗

√
s21
n1

+
s22
n2

Finally, a p−value is calculated with the software R using the statistic tw and the

degrees of freedom (v) as input. The H0 is accepted if p > α, or if the value 0 is within the

limits of the confidence interval. If the H0 is rejected, we assume, with a given confidence,

that the differences on the population means were caused by the modifications incorporated

to one of the populations and not by randomness. In the context of π(t), if H0 is rejected,

we conclude that the variation in the force of infection is statistically significant. This

indicates that the magnitude of the force of infection of the regions transmitting the disease

or the number of transmitting regions has fluctuated between populations. This change

occurs due to variations in the physiological characteristics of the population and in the

interaction coefficient and geographic distribution of the individuals. Contrarily, accepting

H0 indicates that the force of infection of both populations is statistically similar. Further,

since η(i) represents the properties of the transmission trend, if H0 is rejected, we conclude

that the fluctuation in the transmission trend is statistically significant. This suggests that

the affinity among regions during disease transmission of both populations was distinct. In

general, this indicates that for one of the populations the transmissions attracted from its

regions have fluctuated compared the other population. This variation is caused by changes

in social/behavioral characteristics of the individuals. Otherwise, accepting H0 indicates

that the transmission trend of both populations is statistically similar.

Assessing fluctuations in the variances of two populations is another measure of sta-

tistical variation. Levene’s test evaluates whether the variance of two samples come from

populations with equal variances. We selected Levene’s test given its robustness and low

sensitivity to normality. Levene’s test performs a two-sample t-test on the deviations of each
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data point from its mean or median. The use of the median is preferred when the normality

of the data is not guaranteed [111]. The hypotheses for this test are:

• H0: The two samples have the same variance (σ1= σ2).

• Ha: The two samples do not have the same variance (σ1 6= σ2).

The Levene test requires the calculation of a test statistic, tl, to compare with the t

distribution. This statistic is calculated from modified samples estimated by transforming

the original data. In the modified samples, Y1 and Y2, every data point from the original

samples, X1 and X2, is subtracted the value of the median of that sample such that for every

element i of sample s with median X̃s, its value yi,s is:

(7) yi,s = |xi,s − X̃s|

The Levene test requires the sample sizes n1 and n2 to be even. If the sample sizes

are odd, one yi,s = 0 must be removed from the modified samples. Once Y1 and Y2 have

been calculated, we use a two sided t-test on those new samples to test the hypothesis. The

two sided t-test formula to obtain the test statistic tl is:

(8) tl =
Ȳ1 − Ȳ2

SY1−Y2

in which Ȳ1 and Ȳ2 are the sample means. Additionally, the standard error of the

difference between the means, SY1−Y2 , is:

(9) SY1−Y2 =
s2p
n1

+
s2p
n2

such that n1 and n2 are the sample sizes of Y1 and Y2 and the value of s2p is:

(10) s2p =
SS1 + SS2

v1 + v2

in which v1= n1 − 1 and v2 = n2 − 1 are the degrees of freedom of each sample, and

SS1 and SS2 are the sum of squares of each sample. Finally, the confidence interval (CI)
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is calculated using the same method as in the Welch test. First, we calculate the degrees

of freedom (v) using Equation 5. The value v is used as input in the computer software to

calculate the critical value t(α
2
, v). Subsequently, the confidence interval is calculated using

the critical value as described in Equation 6.

Similarly to the Welch test, a p−value is calculated in R using the statistic tl and the

degrees of freedom (v) as input. The H0 is rejected if p ≤ α, or if the value 0 is not within

the confidence interval. Whenever H0 is rejected, the differences in the sample variances

are unlikely to have occurred based on randomness. Further, when H0 is rejected while

comparing the variance of the forces of infection π(t) of two populations, we establish that

there is a significant variation in the degree of contribution from the regions towards the

epidemic between populations. Dissimilarity in the variance indicates that the distribution

of the force of infection among the participating regions fluctuated within the populations.

Likewise, whenever two populations share the same variance, H0 is accepted, we assume that

their distribution of the force of infection was similar. Furthermore, when H0 is rejected when

comparing the variance of the transmission trend η(i), we conclude a significant variation

on the degree of spread from the regions that attract the transmissions during the epidemic.

In general, this difference in the variances indicates a fluctuation in the distribution of

the transmissions attracted by the regions within the populations. Contrarily, whenever

H0 is accepted indicates similarity in the distribution of the transmission trend for both

populations.

To illustrate the concepts introduced in this chapter, the next section depicts a sim-

ulation of the model with an implementation of the methodology to compare the properties

of two epidemic trajectories.

3.4. Experiments

Two experiments were conducted to examine the validity of the methodology to com-

pare the properties of two epidemic trajectories. In the first experiment we analyze a base

case for which P , G, and ε for both populations have the same characteristics. The base case

highlights the correctness of the methodology whenever the populations are expected to be

36



practically equal. In the second experiment we modify the interaction coefficient of G from

one of the populations while maintaining ε and P with the same values as the other popula-

tion. This experiment is used to determine the capacity of the method to capture fluctuations

within the populations. Both experiments are conducted using a perl implementation of a

modified global stochastic contact framework (GSCF). In the GSCF, as defined in Chapter

6, each individual is assigned specific characteristics based on the demographic information

from the U.S. census. Additionally, the demographic information is used to determine the

geographic location in which the individuals are located. Contrarily, in the modified im-

plementation, all of the individuals are assigned the same demographic characteristics and

they are placed in the geographic space following a uniform distribution. These adjustments

are included considering that the objective of these experiments is to analyze the nature of

the methodology and, removing the demographic and geographic characteristics, eliminates

biases.

A simulation of the GSCF is executed in timesteps, such that one timestep represents

a period of 24 hours. During the simulation, at each timestep all infectious regions randomly

select a number of regions to interact and possibly transmit the disease. The number of

transmissions a region commences is related to the number of infectious individuals in that

region. This value is calculated based on the contact rate, such that each infectious individual

contributes to the number of infectious contacts originating from its region. The method to

calculate the number of transmissions per region is formally defined in section 6.2. Once a

contact has been established, the probability of a successful transmission of the pathogen is

based on the transsmissibility (β) of the disease ε. The value of β for this simulation is set

to 0.015.

A simulation of this implementation commences with the creation of a geographic

space. The geographic space G consists of an area with a 100 regions from which 10% of

them have a population of zero individuals. After the creation of the geographic space, the

population and its characteristics are delineated. For this set of experiments |P | = 27000

and the characteristics of all individuals are set equal among the population. After defining
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the population, the next step in the simulation is the placement of individuals in different

locations of the geographic space. Individuals are placed in each region such that each

location has an average of 3000 individuals. After the placement process, we randomly select

one individual as the initial infectious case. The region that hosts that individual initiates the

epidemic by directing its contacts to at least one destination. The selection of the destination

region is determined by the interaction coefficient. The interaction coefficient is defined in

section 6.2.3 as the likelihood of a region to interact with other areas. As defined in section

6.2.3, the likelihood for two regions to interact is calculated based on their population size

and the distance between them. In this implementation, we establish the distance among

regions to be equal. The incorporation of differentiated distances will impact the likelihood

of disease spread, and thus, produce a bias in the epidemic.

Once a region has been selected as destination, the probability of a successful trans-

mission of disease after an interaction between two regions is determined by conducting a

random experiment. If the transmission is successful, we randomly select an individual from

the destination region to become latent. This individual remains latent based on the dura-

tion of its latent period (LP ). Once its latent period ends, the individual becomes infectious

and starts contributing to the number of infectious contacts initiated by its region. An

individual can contribute to the number of infectious contacts of its region as long as it is

infectious. The length of that period is determined by the infectious period (IP ). Once its

IP ends, the individual becomes recovered and cannot be infectious anymore. The simula-

tion ends whenever the number of infectious individuals reaches zero. In general, for each

experiment we conducted n = 500 different simulations for each population. Additionally,

all simulations that resulted in less than 10 percent of the population getting infected were

discarded. Ultimately, the output of an experiment are the subsets π(i) and η(i) of each

trajectory. Following, we present the results of two experiments that compare the properties

π(i) of the epidemic trajectory of two populations.
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3.4.1. Experiment I

In Experiment I, we introduced two populations for which their values for P , G, and ε

are the same. By setting the characteristics of the epidemic to be equal for both simulations,

we expect that each resulting trajectory would be a sample of the same population. Further,

if the trajectories are from the same population, the means and variations of both samples

must be statistically similar. We define this experiment as the base case and its goal is

to highlight the correctness of the methodology to compare the properties of two similar

epidemic trajectories.

A summary of the data used in this experiment is presented in Table 3.1. As described

in Section 3.2, the data presented in this table is calculated using the interactions of all the

regions in the population. Due the random nature of the simulation, the interactions are

distinct for every experiment. However, in the table we observe that the statistics of both

populations are almost identical. To test the similarity of the distribution of the data of

both samples we performed a Welch t-test and a Levene test.

Table 3.1. Summary of data used in Experiment I

Sample n MFI Std. deviation Std. error mean

1 492 198.5422 0.6633 0.0299

2 494 198.4932 0.6558 0.0295

To test the similarity of the mean force of infection (MFI) between the samples of

each region, we conducted a Welch t-test with the use of the function “t.test” in R[82]. The

input for the function were the subsets π(i) from each simulation. The results are presented

in table 3.2.

Table 3.2. Results from the Welch t-test in Experiment I

t df p 95 % confidence interval

Lower Upper

1.1647 983.766 0.2444 -.0335 0.1313
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By analyzing the results from table 3.2, we conclude that there was no signifi-

cant difference between the MFIs of sample 1 (MFI=198.5422, SD=0.6633) and sample

2 (MFI=198.4932, SD=0.6558). The H0 is accepted since p = 0.2444 > α = .05. To test the

consistency of this result we repeated this test for multiple samples of this population with

similar results of acceptance of H0 (data not shown).

We conducted a Levene test to determine the similarity in variances and, as described

previously, the test required the conversion of the original data. The conversion was per-

formed following equation 7. Table 3.3 depicts the data summary for the modified samples.

Similarly to the data in table 3.1, the statistics for both samples are very similar.

Table 3.3. Summary of data used in Experiment I for the Levene test

Sample n MMFI Std. deviation Std. error mean

1 492 0.5258 0.4037 0.0182

2 494 0.5271 0.3900 0.0175

The Levene test was conducted with an implementation in R of the method described

in section 3.3. In this implementation, the calculation of the test statistic is obtained with

a two-sided t-test on the modified data. The summary of the data resulting from the con-

version, including the modified mean force of infection (MMFI), are presented in table 3.4.

Table 3.4. Results from the Levene test in Experiment I

tl df p 95 % confidence interval

Lower Upper

-0.0528 984 0.9579 -0.0509 0.0482

From the results depicted in table 3.4, we conclude that there was no significant

difference between the variances of sample 1 (MMFI=0.5258, SD=0.4037) and sample 2

(MMFI=0.5271, SD=0.3900). The H0 is accepted given that p = 0.9579 > α = 0.05. We

also observe that the test statistic tl is negative. This result occurred since the MMFI of the

second sample is greater than the MMFI of the first sample. Despite the negative value, the
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result of the test is not impacted. In general, the acceptance of the H0 indicates that the

degree of contribution towards the progression of the disease is similar for both samples.

In general, since the means and variances of both samples are statistically equivalent,

we can conclude that there is strong evidence that both samples were extracted from the

same population. Additionally, given the small width in the confidence intervals for both

tests, we estimate that our results are precise. Furthermore, this experiment highlights the

correctness of the method to compare the properties of two trajectories that result from an

epidemic with similar characteristics.

3.4.2. Experiment II

In the second experiment, we simulate the spread of an epidemic in two distinct popu-

lations. The first population has the same epidemic characteristics as those from Experiment

I. In the second population one of the characteristics of G is modified, while maintaining P ,

and ε the same as the first population. The difference incorporated in G is the modification

of the interaction space of the regions. As defined previously, the interaction space between

two regions is determined by the interaction coefficient. Further, the interaction coefficient

of two regions is a probability calculated based on their population sizes and the distance

between them. In the first experiment we assumed that the distances between all regions

were equal. However, in this experiment the distance between regions is calculated using

the euclidean metric. The euclidean distance between two regions is the length of the line

segment connecting them. The metric in a two dimensional space (x, y) is calculated with

the formula 11 [31].

(11) Dxy =
√
(x1 − y1)2 + (x2 − y2)2

By introducing the euclidean distance as a component of the interaction coefficient,

we expect to observe a difference in the properties of the trajectory of the disease. The

potential difference was measured by performing a Welch t-test and a Levene test on the

data points. A summary of the data used for this experiment is presented in Table 3.5. In the

41



table we observe a variation on the central tendency parameters. However, this variations

need to be statistically measured to reach any conclusions.

Table 3.5. Summary of data used in Experiment II

Sample n MFI Std. deviation Std. error mean

1 492 198.5422 0.6633 0.0299

2 455 223.1733 0.2015 0.0094

The Welch t-test was conducted using the same approach as in Experiment I. The

results obtained from this calculation are presented in Table 3.6.

Table 3.6. Results from the Welch t-test in Experiment II

t df p 95 % confidence interval

Lower Upper

-785.3409 587.563 2.2× 10−16 -24.6926 -24.5695

From the results depicted in table 3.6, we conclude that there was a significant differ-

ence between the MFIs of sample 1 (MFI=198.5422, SD=0.6633) and sample 2 (MFI=223.1733,

SD=0.2015). The rejection of the H0 is determined since p = 2.2 × 10−16 < α = 0.05. The

difference in the MFI indicates that the distribution of the first population is different than

the distribution of the second population. Considering that the MFI of each population is

the central tendency for the force of infection, we can conclude that there was a variation of

this parameter during the progression of the disease. More importantly, this result indicates

that our methodology is capable of capturing that variation.

Table 3.7. Summary of data used in Experiment II for the Levene test

Sample n MMFI Std. deviation Std. error mean

1 492 0.5258 0.4037 0.0182

2 454 0.1612 0.1268 0.0059
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Similarly to Experiment I, we converted the original data to conduct the Levene test.

The conversion was performed following equation 7 and Table 3.7 depicts a summary for the

modified samples. The results of this test are depicted in Table 3.8.

Table 3.8. Results from the Levene test in Experiment II

tl df p 95 % confidence interval

Lower Upper

18.42 944 2.2× 10−16 0.3257 0.4034

From Table 3.8, we conclude that there was a significant difference between the vari-

ances of sample 1 (MFI=0.5258, SD=0.4037) and sample 2 (MMFI=0.1612, SD=0.0182).

The H0 is rejected since p = 2.2 × 10−16 < α = 0.05. As previously described, variations in

the variances between populations represent a variation in the degree of contribution from

the regions towards the epidemic. This test does not indicate the magnitude or direction

of the variation, however, this difference reveals fluctuations between the properties of the

epidemic trajectories.

3.5. Summary

In this section, we introduced the concept of epidemic trajectory and studied some

of its properties. An epidemic trajectory is defined as a path, with multiple branches, of

a contagion process that spreads in a fuzzy neighborhood. Further, we considered that

the properties that define the characteristics of that path are the force of infection and

the transmission trend. The force of infection determines the degree on which individuals

participated in the transmission of the disease. Similarly, the transmission trend depicts the

appeal of the individuals from each area during the epidemic.

Both of these properties reflect important characteristics of the spread of the disease

within a population. To analyze those properties, we developed a model that simulates the

transmission of the disease in a population. In this model, the disease spreads at the regional

level, such that the transmission of disease from a region A to region B is represented by

a directed edge between A and B. This approach allows to represent all transmissions as
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a complete directed weighted graph. From this graph, we calculate the force of infection

of the epidemic by analyzing the out-degrees of each region. Similarly, we determine the

transmission trend of the trajectory by evaluating the in-degrees.

Additionally, we developed a method to compare two epidemic trajectories in two

populations. This method determines statistical significance of the variations in the prop-

erties of the trajectory of two epidemics. This methodology measures the variations of the

means of the samples with the use of the Welch t-test and the variations in the variance

with the Levene test. These tests are used to determine the statistical significance of the

incorporating different variations in any of the characteristics of the epidemics. If the statis-

tical tests determine statistic similarity in the characteristics of two epidemic trajectories, we

conclude that there is strong evidence that both samples were extracted from the same tra-

jectory. This result discourages the incorporation of the parameter that we expected would

cause a significant variation in the epidemic. Contrarily, the rejection of the similarity by

the test statistics, indicates that the variations were not caused by randomness and further

investigation on the parameter that caused that fluctuation must be conducted.

Finally, we conducted two experiments to highlight the correctness of this method. In

both experiments, we simulated two outbreaks and obtained the parameter that represents

their force of infection as a result of each epidemic. In the first experiment, we compared

two samples that were obtained by simulating an epidemic with the same epidemic char-

acteristics. This experiment aimed to capture the efficiency of the methodology when the

populations were practically equal. The results of this experiment indicated that both sam-

ples were obtained from the same distribution. This result implies that the method is capable

of determining that two properties of epidemic trajectories are equal when they both are ob-

tained from the same population. In the second experiment we introduced a variation in the

epidemic characteristics of one simulation. This variation is used to measure the capacity of

the method to capture fluctuations within the populations. The statistical tests used to mea-

sure the variation highlighted the statistically significant fluctuations in the force of infection

between populations. These variations dictate that the changes introduced to the outbreak
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simulation are responsible for the fluctuations and not the random nature of the experiment.

In general, these experiments are a strong indication that the methodology is capable of

revealing fluctuations between the properties of epidemic trajectories. Further, since the

fluctuations are caused by different intrinsic components of the epidemic, this methodology

could be used to highlight the importance of incorporating specific characteristics into an

epidemiological study.
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CHAPTER 4

MODELING SOCIAL/BEHAVIORAL CHARACTERISTICS ∗

Mathematical and computational models for different types of infectious diseases,

including vector-borne and airborne transmitted illnesses, are based on the concept of in-

teractions or contacts. For person-to-person transmitted diseases, a contact can be thought

as an abstraction of human interaction, including attendance at the same social event, the

same study groups or any other situation that could involve a close encounter between two

individuals. Such relationships are developed in accordance to the structure of the social

networks to which the individual belongs. Chances and frequencies of interactions between

individuals will change according to the proximity of their social networks, their association

and affinities [34],[44].

Early mathematical and computational models consider interactions between ele-

ments to be homogeneous, implying that all of the elements have the same likelihood to

contact others and to be contacted. Real life behavior, however, indicates that this is not

necessarily true; People create social clusters in which the chances of contacting others change

according to affinities, geographic location, social position, etc.

A computational simulator was developed to study the effects of population het-

erogeneity on the outbreak dynamics during an infectious disease epidemic. The model is

capable of representing both heterogeneous behavior of individuals as well as differentiated

disease characteristics. The global stochastic contact model (GSCM) represents interactions

between individuals in a given population. Every member of the population is assumed to

have a constant number of interactions or contacts per time interval, i.e. days, hours, weeks.

This number of interactions is referred to as its corresponding contact rate (CR). In the

GSCM, the population is represented as an abstraction of individuals. This abstraction was

necessary to be able to understand the underlaying processes involved in an infectious pro-

∗Parts of this chapter have been previously published in part or in full, from Jorge Reyes-Silveyra, Armin R
Mikler, Justin Zhao, and Angel Bravo-Salgado, Modeling infectious outbreaks in non-homogeneous popu-
lations, Journal of Biological Systems (2011). Reproduced with permission from the Journal of Biological
Systems
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cess. By removing the more realistic layers, we were able to quantify the effects the different

social and behavioral characteristics in an outbreak.

The population P is represented as a set of individuals pi ∈ P . The set P is

mapped to 4 subsets: susceptible(S), latent(L), infectious(I), and recovered(R), thereby

representing the components used in the SLIR. We assume a closed population P for which

S ∪ L ∪ I ∪ R = P , S ∩ L ∩ I ∩ R = ∅, and |P | = N . The progression of the epidemic is

represented by the movement of individuals between compartments during time instances

t0, t1, ..., tπ, where π indicates the end of the epidemic. At every timestep tk, all pi ∈ P

satisfies their contact rate CR by interacting with individuals in P . Irrespectively, each in-

teraction is a random experiment in which individual pi chooses an arbitrary element pj ∈ P .

Individual pi moves from S to L at some instance tm when a contact with pj is established

and pj ∈ I is established and the disease has been transmitted successfully. At this point,

pi is assumed to be latent. Whether or not the disease is transmitted during such interac-

tion is determined by yet another random experiment. This random experiment calculates

the chance of infection based on the transmission probability of the disease. Transmission

probability is the likelihood that an infectious agent enters pi and multiply after a contact

with pj to produce infection or disease [37].

Once individual pi ∈ L, it starts its latent period (LP ), where LP is the amount

of time necessary for pi to fully develop capacity to infect other individuals. During this

period, pi is infected but not yet capable of transmitting the disease. Immediately after LP

concludes, individual pi will move from L to I and commence its infectious period IP . IP is

the amount of time that pi is capable of transmitting the disease to others. Upon reaching

the end of IP , pi is assumed to have recovered and hence is moved from I to R. Once

L ∪ I = ∅ at time t = tπ the epidemic has concluded. As an example, the average infection

timeline of the flu virus for an adult [27] is depicted in Figure 4.1.

Even though in the above model LP and IP are constant for all pi ∈ P , in reality

there may be significant variation in the amount of time an individual will spend in those

periods [85]. These variations are due to physiological or behavioral characteristics, while
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5-7 Days

Figure 4.1. Infection timeline of influenza in humans

others are related to the amount of pathogen present at the moment of the infection [16].

Implementing this diversity and the causes that produce those distinctions will extend the

current model towards representing outbreaks in differentiated populations.

If every individual in P interacts at a constant CR, the naive approach generates

a total (N ∗ CR)/2 contacts per time frame. At tπ the system has computed a total of

(N ∗ CR)/2 ∗ tπ random contacts. In a population of just 100,000 individuals with a CR of

40, the system would have to compute 2,000,000 contacts per time frame. The number of

calls to the random number generator is a function of the number of contacts generated each

time step. Hence in a simulation that takes 100 days we generated 2× 108 random numbers

just for the purpose of contact generation.

As the epidemic is driven by contacts between individuals in S and I, the naive model

can be improved by only generating those interactions that involve at least one individual

in I. Specifically, we limit the contacts to SI, IS, IL, LI, II, IR, and RI. Even though

contacts between IL, LI, II, IR, and RI do not cause a transmission, disregarding them

leads to inconsistencies in the contact accounting. This model is shown in Figure 4.2. The

number of contacts generated by this new approach is always less than or equal to the number

of contacts incurred by the naive model. The novel approach executes ‖I‖×CR contacts per

time period. Should all individuals become infected at the same t, the number of contacts
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Figure 4.2. Contacts between I and P with superimposed social network

is the same as in the naive model. For all the other cases, the number of contacts is smaller.

As depicted in Figure 4.2, the interactions between individuals from I and individuals

in P form a social network. This is as a result of pi ∈ I selecting its contacts according to

its preferences and affinities. This is translated to the computational model by an affinity

function A(ci, cj) = ai,j, in which ci, cj represent two clusters in the population, i.e. chances

of an element from cluster i of contacting individuals from clusters i or j. The minimum

value of the affinity function between two clusters is 0%. Similarly, the maximum value of

the affinity function between two clusters is 100%. This is represented in the equation 12:

(12) 0 ≤ A(ci, cj) = ai,j ≤ 1

In the model, the affinity function is represented as an affinity matrix. It consists

of probabilities for interactions between different clusters. For M clusters in which i, j =

{1, 2, ..,M},

(13) γi =

M∑

j=1

A(ci, cj) and δj =

M∑

i=1

A(ci, cj)

γi = 1 and δj ≥ 0. In any given affinity matrix, the affinity from a cluster to all clusters

always equals 100% (γi = 1). Moreover, the affinity to a cluster from all clusters is equal or
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greater than 0% (δj ≥ 0). An example of an affinity matrix can be observed in Table 4.1.

Table 4.1. Affinity matrix

To

A B C D E

From

A 0.19 0.39 0 0.03 0.39

B 0.18 0.02 0.31 0.18 0.31

C 0.04 0.11 0.27 0.39 0.19

D 0.13 0.18 0.04 0.05 0.6

E 0.22 0.15 0 0.01 0.62

Affinity’s sum 0.76 0.85 0.62 0.66 2.11

Additionally, individuals from each cluster may have different CRs to represent the

diverse social skills, age, social status, etc. representing factors that may cause individuals

to be involved in varied number of interactions per day. In the following section, we present

multiple experiments to explore the effects produced in the outbreak dynamics by incorpo-

rating heterogeneous values for contact rates and affinities between regions in a population.

4.1. Experimental Results

Multiple experiments were conducted to analyze the sensitivity of disease dynamics

to the differentiated population characteristics and to exemplify the importance of incorpo-

rating them into computational models. Experiment I explores the effects of incorporating

a heterogeneous CR. A second group (Experiment II, III and IV) highlights the results

of integrating differentiated affinity values (ai,j). In all experiments, the population P is

partitioned into 5 groups: Ω = {A,B,C,D,E}. One group was selected as the pivot group

(̺ ∈ Ω), implying that either CR or A is varied for a specific experiment. CR̺ is the contact

rate assigned to the pivot group, and A(ci, c̺) is the affinity towards it, where i ∈ Ω. At all
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times we maintain

(14) CRA + CRB + CRC + CRD + CRE = k

where k is constant; k for the series of experiments was set to 200. Additionally, for all

experiments presented here, each cluster consists of a closed population of 300 individuals.

All experiments start with a random index case inserted into one of the five clusters in-

distinctly. Note that affinities are not necessarily symmetric. For example, in the affinity

matrix presented in Table 4.2 A(cE, cC) = 0, however A(cC, cE) = 0.19.

Table 4.2. Summary of CR used in Experiment I

Contact rate

Case Pivot cluster Other clusters

Standard control 40 40

Negative control 0 50

Positive control 200 0

T1 180 5

T2 160 10

T3 140 15

T4 120 20

T5 100 25

T6 80 30

T7 60 35

T8 20 45

Three base case experiments were conducted: positive control, negative control, and

standard control. In Experiment I the positive control CR̺ = k, while in the negative control

CR̺ = 0. During Experiment II A(ci, c̺) = 100% for the positive control and inversely

A(ci, c̺) = 0% for the negative control. The standard control represents a homogeneous
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population by uniformly distributing CR and ai,j . Each experiment reports the average over

300 simulations. The experiments capture the following:

• Number of infected individuals of each group at every timestep

• Group membership of the individual that produced each infection.

• Duration of the outbreak.

Figure 4.3. Infected individuals as a function of the CR of the pivot cluster

In reality, the number of contacts that every individual performs on a daily-basis is

not uniform among all individuals of a population. Experiment I was constructed to explore

the effects of varied CR on disease dynamics. In each experiment, CR̺ was incremented

by 20 contacts and the rest of the clusters varied their value to maintain the sum of cluster

specific CR equal to k. The parameters used in the experiments are shown in Table 4.2. For

instance, in case T4: CR̺ = 120, and

(15) CRj =
k − CR̺

| Ω | −1
∀j 6= ̺

Figure 4.3 shows the results of this group of experiments. We observe that as CR̺ increases,

so does the number of individuals infected by ̺. At the same time, the individuals infected

by the other clusters decreases. In the figure, the other clusters are represented as a sum.

52



Figure 4.3 also depicts CR̺ and the corresponding total number of infected individu-

als. The peak occurs whenever CR̺ = CRj ∀j ∈ Ω, causing the largest number of infections.

Given the uniform distribution of the infectious individuals in Ω, the likelihood of contacts

between individuals of S and I is maximized. As the value of CR̺ increases, the possibility

for infectious individuals outside ̺ to transmit the disease diminishes.

Table 4.3. Affinities used for Experiment II

Affinity

Cases Pivot cluster Other clusters

Standard control 0.2 0.2

Negative control 0 0.25

Positive control 1 0

T1 0.8 0.05

T2 0.6 0.1

T3 0.4 0.15

T4 0.15 0.2125

T5 0.1 0.225

T6 0.05 0.2375

Experiment II demonstrates the effects of varying affinity from other clusters toward

̺. This range of values are summarized in Table 4.3. For example in case T4: A(ci, c̺) = 0.15

and A(ci, cj) = 0.2125 for which i ∈ Ω, j ∈ Ω − ̺. Figure 4.4 indicates that the number

of infected individuals from ̺ gradually increases with the affinity towards that group. It

is also noticeable that the total number of infected individuals reaches a maximum when

A(ci, c̺) = A(ci, cj)∀j ∈ Ω. This is due to the fact that the distribution of the susceptible

individuals is completely homogeneous at that point. Contrary to the experiments in which

the affinity to the susceptible individuals is limited by ai,j.

In Experiment III random affinities are assigned to each A(ci, cj). This experiment

does not incorporate a pivot group neither does the values of ai,j change during the sim-
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Figure 4.4. Infected individuals as a function of the affinity of the pivot cluster

ulations. It measures the variation in the distribution of infections during an outbreak,

due to the alteration of the summed affinity(δ). The values used for this experiment are

summarized in Table 4.3. For instance a δE of 2.11 represents the total affinity towards

group E. The results depicted in Figure 4.5 indicate that the values of δ greatly impact the

number of infections. The maximum number of infected individuals occurs in the cluster

with the maximum δ (E). Inversely, the minimal number of infections occur in cluster C.

Additionally, we observe that clusters C and D display the high sensitivity of the parameter.

Notwithstanding δD − δC = .04, the infections in cluster D exceed the ones in cluster C.

Experiment IV highlights how incorporating heterogeneous affinity towards a single

cluster vary the dynamics of an outbreak. When assigning a homogeneous affinity to all

clusters, we observe that the duration and magnitude of outbreaks in each group are indis-

tinguishable. Figure 4.6 depicts the number of infected individuals per day in each group

in Ω and in P at large. Due to the similarity in outbreak dynamics in the individual clus-

ters, the outbreak characteristics for the entire population is a scaled up version of each of

the small outbreaks. When incorporating heterogeneous affinities towards a group A ∈ Ω,

the outbreak dynamics in cluster A change as a result. In this experiment, the distribu-
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Figure 4.5. Infected individuals per cluster as a function of δ

tion of affinities has been modified to A(ci, cA) = .6 in which i ∈ Ω, and A(ci, cj) = .1 for

i, j ∈ Ω − A. Figure 4.7 depicts the progression of infected individuals in each group in Ω

and P over time. We observe that the Ω−A and P curves are similar to its counterparts in

Figure 4.6, however, at reduced magnitudes. This reduction is due to the behavior limitation

described in Experiment II. However, the outbreak dynamics in cluster A are different in

both duration and magnitude. This variation is caused by the increase in the affinity towards

cluster A, amplifying the possibility of infection of its individuals. The number of infected

individuals from A exceeds those of other clusters at all times, causing A to be the most

significant contributor for the outbreak observed for P . Consequently, a reduction in the

capacity of infection of this cluster can drastically affect the spread of the disease in P .

4.2. Summary

In this section, we introduced an infectious-disease transmission model that is based

on the global stochastic contact model. In this model, person-to-person contacts are limited

to only those interactions that involve at least one infectious individual. Implicitly, the

resulting contact activities create a social network between the infectious individuals and

the population at large. Based on this social network, different person-to-person interaction
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Figure 4.6. Infected individuals in Ω and P in a homogeneous population.

Figure 4.7. Infected individuals in Ω and P with heterogeneous affinity to-

wards cluster A

probabilities can be expressed and hence integrated into the model. The model was further

expanded to include clusters of individuals representing differentiated social groups. The

social network determines the interaction behavior in each group. Group behaviors are

expressed by their corresponding inter and intra cluster interaction frequency and affinity.

The effects of incorporating differentiated behavior into the model and its relevance to the
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outbreak has been assessed.

The results indicate that an increase in the number of contacts in a group of indi-

viduals increases their incidence of infection. It was further observed that the most critical

outbreak occurs when the number of contacts is homogeneous across all groups. The results

also reveal that the likelihood of exposing susceptible individuals to infectious individuals is

greatly affected by group affinity. As affinity to a specific group increases, the susceptible

individuals from the other groups reduce their chances to be contacted, thus reducing the

size of the outbreak. Additionally, experiments exhibited a high sensitivity to affinity, in-

dicating that even small variations result in significant changes in the duration and size of

the outbreak. In general, we conclude that the inclusion of heterogeneity and diverse group

behavior into an outbreak simulation is important to achieve a more realistic and complete

prediction.
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CHAPTER 5

MODELING PHYSIOLOGICAL DIFFERENCES

Scientists have proposed many models to represent the spread of infectious diseases in

populations. The most recent models attempt to be more realistic by including differentiated

populations and non-homogeneous contacts among individuals. Heterogeneity of contacts

is obtained by incorporating social networks and social interactions. Non-homogeneity of

individuals is modeled by assigning various characteristics such as immunity, age, and gender.

In most of the epidemiological models, immunity is incorporated as a value that restricts

the capacity to become infected or as a parameter that increases the capacity to infect other

individual. In reality, the immune system possesses many complex mechanisms that can

be abstracted and incorporated into these models. The immune system’s responsibility is

to stop the replication and proliferation of pathogens in the host. Age, gender, and fitness

level are some of the key factors that determine the efficacy of the immune system. A more

competent immune system will decrease the capacity of the invader to replicate. Ultimately,

the quality of the immune response will determine the chances of infection and the amount of

time an individual is capable of infecting others. Incorporating individual immune responses

into a population during an outbreak simulation will affect the disease dynamics. In general,

including these modifications will contribute to a better understanding of the progression of

the disease in a population.

5.1. Immunity

The survival of an organism is highly correlated with the quality of its immune system

[79][75]. The immune system provides two types of defense against invaders: innate and

adaptive immunity. The innate response is non-specific to the pathogen and does not provide

a long lasting immunity. The major components of the innate response are:

• Physical barriers, which include tears and skin, and whose main objective is to block

the entrance of possible invaders.
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• The complement system is composed by molecules that intensify the effect of other

immune functions.

• Macrophages are responsible to phagocytose, digest and present pathogens.

• Natural killer cells induce cytotoxic apoptosis (cell death) to infected cells.

A pathogenic invasion occurs once viral or bacterial material passes these first lines

of defense. Once they have crossed the innate defense, pathogens tend to migrate to suitable

locations for occupation and multiplication. Foreign invasion activates an adaptive immune

response that impedes the replication and migration of the pathogen to attempt to free

the host from the external threat. The adaptive response is specific to each invader and is

conducted by two main types of cells:

• T-cells : Lymphocytes maturated in the thymus.

• B-cells : Lymphocytes maturated in the bone marrow.

T-cells are highly specialized cells that not only coordinate (T-helper) and regulate (T-

regulatory) the immune response, but also destroy infected cells (T-cytotoxic). B-cells se-

crete antibodies and perform pathogen presentation similar to the macrophages. Antibodies

are proteins that can label an infected cell or a pathogen to facilitate its elimination. Addi-

tionally, antibodies can stop the replication of the pathogens by impeding their attachment

to healthy cells. Both T-cells and B-cells provide immunity against a pathogen by producing

memory cells (T-memory and B-memory) during an infection process. Similarly, immu-

nity can be artificially induced by vaccination. Immunity against a pathogen heightens the

immune response to prevent future infections.

The efficacy of the immune response is determined by multiple factors. Many of

them are associated with the host, including age, physical fitness, gender, and nutrition [57].

Various studies report different causes for deterioration of the immune system throughout an

individual’s life-time. As the individual ages, limited capacity to defend against invaders is

caused by multiple alterations in T-cell and B-cell functionality [23][55]. Likewise, nutrition is

a critical factor for the quality of the immune response of an individual. Studies have shown a

strong relationship between malnutrition and multiple immune response deficiencies. These
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may include impairment of the complement system, cell mediated immunity, and phagocyte

functionality [24]. Obesity [110], high-cholesterol levels [19], and low vitamin and mineral

intake [25] are some of the nutrition related causes for those immune response deficiencies.

In addition to access to health care, types and frequency of social interactions, gen-

der drastically affects the competence of the immune response [8][52]. This is primarily

attributed to the blood levels of gonadal steroid hormones. Multiple studies have shown an-

drogens as natural immunosuppressors, as well as estrogens as humoral immunity enhancers

[28]. Moreover, physical fitness of individuals has a unique effect on the immune response.

Although positive immuno-stimulatory activity is observed with moderate exercising, both

lack of and excessive exercise produce an immuno-suppressive response [86][48].

5.2. Infection

Diseases in individuals develop in sequential phases [27]. It is known that once a

pathogen invades a susceptible individual, he or she migrates through different infection

stages: latent, infectious and recovered/removed. The progression from one stage to another

occurs after the consummation of different time periods. These periods are known as latent

period and infectious period. The latent period is the amount of time necessary for an

individual to develop the capacity to infect others. Analogously, the infectious period is the

amount of time during which an individual is capable of transmitting the disease to others.

An infectious agent replicates after it penetrates the host’s basic defenses. The efficacy

of the replication process can be quantified through the corresponding viral/bacterial load

(vbl) [69]. The vbl is the concentration of virus or bacteria in plasma at a certain moment

in time [47]. The vbl value is commonly used as an indicator for disease severity [29] and the

host’s capacity of transmitting it [80]. Since the immune system is responsible for controlling

vbl in the host, we conceive a direct relationship between them. A stronger immune response

restrains the growth of the external threat more efficaciously; Hence, we conclude that the

quality of the immune response affects the quantity of vbl during infection.

We define 4 types of immune responses based on their quality: R0, R+, R−, R∗. The

quality of each response is determined by the severity of the infection and the length of the
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infectious period of an individual with that type of response. A standard immune response

R0 represents the average response in a healthy individual. An individual with this response

remains infected for the same amount of time as the majority of the population. Individuals

with this response usually recover after the infection is eradicated and rarely succumb to

the disease. Individuals with the hyperimmune response R+ will stay infected for a shorter

period of time than the majority of the population. R+ represent the immune response of

those individuals with a superior count of pathogen specific immune cells as compared to

individuals with an average immune response. This type of response guarantees the survival

of the individual throughout infection. The hypoimmune response R− represents the immune

response of individuals with an immunocompromised immune system (eg. cancer, diabetes

or HIV subjects). A person with this response is infectious for a longer period of time than

the majority of the population. Individuals with this response have increased probabilities

to succumb to the disease. R∗ comprises individuals that are actively or passively immune

against a specific pathogen. Elements of the population with this type of response will get

infected for a short period of time, but never become symptomatic or infectious.

To illustrate these concepts and their relationship to vbl, Figure 5.1 portrays four

contrasting scenarios of a primary viral infection. R0 results in consistent pathogen replica-

tion until the immune response is strong enough to overcome the infection and eliminate it.

R+ produces a similar effect, but it is more effective than R0. In contrast, R− is not capable

of containing the infection. This will result in uncontrolled growth of the virus leading to

chronic infection or death of the host. On the opposite side of the spectrum, R∗ is more

efficient at limiting pathogen replication than all the other responses. This results in smaller

quantity of vbl in the host at all times.

The integration of vbl can be utilized as a threshold to determine the commencement

and termination of the disease periods during an infection [10]. Figure 5.2 depicts the

duration of the time periods for each scenario presented in Figure 5.1. The length of each

period is determined by a transmission threshold. The transmission threshold (vbl∗) is

established as the quantity of vbl that is necessary for an individual to become infectious.
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Figure 5.1. Viral load in an individual as a function of the quality of its

immune response.

The duration of the latent stage comprises from the infection point to vbl surpassing vbl∗.

Equivalently, the length of the infectious period starts at the end of the latent period and

culminates once the vbl falls below vbl∗. For example, Figure 5.2.b portrays a hypoimmune

response R− during an infectious process. In this figure, the vbl growth rate at the beginning

of infection is similar to the rest of the other responses. Once vbl exceeds vbl∗, the immune

response is not capable of containing the pathogen proliferation. An individual with R−

may experience a long or a short infectious period depending on its capacity to fight the

disease. If infection becomes chronic, the individual is infectious period will be longer than

that of an individual with the standard immune response R0. Otherwise, if the individual

succumbs to the infection, it will be moved to the recovered/removed population earlier

than the average individuals, resulting in a short infectious period. An individual with a

hyperimmune response R+ will have a shorter than average infectious period. Figure 5.2.c

represents such a scenario. We observe that vbl in Figure 5.2.c exceeds the threshold for a

brief amount of time, resulting in a short infectious period. Finally, since the R∗ response

does not exceeds vbl∗, it results in a long latent period and the individual never progresses

to infection. This scenario is depicted in Figure 5.2.d.
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In general, these scenarios illustrate how the length of the disease periods are a func-

tion of the viral load. It is possible to obtain those values from sources such as immunological

mathematical or computational models. The model selected must simulate the interaction

between the pathogen and the immune system. Ultimately, from the model, vbl is obtained

to determine the length of the disease periods for each individual. In Section 5.4, we present

an example to determine the infectious periods by simulating the disease trajectory in a host

with the use of a mathematical model.
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Figure 5.2. Four contrasting scenarios of infection length periods as a func-

tion of vbl.

5.3. Population Immune Response

Population immune response is a new concept that captures the collective immune

response (IR) of individuals in a population represented by the superposition of individual

immune responses. Figure 5.3 summarizes how the effects of PIR on outbreak dynamics can

be exploited. The figure illustrates how the concept can be applied to create a computa-

tional model. The model is divided into three modules: population and disease database,

immune competence and infectious disease outbreak simulation. A population and disease

database is required to store the population and disease information. This database must
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include demographic data for P that can be linked to the efficacy of an individual’s immune

response and, hence, determine the collective immune responses of P. The database infor-

mation is exploited to categorize the individuals into multiple clusters. These clusters are

based on the demographic characteristics of interest in the study(eg. age, gender). Addition-

ally, the database contains information related to the disease itself, such as pathogenicity

and pathogen growth rate. The disease information is used to estimate the value of the

transmission threshold vbl∗.

Once the clusters have been created, the immune response upon infection of each

group is determined by the immune competence module. In this research, we exemplify this

calculation with a mathematical approach to model the immune response of an individual

during a viral infection. The model presented was first introduced by Arnaout et al. [9]

and expanded by Wodarz [107]. This model captures the development of the disease in the

host by portraying the interaction between host cells, viruses and immune response. The

interaction between vbl and the immune response is captured at a cellular level during the

simulation of each cluster’s immune response. The result of every simulation returns the

values of vbl for each cluster. From every vbl value it is possible to obtain the length of the

disease periods for each cluster by incorporating vbl∗ as described in Section 5.2. Ultimately,

the length of the disease period of each individual is calculated and incorporated into the

simulation of the epidemic.

The infectious disease outbreak simulation simulates the spread of a disease in a pop-

ulation during time t. The simulation must incorporate every individual from P and simulate

the interactions between them. Each individual needs to be assigned unique characteristics

representative of his or her individuality and social activities. Some of these characteristics

are the length of the disease periods and the number of social interactions per time interval.

These values are usually calculated in a per day share. The length of the disease periods of

every individual is assigned according to his or her cluster membership. The incorporation of

different clusters in the simulations results in different disease dynamics. Since the variation

of length of the disease periods between individuals is determined by their immune response,
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we conjecture that PIR is a crucial driving force of the dynamics of an epidemic.

Competence

Figure 5.3. Exploring the effects of PIR on outbreak dynamics

5.4. Modeling the Immune Response

The module immune competence determines the infectious and latent period of in-

dividuals of every group from the population. To estimate those values it is possible to use

models that capture the interaction between a pathogen and the immune response on a host.

Multiple models have been proposed to simulate the immune system of an individual during

infection [93]. In each model, different sets of parameters and interacting components are

utilized to represent particular functions of the immune system. To illustrate the concept of

PIR, we sought a mathematical model sufficiently complex to capture the essential compo-

nents of the immune response and capably represent different diseases. Arnaout et al. [9]

introduced a mathematical model that separates the immune response in two different types:

lytic and non-lytic response. The flexibility of this model allows the study of the effects of

each response type during different disease infections. This mathematical model depicts the

interaction between infected cells (Y ), viruses (V ) and the immune response. The immune

response is represented as the quantity of virus-specific CTL(Z) and the virus-specific anti-

bodies (W ). Wodarz [107] expanded the model of Arnaout et al. by incorporating uninfected
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cells (X). The Wodarz model is represented by the set of differential equations 16, 17, 18,

19, and 20. A description of the parameters of the model is presented in Table 5.1.

Ẋ = λ− dX − βXV(16)

Ẏ = βXV − aY − pY Z(17)

V̇ = kY − uV − qVW(18)

Ẇ = gVW − hW(19)

Ż = cY Z − bZ(20)

Table 5.1. Model parameters

Symbol Definition

λ Production rate of uninfected cells

d Death rate of uninfected cells

β Infection rate of uninfected cells by viruses

a Death rate of infected cells

p Lysis rate of infected cells by the CTL response

k Production rate of virus by infected cells

u Decay rate of viruses

q Neutralization rate of viruses by antibodies

g Development rate of antibodies in response of virus ex-

posure

h Decay rate of antibodies

c Development rate of CTL in response to infected cells

b Decay rate of CTL
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To study the immune system efficacy, we focused on those parameters that deter-

mine the strength of the immune response. As described in Section 5.2, alterations of the

immune system functionality are caused by multiple factors. For example, it is known that

an individual will experience chronic involution of the thymus gland as he/she ages [43].

They involution of the thymus is considered one of the major reasons for the decline of im-

mune response quality since the thymus is responsible for the production of näıve T-cells.

Additionally, B-cell proliferation and efficacy are diminished due to the immunosenescence

derived from aging [43]. Studies have shown a decrease of the B-cell population, reduction

of antibody diversity, and decline of capacity to produce pathogen-specific antibodies as the

individual ages [103, 2]. In the mathematical model, we represent this effect by incorpo-

rating individual age groups with different values for the immunological parameters. The

immunological parameters of the model are: g, q, b, h, q, c, and p, as depicted in Table 5.1.

Figure 5.4 depicts two simulation scenarios of the mathematical model for different values

of the immunological variables. The simulation represents a standard immune response R0

and a hyperimmune response R+. The figure illustrates the performance of each response

during infection and its impact on the viral load. Although there is evidence that the quality

of those variables is affected by the age of the individual, determining its value only from

age groups is not completely accurate. Multiple factors besides immunosenescence can be

involved in establishing the strength of a specific immune response parameter; however, this

is beyond the scope of this dissertation.

5.4.1. Modeling the Immune Response of the Population

As described in Section 5.4, the quality of the immune response of individuals is

determined by multiple factors. However, given the scope of this research, we present an

implementation that only considers the effects caused by immunosenescence with the goal

to associate immunocompetence with demographic characteristics. This factor was selected

given that its importance is highlighted in multiple studies [65][43][2][103]. Additionally,

data for the length of the infectious periods of multiple pathogens is commonly reported

for different age groups [70] [72]. In this implementation, the quality of the immune re-
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Figure 5.4. Viral load quantities and immune responses for 2 different values

of immune response parameters.

sponse of individuals from different age groups was determined based on the reported data

of disease periods for influenza. The World Health Organization (WHO) [42] reports that

an infected adult (group A) is capable of transmitting the flu virus from 5 to 7 days. Sim-

ilarly, infected children (group B) may infect others for up to 21 days with a median of

7-8 days and immunocompromissed individuals (group C) could be infectious for weeks or

months. The immunocompromissed group includes adults 55 and older[50]. We included an

additional group (group D) that represents individuals that have gained immunity to the

disease either by natural or artificial immunization independent of their age. Considering

that the infectious periods of each age group are determined based only on age, it is clear

that the variability observed in the length of the infectious periods within the groups can be

attributed to other factors such as gender, race, etc. Ultimately, each of the age groups is

appointed to represent one type of immune response from the 4 types of immune response

defined in Section 5.2, such that A = R0, B=R−1 , C=R−2 and D=R∗.

In Section 5.4, we exemplify the use of the Wodarz model as a method to determine
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the length of the infectious and latent periods of an individual. In this model, its parameters

can be modified to simulate different immune responses with distinct qualities. For the dis-

ease described below, each age group is associated with multiple levels of immune response

efficacies and efficiencies. Further, as depicted in Section 5.4, the quality of the immune re-

sponse can be represented by parameters g, q, b, h, q, c, and p from the mathematical model.

Considering that the length of the infectious period varies for each age group, the parameters

used to obtain the quality of the immune response of a group are not unique. Thus, the

values for the parameters to simulate the immune response of an age group are calculated

from a particular distribution of values. In table 5.2 we present some of the possible values

used to simulate the immune response of individuals from each group. However, the values

for the simulations presented do not include all possible infectious periods lengths nor all

possible values for the parameter from their distribution. Figure 5.5 depicts the resulting

viral load values for the simulations with the parameter values presented table 5.2. As de-

scribed in Section 5.4, from Figure 5.5 we obtain the latent and infectious period for each

group by evaluating its intersection points with vbl∗. Assuming the time intervals as days,

the latent period (LP ) is 5 days for all groups. Equivalently, the length of the infectious

period (IP ) for each group is: IPA = 5, IPB = 7, IPC = 11, and IPD = 0. Members of

group D can be infected; however, considering the prime quality of their immune response,

they will never develop the disease and thus never become contagious. A similar process is

necessary to obtain all other infectious periods for each age group.

Determining the exact distributions for the parameters of the model in order to reflect

the biological, sociological, and immunological characteristics of an individual is beyond the

scope of this research. In this implementation, the lengths of the infectious period of each

age group are calculated using probability distributions such that each distribution is an

approximation to the data reported in the literature. Figure 5.6 depicts the probability

distributions of the infectious period in each of the groups previously defined. Group A

includes individuals between 14 and 55 years old and their infectious period is calculated

with a normal distribution with mean µ = 6 and standard deviation σ = 1.5. Group B
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Table 5.2. Values used in the model to simulate each immune response group

Symbol A B C D

λ 30 30 30 30

d 0.1 0.1 0.1 0.1

β 0.01 0.01 0.01 0.01

a 0.5 0.5 0.5 0.5

p 0.2 0.1 0.05 0.1

k 0.4 0.4 0.4 0.4

u 2 2 2 2

q 0.006 0.01 0.0025 0.005

g 0.1 0.09 0.025 0.5

h 0.3 0.6 0.3 0.3

c 0.015 0.01 0.003 0.006

b 0.05 0.1 0.02 0.05

Minimum level for transmission

Figure 5.5. Viral load quantities for different values of the immune response parameters.
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includes individuals with ages 0 to 14 and its represented with a Lévy distribution with

location parameter µ = 7 and scale parameter c = 1. The Lévy distribution is depicted in

Equation 21. Finally, group C includes individuals 55 years old or more and their infectious

period is calculated with a Lévy distribution with µ = 8 and c = 4. Ultimately, in the

simulation every individual from each age group is assigned an infectious period following

the probability distribution of its group.

(21) f(x;µ; c) =

√
c
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Figure 5.6. Probability distributions of the infectious period for the three age groups

In the next section, we present multiple experiments to analyze some of the effects of

PIR on the disease dynamics.
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5.5. Experiments

A series of experiments were conducted to exemplify the computational model pro-

posed in the previous section. The simulation commences with the creation of a synthetic

population. From this population, individuals are divided uniformly into four groups. Mem-

bership to three of the four groups is determined by the age of the individual. The three

possible age groups are adult (R0A , A), children (R−B , B), and elderly (R−C, C). Affiliation

to the fourth group is independent from the age of the individual but related to its immune

status (R∗D , D). All non-immune individuals are members of one of the other three groups

(A, B, or C). Affiliation to a specific group was used to determine the quality of its immune

response. We assume a disease in which the quality of the immune response of members

from group A is more effective than those from group B and C. As described in 5.4.1, the

immune response and, consequently, the infectious period for each group is determined by a

probability distribution.

Once the lengths of the periods for each group have been determined, a computation

of the spread of a disease within the groups is required. For this simulation, we utilized

the global stochastic contact model (GSCM). The GSCM is a computational model that

simulates the spread of an infectious disease in a population during an infectious outbreak

[84]. The GSCM simulates the interactions between individuals in the population as the

infection progresses. Based on multiple disease parameters, some of those interactions result

in the transmission of the disease from individual to individual. In the model, multiple groups

of individuals can be created. Each group is assigned values of specific disease parameters to

represent heterogeneous populations. Some of the disease parameters include contact rate,

transmissibility, affinity between clusters, and infectious and latent period lengths. For this

simulation, we uniformly distributed the total population of 4000 individuals into the four

groups previously described. Individuals from each group were assigned its respective latent

and infectious period. Since this simulation is designed to explore the effects of the immune

response, we assume all the other disease parameters to be identical for all groups.
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5.5.1. Experiment I

The first experiment explores the importance of incorporating different immune re-

sponses into the population. This experiment is divided into four cases. Each case consists

of the simulation of infectious outbreaks among homogeneous populations. The populations

in each case consist of communities in which all individuals are members of only one of the

immune response categories R. In each case, individuals are assigned an infectious and latent

period based on their immune response classification. All the other disease parameters are

identical among all individuals for all cases. Each simulation started with the inclusion of a

single infectious individual into the population. The result of every case is the average of 50

simulations. A run is considered an outbreak if more than 1% of the population is infected.

Otherwise, herd immunity or a deficient pathogen transmission is assumed. The results are

summarized in Table 5.3. The table depicts the average number of infected individuals, the

average number of individuals infected at the peak of the outbreak, the day in which the

average peak occurred, and the average day in which the outbreak ended. The table displays

an increased value in the number of infected individuals as the quality of the immune re-

sponse decrease. Additionally, the outbreaks with immunocompromised populations have an

earlier peak and are shorter in duration due to the heightened count of infected individuals

in those experiments. In general, these results display the existence of a variation in the

outbreak dynamics by incorporating an immune response to individuals in a population.

Table 5.3. Experiment 1 results

R Average total infected Average infected at peak Day of peak Average end of outbreak

R0 637.78 17.47 210 563.84

R−1 2979.29 384.24 128 301.16

R−2 3579.45 844.84 117 258.22

R∗ 1 1 1 1
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5.5.2. Experiment II

The second experiment integrated groups A, B, C, and D to explore their effect on

the disease dynamics. Since we are interested in measuring the effects of PIR in the disease

dynamics, the rest of the characteristics of the population follow a homogeneous profile. To

measure the effect of PIR, we computed the total number of infected individuals in each

group and the proportion of the population that they infected. The results reported are

the average over 50 simulations with different random seeds. As before, each simulation is

initialized with a single infectious individual that is randomly assigned to one of the four

groups. The results are summarized in Figure 5.7 and Table 5.4. In the table, we observe that

the distribution of the infected individuals is almost uniform. In contrast, the distribution of

the individuals infected by members of each cluster is biased towards members from group

C.

Table 5.4. Experiment 2 results

Cluster Infected members Infected by members of this cluster

(R0, A) 472.82 371.13

(R−1 , B) 472.86 599.68

(R−2 , C) 475.44 920.93

(R∗, D) 471.62 0

In Figure 5.7, we observe that members from group C are responsible for infecting the

majority of individuals in the population. Individuals from this cluster also have the highest

total infection rate at all times during the outbreak. These effects are a consequence of the

incompetent immune response of the members of this group. This deteriorated response

cannot control the viral growth, resulting in a larger than average vbl among its infected

individuals. Due to the excessive quantity of pathogens, the level of vbl exceeds vbl∗ for a

longer period of time as compared to the other two groups of individuals. Consequently,

members from this group have an increased opportunity to infect others due their longer

infectious period. Although the number of infected individuals in group D is similar to that
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of the other groups, members from this group present a special behavior. Since members

from group D cannot transmit the infection to others, the number of individuals infected by

members of this group is zero. Equation 19 depicts the relationship between infection rates

among all clusters:

∫ π

0

inf by D dt <

∫ π

0

inf by A dt <

∫ π

0

inf by B dt <

∫ π

0

inf by C dt(22)

where π denotes the end of the outbreak.
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Figure 5.7. Cumulative number of individuals infected by members of every

cluster of the population per day.

5.5.3. Experiment III

The third experiment measures the role of PIR in a non-homogeneous population

during an infectious outbreak. In this experiment, the population is divided to represent

different demographic distributions. The population is divided in 3 groups: A (R0), B

(R−1), and C (R−2). Individuals from group D are disregarded from this experiment since

the role of immunized individuals is analyzed in Experiment IV. In this experiment, we varied

the number of individuals assigned to each group in each simulation to represent multiple

distributions of the population. In both cases, the experiment commences by assigning all
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4000 individuals from the population into group A (R0). Consequentially, individuals are

added to the other immune response groups (R−1 and R−2) in increments of 5% to each

group until |A|=0. Figure 5.8 depicts the number of infected individuals in the simulations.

Additionally, Table 5.5 displays the percentage of individuals from the population that was

infected in each simulation. The results presented in the figure and the table are an average

of 50 runs with different seeds for each simulation.
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Figure 5.8. Number of infected individuals per day in a population with

different distributions of R0, R−1 and R−2.

Figure 5.8 depicts the variations in the outbreak dynamics for different combinations

of R0, R−1 and R−2. We observe that the magnitude of the outbreak increases as more

individuals from R0 are moved to the other two groups. Individuals from those groups present

a higher infectious period resulting in increased probabilities of infecting other individuals

from the population. The figure also depicts a variation in the length of the outbreak based

on the number of individuals from R−1 and R−2 . The duration of the outbreak is reduced as

the number of individuals in those groups increases. This effect is produced since individuals

from those groups infect the susceptible individuals at a faster rate. This results in an

exhaustion of susceptible individuals earlier in the outbreak. Further, Table 5.5 shows that

the proportion of infected individuals increases as a larger number of individuals from R−1

76



Table 5.5. Experiment 3 results

Percentage of R0 Percentage of population infected

0 88.68

10 84.90

20 82.26

30 81.09

40 74.08

50 71.80

60 64.47

70 51.16

80 44.18

90 30.42

100 15.94

and R−2 are introduced to the population. These variations indicate that the presence of

fewer individuals from R0 not only affect the duration and magnitude of the outbreak, but

the percentage of infections as well.

5.5.4. Experiment IV

The fourth experiment attempts to measure the effect individuals from group C have

on the outbreak at large under the assumption of different vaccination strategies. Individuals

from group C were selected since the previous experiments showed that members from this

group cause the majority of the infections in the population. Three vaccination strategies

were implemented to represent different intervention scenarios. Each strategy consists of re-

moving a percentage of individuals from group C and incorporating them into the immunized

group (D). Each vaccination strategy removed 0%, 10% and 20% of the members from C,

respectively. The 0% strategy represents a zero-intervention scenario. This scenario is sim-

ulated utilizing the same population and values of disease parameters as in Experiment II.

The other two intervention strategies also use the same values of disease parameters for each
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group, but with a modified population distribution. Similar to the previous experiments,

a single infectious individual was randomly assigned to a group at the beginning of each

simulation. The final result was obtained by averaging the outbreak dynamics over 300 runs

for every strategy. The results from this experiment are divided in two parts: total number

of infected individuals in P and total number of individuals infected by C. The results are

depicted in Figure 5.9 and Figure 5.10, respectively.
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Figure 5.9. Total number of infected individuals from the population per

day after different vaccination strategies.

Figure 5.9 illustrates the different outbreaks in P after each vaccination strategy is

implemented. We observe that the 0% strategy produces the greatest number of infected

individuals and results in the highest infection rate per day compared to the other strate-

gies. On the other hand, the 20% strategy is more effective at limiting the progression of the

disease due to its high number of members in group D. This results in the lowest number

of infected individuals among all strategies. Further, we observe a variation in the length of

the outbreak for each strategy. The 0% strategy results in the shortest outbreak compared

to the other two strategies. This effect is caused by the increased number of individuals with

weak immune response in that strategy. The further reduction of individuals from C, in the

other two strategies, results in a reduced opportunity to infect susceptible individuals that
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could, potentially, spread the disease even further. Consequently, the number of infections is

reduced and the pathogen spread less aggressively, providing a larger population of suscep-

tible individuals for future transmissions as opposed to populations with a more aggressive

progression.
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Figure 5.10. Cumulative number of individuals infected by members from

group C after different vaccination strategies.

Figure 5.10 illustrates the cumulative number of individuals infected by members from

group C for each vaccination strategy. Here, the number of individuals infected by group C

behaves similarly to the total number of infected individuals in Figure 5.9. We observe that

the no-intervention strategy causes the greatest number of individuals infected by members

from group C. Furthermore, the 10% and 20% strategies decrease that count according to

the intervention type, resulting in a reduced number of individuals infected by group C. More

importantly, this result confirms the strong relationship between this group and the general

outbreak. We observe that Figure 5.9 and Figure 5.10 display similar patterns for each

respective outbreak. More realistic strategies can be applied to study the effect of high-risk

groups to the outbreak at large, but this is beyond the scope of this research.
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5.6. Summary

In this chapter, we highlighted the importance of integrating the viral/bacterial load

during an infectious outbreak simulation. This value is utilized to measure the severity

of the disease and the host’s capacity to transmit it. More importantly, we emphasized

the direct relationship between the quality of the immune response and the quantity of

the viral/bacterial load. A stronger immune response controls the growth of the pathogen

more efficaciously. Further, the viral/bacterial load is utilized to determine the length of

the infectious periods. A minimum transmission threshold is established as the minimum

quantity of viral/bacterial load required for an individual to become contagious. Once the

viral/bacterial load surpasses this threshold, the individual becomes contagious and capable

to infect others until his or her load falls below that threshold.

This research introduces the concept of population immune response (PIR). PIR

captures the collective immune response of individuals in a population represented by the

superposition of individual immune responses. A computational model that captures the

effects of PIR on the outbreak dynamics has been presented. This model is divided into

three compartments:

(1) Population and disease database

(2) Immune competence

(3) Infectious disease outbreak simulation

The population and disease database includes demographic information that is used

to determine the efficacy of the immune response of the individuals. The database also

contains disease-specific data utilized to establish the transmission rate and the value of the

minimum infection threshold. The immune competence module is used to determine the

quality of the the immune response of each individual of the population upon infection. In

this chapter, we exemplified this concept by describing a model that simulates the interac-

tion, at a cellular level, between the immune cells and the pathogen during an infectious

process. This mathematical model determines the value of the viral/bacterial load in each

iteration. This value is used to establish the length of the infectious periods by implement-
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ing the minimum infection threshold. The infectious disease outbreak model simulates the

spread of an infectious disease among a population. The population is created based on the

data obtained from the other two compartments. This model must incorporate unique char-

acteristics for every individual and simulate the interactions between them. The execution

of this model captures the disease dynamics during an infectious outbreak.

Finally, multiple experiments were conducted to analyze some of the effects PIR

has on the disease dynamics. The first experiment depicted the existence of a variation in

the outbreak dynamics by incorporating the same immune response to all individuals in a

homogeneous population. The next set of experiments divided the population into three age

groups and an immunized group. Each group was characterized by a unique immune response

quality and thus a different length for its immune periods. A simulation was conducted to

study the spread of a disease within the groups. The results show that individuals with weak

immune responses and those who are immune to the pathogen make a relevant contribution

to the general outbreak. In general, our results suggest that it is essential for the public health

establishment to increase their understanding of the characteristics of regional demographics

in order to monitor and mitigate ongoing epidemics effectively.
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CHAPTER 6

MODELING OUTBREAKS IN GEOGRAPHIC CONTEXT

In chapter 3 and 5, we introduced the concepts of epidemic trajectory and population

immune response, respectively. In this chapter, we will implement those concepts to study

the effects of PIR in the epidemic trajectory. To capture the progression of a disease in a

geographic location, we expanded Mikler et al. global stochastic contact framework (GSCF)

[64]. The GSCF was implemented as a computational model to simulate the spread of a

disease within a population P with elements pi ∈ P in which i = 1, 2, 3, ..., |P |. All elements

pi are spatially distributed in geographical regions rl ∈ R such that l = 1, 2, 3, .., |R|. The

individuals are assigned a value rl based on their location of residence. S(i) is a function

that returns the residence rl of individual i. Additionally, elements of the population are

divided in groups gk ∈ G in which k = 1, 2, 3, .., |G|. Individuals are assigned a group gk

based on their socio-physiological characteristics, such as age or gender. The function G(i)

returns the group membership gk of individual pi. Finally, the function M(gk, rl) returns the

set of individuals that are members of group gk and are located in region rl.

Figure 6.1 depicts a population from the global stochastic contact framework. The

population from the figure is divided into 4 groups distributed over 4 regions. Further, the

quantity of individuals |M(gk, rl)| for a given gk varies for all rl. Furthermore, not all groups

of individuals of the population from Figure 6.1 may have members in all regions.

In this framework, the groups from each region are assigned unique characteristics

to represent a heterogeneous population. In the following section, we describe four socio-

physiological characteristics that can be assigned to individuals, and consequently their

groups, in the global stochastic contact framework.

6.1. Role of Socio-Physiological Characteristics of Individuals

Studies have shown that the socio-physiological characteristics of individuals, such as

age [100] or gender [8], will directly impact their social-behavioral interactions and immune

response quality. Our model represents these relationships through social-behavioral param-
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Figure 6.1. Example of population from the global stochastic contact framework

eters and a parameter that describes the quality of the immune response. The different

social-behavioral parameters considered in this framework are:

• Contact rate

• Mobility

• Group affinity

The contact rate (CR) is the number of contacts an individual initiates every timestep

t ∈ T . In this model, CRi is the unique CR of element pi. For two individuals pi and pj

if G(i) = G(j) then CRi = CRj. In this framework, this equality represents the property

that individuals with similar socio-demographic characteristics have the same CR regardless

of their location. In general, since all individuals from a group gk have the same contact

rate, we define CRgk as the contact rate of individuals that, independent of their region, are

members of group gk.

The mobility mi, 0 ≤ mi ≤ 1, is the proportion of contacts pi directed to individuals

in region S(i). If mi = 0, all contacts occur in the region of pi. Otherwise, if mi = 1, all

contacts are distributed in R − {S(i)}. For two individuals pi and pj, if G(i) = G(j) then

mi = mj . In this framework, this property represents that, since mobility is determined

by socio-demographic characteristics, all individuals from the same group have the same

mobility, regardless of their location. In general, since all individuals from group gk have

the same mobility, we define mgk as the mobility of individuals that, independent of their
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location, are members of group gk.

Group affinity is the likelihood of social interaction between members of two individ-

ual groups. In this model, affinity among groups is determined by the socio-demographic

characteristics of their members and not by their location. Affinity is represented with the

function A(gk, ge) = agk,ge i.e. the affinity between any individual from group gk and any

individual in group ge. For any A(gk, ge):

0 ≤ A(gk, ge) = agk,ge ≤ 1

In this framework, the affinity function is represented as group affinity matrix GA(gk, ge) =

ag,e, in which gk, ge represent two groups in the population. It consists of probabilities for

interactions between different groups. The sum of probabilities for a group gk to contact all

other groups, νgk , is defined in equation 23. Equivalently, the affinity to a group gk from all

groups, σgk , is defined in equation 24. In any given affinity matrix, νgk = 1 and σgk ≥ 0.

(23) νgk =

|G|∑

j=1

GA(gk, gj)

(24) σgk =

|G|∑

j=1

GA(gj, gk)

The parameter that describes the quality of the immune response, IRi, is assigned to

every element pi following the framework defined in Chapter 5. For two individuals pi and

pj if G(i) = G(j) then IRi = IRj i.e. The quality of the immune response of two individuals

is the same, if they are members of the same group. Since all individuals from a group gk

have the same immune response quality value, we define Igk as the immune response quality

value of individuals that, independent of their region, are members of group gk. The value

Igk represents the PIR of a specific group of the population, i.e. if g1 consists of individuals

whose socio-demographic characteristics shape their immune response as immunocompro-

mised, then Ig1 is defined by R−.

In the next section, we present a detailed description of the GSCF contact model and

all of its components.
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6.2. Contact Model

In the contact model, the set P is mapped to 4 subsets: susceptible(S), latent(L),

infectious(I), and recovered(R), thereby representing the components used in the SLIR. We

assume a closed population P for which S ∪L∪ I ∪R = P , S ∩L∩ I ∩R = ∅, and |P | = N .

The progression of the epidemic is represented by the movement of individuals between

compartments during time instances t ∈ T , where T is the duration of the simulation. In

the global stochastic contact framework, contacts are modeled at the regional level at every

timestep t. Each individual from a group gk and region rl contributes to the total number

of contacts originating from the region rl. However, only contacts that originate from an

infectious individual may result in a possible transmission of disease. Let IN(gk, rl) be a

function that returns the set of infectious individuals in group gk and region rl. Since all the

infectious individuals of a region rl contribute to the total number of possible transmissions

originating from their region, the infectious contacts in a given time t, ICo(rl, t) are:

(25) ICo(rl, t) =

|G|∑

b=1

|IN(gb, rl)| ∗ CRgb

To emulate the dynamics of the SIR, we consider all the regions with infectious

individuals as a single force of infection instead of separate efforts. Let κ(t) be a function

that returns the set of regions that have at least one infectious individual at timestep t.

Then the total number of infectious contacts on timestep t, ξ(t), is:

(26) ξ(t) =
∑

s∈κ(t)

ICo(rs, t)

Another feature that we implemented to emulate the SIR mechanics in this model

is the attenuation rate of the force of infection as the number of susceptible individuals

decreases. The attenuation rate represents the reduction in the probability to transmit the

disease for infectious individuals as the epidemic progresses. This variation is caused by the

the reduction in the number of susceptible individuals in the population as the number of
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infectious and recovered individuals increases. Since the demographics of each region are

unique, we calculate the regional attenuation rate λ(rm, t) for region rm as:

(27) λ(rm, t) =
|S(rm, t)|

|Prm|

In which S(rm, t) and Prm represent the set of susceptible individuals and the set of

total individuals in region rm at time t, respectively.

All regional attenuation rates are averaged to obtain the general attenuation rate η(t)

with value:

(28) η(t) =

∑|R|
s=1 λ(rs, t)

|R|

The value η(t) represents the proportion of susceptible individuals in the population

at time t. Further, not all infectious contacts on timestep t, ξ(t), results in transmission of

the disease. The value β represents the chances of disease to be transmitted after a contact

between an infectious and a susceptible individual has occurred. In general, the total number

of transmissions in a given time t, Ω(t) ∈ N are:

(29) Ω(t) = ξ(t) ∗ β ∗ η(t)

The value Ω(t) represents the total force of infection of the population at time t.

However, since in this model contacts are modeled at the regional level, Ω(t) needs to be

distributed between all regions. To determine the number of infectious contacts initiated from

each region, the force of infection Ω(t) is proportionately distributed between all regions.

Let IR(rl) be a function that returns the set of infectious individuals in region rl. The

force of infection Ω(t) is distributed among all regions that have infectious members (κ(t))

proportionally to the size of their set IR(rl). This distribution is calculated based in the

regional distribution rate D(rl). Let D(rl) be:
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(30) D(rl) =
|IR(rl)|∑

s∈κ(t) |IR(rs)|

Since the total force of infection Ω(t) is distributed among all regions based on D(rl),

the total number of transmissions a region rl initiates at timestep t, Γ(rl, t), is

(31) ⌊Γ(rl, t)⌋ = Ω(t) ∗D(rl)

6.2.1. Origin of the Transmission

For every region that is initiating a transmission, it is necessary to determine the

group membership gk of the individual pi that its commencing the infectious contact. To

select the gk of pi, we distribute the force of infection of region rl, Γ(rl, t), among all of

its population. To distribute the transmissions from region rl initiated by individuals from

group gk at timestep t, we calculate the group rate E(rl, gk, t):

(32) E(rl, gk, t) =
|IN(gk, rl)|∑|G|
b=1 IN(gb, rl)|

Since Γ(rl, t) is distributed among all groups from a region based on E(rl, gk, t), the

number of transmissions from region rl initiated by an individual from group gk at timestep

t, Ψ(rl, gk, t), is:

(33) ⌊Ψ(rl, gk, t)⌋ = Γ(rl, t) ∗ E(rl, gk, t)

The value of Ψ(rl, gk, t) is calculated for all groups present in rl and is used to populate

the array ρrl,t. The array ρrl,t is populated with the group membership of the initiators of all

transmissions commenced by rl. For group gk there are Ψ(rl, gk, t) infectious transmissions

originating from it; then the array ρrl,t contains Ψ(rl, gk, t) elements with value gk.
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6.2.2. Types of Transmissions

In this model, transmissions are divided in two types:

(1) Local transmissions LΓ(rl, t), which are the number of transmissions that originate

in region rl and are directed to region rl in time t.

(2) Global transmissions GΓ(rl, t), which are the number of transmissions that originate

in region rl and are directed to all regions besides rl in time t.

To determine the types of transmission each region commences, we define γrl, 0 ≤

γrl ≤ 1, as the proportion of transmissions initiated by individuals from region rl that are

directed to individuals within region rl. Additionally, let ̺(rl) be a function that returns the

set of individuals that are located in region rl. Let γrl:

(34) γrl =

∑
i∈̺(rl)

mi

|̺(rl)|

The value γrl is used to calculate the number of global and local transmissions that

each region initiates:

• The number of local transmissions LΩ(rl, t) is:

(35) LΓ(rl, t) = γrl ∗ Γ(rl, t)

• The number of global transmissions GΓ(rl, t) is:

(36) GΓ(rl, t) = (1− γrl) ∗ Γ(rl, t)

6.2.3. Interaction Coefficient

For all global transmissions, multiple factors determine the likelihood of a region

interacting with all other regions. In this model, that interaction is defined by the interaction

coefficient. The interaction coefficient as proposed by Mikler et. al. in [64] is defined as

the product of the populations of the regions divided by the distance between them. The

interaction coefficient represents the notion that populous regions have a higher interaction

rate between themselves than with more sparsely populated regions. Also, the likelihood of
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Figure 6.2. Values for the linear and quadratic interaction coefficients in a

uniform population

interaction is directly impacted by the distance between regions. For any two regions rl and

rm, the most frequently used interaction coefficients IC(rl, rm) are:

(37) IC(rl, rm) =
|̺(rl)| ∗ |̺(rm)|

dist(rl, rm)

(38) IC(rl, rm) =
|̺(rl)| ∗ |̺(rm)|

dist(rl, rm)2

A higher value for IC(rl, rm) represents an increased likelihood of interaction between

region rl and rm. Both interaction coefficients equations consider the impact of the distance

between regions, however, equation 38 attributes a greater weight to the distance. The

difference between both equations is depicted in Figure 6.2. In the figure, the population

is assumed to be homogeneous in all regions. Independently of the interaction coefficient

method, the values for population density and distances between regions can differ signif-

icantly between pairs of regions. Normalizing this value will reduce the variations among

them. By normalizing the original values, the interaction coefficient is assigned a value

between 0 and 1. The normalized interaction coefficient ICN(rl, rm) is:
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(39) ICN(rl, rm) =
IC(rl, rm)∑|R|

k=0,k 6=l IC(rl, rk)

The function ICN is represented using a ICN matrix E. In this matrix, element

erl,rm represents the interaction coefficient between region rl and rm. The sum of interaction

coefficients from a region rl to all other groups ηrl is defined in equation 40. Equivalently,

the interaction coefficient from all regions to a region rl, σ(rl), is defined in equation 41. In

any given ICN matrix, ηrl = 1 and σrl ≥ 0.

(40) ηrl =

|R|∑

j=1

Erl,rj

(41) σrl =

|G|∑

j=1

Erj ,rl

6.2.4. Distribution of Infectious Transmissions and Disease Progression in Individuals

Once the transmissions from a region rl have been divided in local and global, it is

necessary to determine the location rm to which one or more of those transmissions will be

directed to. If the transmission is local then the destination region rm = rl. Otherwise, the

normalized interaction coefficient of rl with all other regions is used to randomly select a

rm. The selection of rm is determined by a random experiment in which a higher normalized

interaction coefficient value between regions rl and rs results in increased probabilities to

select rs as the destination region.

After, selecting rm as the destination region, an individual pj from that region must

be selected as the receiver of the transmission. However, since affinities between individuals

are determined at the group level, it is necessary to select the group ge of pj to later select

pj. To select the group destination, it is necessary to use the array ρrl,t. As described in

subsection 6.2.1, the array ρrl,t is populated with the group membership of the initiators of

all transmissions commenced by rl. We extract one element from this array to obtain the

group membership gk of the initiator of an specific transmission. The group membership of
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ge is used to establish the group affiliation gl of pj with the use of the group affinity matrix

GA(ge, gk). A higher value in the group affinity matrix between groups gl and gs results in

increased probabilities to select gs as the destination group. Ultimately, the selection of gl

is conducted by a weighted random experiment in which the group affinity matrix produces

a bias in the experiment.

Once a group is selected, a random experiment is used to select a susceptible individual

pj from within S in group gl and change its status to latent (L). Following, we determine the

destination of the next transmission that originates from rl. This process is repeated until

the number of transmissions for rl in time t are exhausted. After all transmissions from rl

have been distributed, we continue with the next region. Finally, once all transmissions have

been distributed, it is necessary to update the infection status for all individuals. Individuals

in the latent compartment remain in that compartment until their latent period terminates.

Once individuals terminate that period, they immediately move from L to I and commence

infecting others. Individuals in I remain infectious for the duration of their infectious period

and then migrate to the recovered compartment. Once the infection status of all individuals

has been updated, we repeat the general process and start the computation of day t + 1.

This process is performed as long as there are infectious individuals.

In the next section, we present a series of experiments that use a computational

implementation of the global stochastic contact framework.

6.3. Experiments

Four experiments were conducted to explore the effects of multiple geographic, im-

munological, and socio-demographic characteristics of the population have on the disease

dynamics. To investigate those effects we conducted simulations in a model that mimics the

concepts of the global stochastic contact framework in the counties of Sumter, Florida and

Denton, Texas. Those counties were selected considering the divergence of the age demo-

graphic characteristics between each other. For instance, Table 6.1 depicts the contrasting

distributions of the populations in Sumter and Denton. For instance in Denton TX., 16

percent of individuals are over 55 years and 23.2 percent under 15[95] whereas 63.12 percent
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of the population in Sumter, FL. are over 55 and 7.4 under 15 [96]. In the model, the popu-

lations of each county were generated and placed in the geographic space using census data

from 2010. Further, the census data was used to separate the populations into the three age

groups.

Table 6.1. Population distribution in Sumter, FL and Denton, TX.

Group (age range) Sumter, FL. Denton, TX.

Adult (15-55) 27,494 402,402

Children (0-14) 6,951 153,741

Elderly (56+ 58,975 106,471

Total 93,420 662,604

In this research, we feature the function of the age demographic characteristics of the

population in an epidemic since its role in determining the quality of the immune response of

individuals has been highlighted in multiple studies [65] [43] [2] [103]. Additionally, data for

the length of the infectious periods of multiple pathogens is commonly reported for different

age groups [70] [72]. In this experiments, the quality of the immune response of individuals

from different age groups was determined based on the reported data of disease periods for

influenza. The World Health Organization (WHO) [42] reports that an infected adult (group

A, 14 and 55 years old) is capable of transmitting the flu virus from 5 to 7 days. Similarly,

infected children (group B, 0 to 14 years old) may infect others for up to 21 days with a

median of 7-8 days and immunocompromissed individuals (group C) could be infectious for

weeks or months. The immunocompromissed group includes adults 55 and older[50].

In addition to the variances in the age demographic distribution, Sumter and Denton

also present different population densities and geographic distributions. Figure 6.3 and

Figure 6.4 depict the population distribution and population density of Sumter, FL and

Denton, TX respectively. In Figure 6.3, we observe that the county of Sumter accommodates

half of its population in 69.1 sq km of its territory and half in 1347.4 sq km. Furthermore,

the densely populated area consists almost entirely of elderly population. In contrast, the

remainder of the county hosts a more diverse population distribution.
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Figure 6.3. Distribution of the entire population and for each age group for

Sumter, FL.

In Figure 6.4, the census blocks are divided in categories based on the number of

individuals that reside in each block. The categories are designed to accommodate similar

proportions of the population, i.e. category 1-20 includes a similar number of census blocks

as category 92-2004. Given the large quantity of census blocks with population of zero

individuals, those census blocks are assigned a unique category to avoid them from distorting

the proportions of the other categories. Furthermore, we compare the distribution between

age groups in the entire region by using the same categories to determine the population

distribution for each age group and for the entire population. In the figure, we observe that

the entire population and the individuals from each group in Denton county are sparsely

distributed in its territory. Additionally, we observe that all age groups have a similar

presence in all regions. In general, these figures highlight the differences in the population
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distribution and population density between the two counties.
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Figure 6.4. Distribution of the entire population and for each age group for

Denton, TX.

For this experiments, the lengths of the infectious period of each age group are calcu-

lated using probability distributions such that each distribution is an approximation to the

data reported in the literature. Figure 6.5 depicts the probability distributions of the length

of the infectious period in each of the groups previously defined. Group A includes indi-

viduals between 14 and 55 years old and their infectious period is calculated with a normal

distribution with mean µ = 6 and standard deviation σ = 1.5. Group B includes individuals

with ages 0 to 14 and its represented with a Lévy distribution with location parameter µ = 7

and scale parameter c = 1. The Lévy distribution is depicted in equation 21. Finally, group

C includes individuals 55 years old or more and their infectious period is calculated with a

Lévy distribution with µ = 8 and c = 4. Ultimately, during the simulation, every individual

94



from each age group is assigned an infectious period following the probability distribution

of its group.
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Figure 6.5. Probability distributions of the infectious period for the three age groups

The output from every simulation is the properties of the epidemic trajectory for that

population, disease and geographic region. We compare the properties of two trajectories

following the methodology defined in 3.3. Since these experiments are designed to explore

the effects of multiple geographic, immunological, and socio-demographic characteristics of

the population, we assume all other disease parameters to be identical for all groups.

6.3.1. Experiment I

The first experiment aims to display the consistency of the methodology to compare

the properties of similar epidemic trajectories in Sumter, FL and Denton, TX, respectively.

We conducted 2 sets of 50 outbreak simulations in each population in which all individuals

are considered to be adults (group A). The length of their infectious period is set to 6, such
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that the duration of their IP is the mean of the probability distribution of this age group. In

this experiment, the first set of 50 samples from a region were compared with the second set

of the same region. This comparison aims to highlight the correctness of the methodology

whenever the trajectories are expected to be practically equal.

In Table 6.2 we present a summary of the data from each set of simulations. In the

table we observe that the statistics of both samples are almost identical among each region.

To test the similarity of the distribution of the data of both samples we performed a Welch

t-test and a Levene test.

Table 6.2. Summary of data of Experiment I for Sumter and Denton.

Sumter Denton

Sample n MFI Std. Dev Std. Err. Mean n MFI Std. Dev Std. Err. Mean

1 50 41.1962 1.0973 0.1551 50 50.1951 0.2272 0.0321

2 50 40.9184 1.0903 0.1541 50 50.1955 0.2500 0.0353

To test the similarity of the mean force of infection (MFI) between the samples of

each region, we conducted a Welch t-test with the use of the function “t.test” in R[82]. The

input for the function were the subsets π(i) from each simulation from each region. The

results are presented in table 6.3.

Table 6.3. Results from the Welch t-test in Experiment I for Sumter and Denton

Sumter Denton

t df p 95 % CI t df p 95 % CI

Lower Upper Lower Upper

1.2698 97.996 0.2072 -0.1563 0.7119 -0.0084 97.122 0.9933 -0.0952 0.0944

By analyzing the results from table 6.3, we conclude that there was no significant

difference between the MFIs of Sumter and Denton, respectively. In Sumter, the H0 is

accepted since p = 0.2072 > α = .05 for sample 1 (MFI=41.1962, SD=1.0973) and sample

2 (MFI=40.9184, SD=1.0903). Similarly in Denton, the H0 is accepted since p = 0.9933 >

α = .05 for sample 1 (MFI=50.1951, SD=0.2272) and sample 2 (MFI=50.1955, SD=0.2500).
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Additionally, we conducted a Levene test to determine the similarity in variances. As

described in section 3.3, the test required the conversion of the original data. The conversion

was performed following equation 7. Table 6.4 depicts the data summary for the modified

samples, including the modified mean force of infection (MMFI), for Sumter and Denton.

Similarly to the data in table 6.3, the statistics of the samples of both regions are similar

among counties.

Table 6.4. Summary of modified data used in Experiment I for the Levene

test for Sumter and Denton

Sumter Denton

Sample n MMFI Std. Dev Std. Err. Mean n MMFI Std. Dev Std. Err. Mean

1 50 0.9084 0.6016 0.0850 50 0.1955 0.1199 0.0169

2 50 0.8093 0.7233 0.1022 50 0.1994 0.1511 0.0213

The Levene test was conducted with an implementation in R of the method described

in Section 3.3. In this implementation, the calculation of the test statistic is obtained with

a two-sided t-test on the modified data of each county. The results for Sumter and Denton

are presented in table 6.5.

Table 6.5. Results from the Levene test in Experiment I for Sumter and Denton

Sumter Denton

tl df p 95 % CI t df p 95 % CI

Lower Upper Lower Upper

0.745 98 0.4581 -0.1649 0.3631 -0.1437 98 0.886 -0.0580 0.0502

From the results depicted in table 6.5, we conclude that there was no significant

difference in the variances of Sumter and Denton. In Sumter, the H0 is accepted since p =

0.4581 > α = .05 for sample 1 (MMFI=0.9084, SD=0.6016) and sample 2 (MMFI=0.8093,

SD=0.7233). Similarly in Denton, the H0 is accepted since p = 0.886 > α = .05 for sample

1 (MMFI=0.1955, SD=0.1199) and sample 2 (MMFI=0.1994, SD=0.1511). Essentially, the
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acceptance of the H0 indicates that the degree of cooperation towards the progression of the

disease is similar for both samples.

In general, since the means and variances of both samples for both regions are sig-

nificantly equivalent, we conclude that there is strong evidence that both samples were

extracted from the same population. Further, this experiment highlights the consistency of

the method to compare the properties of two trajectories that result from an epidemic with

similar characteristics.

6.3.2. Experiment II

To expand the analysis presented in Experiment I, we conducted a similar experiment

in which the length of the infectious period of each individual is based on its age group and

the quality of the immune response of its group. Similarly to Experiment I, we conducted 2

sets of 50 outbreak simulations for Sumter and 2 sets of 50 outbreak simulations for Denton.

In this experiment, the IP of each individual is determined by its group membership and

the probability distribution described in section 6.3. Finally, the first set of each region

was compared with the second set of the same region to highlight the correctness of the

methodology to capture the equality of two similar trajectories in spite of the effects of PIR.

The summary of the data used in this experiment, for both Sumter and Denton, is presented

in Table 6.6.

Table 6.6. Summary of data used in Experiment II for Sumter and Denton

Sumter Denton

Sample n MFI Std. Dev Std. Err. Mean n MFI Std. Dev Std. Err. Mean

1 50 67.1596 0.9270 0.1311 50 85.5206 0.2965 0.0419

2 50 66.9981 0.8792 0.1243 50 85.5711 0.2396 0.0338

The Welch t-test was conducted using the same approach as in Experiment I. The

results obtained from this calculation are presented in Table 6.7.

98



Table 6.7. Results from the Welch t-test in Experiment II for Sumter and Denton

Sumter Denton

t df p 95 % CI t df p 95 % CI

Lower Upper Lower Upper

0.894 97.727 0.3735 -0.1970 0.5201 -0.936 93.873 0.3517 -0.1575 0.0565

By analyzing the results from table 6.7, we conclude that there was no significant

difference in the MFIs of Sumter and Denton. In Sumter, the H0 is accepted since p =

0.3735 > α = .05 for sample 1 (MFI=67.1596, SD=0.9270) and sample 2 (MFI=66.9981,

SD=0.8792). Similarly in Denton, the H0 is accepted since p = 0.3517 > α = .05 for sample

1 (MFI=85.5206, SD=0.2965) and sample 2 (MFI=85.5711, SD=0.2396).

Table 6.8. Summary of data used in Experiment II for the Levene test for

Sumter and Denton

Sumter Denton

Sample n MMFI Std. Dev Std. Err. Mean n MMFI Std. Dev Std. Err. Mean

1 50 0.7449 0.5672 0.0802 50 0.2357 0.1864 0.0263

2 50 0.6906 0.5351 0.0756 50 0.1780 0.1603 0.0226

Similarly to Experiment I, we converted the original data to conduct the Levene test.

The conversion was performed following equation 7 and Table 6.8 depicts a summary for the

modified samples. The results of this test are depicted in Table 6.9.

Table 6.9. Results from the Levene test in Experiment II for Sumter with PIRBoth

Sumter Denton

tl df p 95 % CI t df p 95 % CI

Lower Upper Lower Upper

0.4924 98 0.6236 -0.1645 0.2731 1.6566 98 0.1008 -0.0114 0.1266

From the results depicted in table 6.9, we conclude that there was no significant
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difference in the variances of Sumter and Denton. In Sumter, the H0 is accepted since p =

0.6236 > α = .05 for sample 1 (MMFI=0.7449, SD=0.5672) and sample 2 (MMFI=0.6906,

SD=0.5351). Similarly in Denton, the H0 is accepted since p = 0.1008 > α = .05 for sample

1 (MMFI=0.2357, SD= 0.1864) and sample 2 (MMFI=0.1780, SD=0.1603). Essentially, the

acceptance of the H0 indicates that the degree of cooperation towards the progression of the

disease is similar for both samples.

Overall, considering that the means and variances of both samples for both regions

are significantly equivalent, we conclude that there is strong evidence that both samples were

obtained from the same population. Further, this experiment emphasizes the consistency

of the method to compare the properties of two trajectories that represent epidemics with

similar characteristics in spite of the incorporation of PIR.

6.3.3. Experiment III

The third experiment aims to identify variations in the properties of the trajectories

of an epidemic in a region with a homogeneous population and a region with a population

with differentiated PIR. By introducing the effects of PIR in the population, we expect

to observe a difference in the properties of the trajectory of the epidemic. The potential

difference was measured by performing a Welch t-test and a Levene test on the data points.

A summary of the data used for this experiment is presented in Table 6.10. In the table we

observe a variation on the central tendency parameters. However, this variations need to be

statistically measured to reach any conclusions.

Table 6.10. Summary of data used in Experiment III for Sumter and Denton

in a homogeneous population and a population with differentiated PIR

Sumter Denton

Sample n MFI Std. Dev Std. Err. Mean n MFI Std. Dev Std. Err. Mean

1 50 41.1962 1.0973 0.1551 50 50.1951 0.2272 0.0321

2 50 66.9981 0.8792 0.1243 50 85.5711 0.2396 0.0338
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Using the same approach as in Experiment I and II, we conducted the Welch t-test

on the data summarized in Table 6.10. The results from this test are presented in Table

6.11.

Table 6.11. Results from the Welch t-test in Experiment III for Sumter and

Denton in a homogeneous population and a population with differentiated PIR

Sumter Denton

t df p 95 % CI t df p 95 % CI

Lower Upper Lower Upper

-129.7 93.554 2.2 × 10−16 -26.1 -25.4070 -757.2978 97.727 2.2 × 10−16 -35.4687 -35.2833

From the results depicted in table 6.11, we conclude that there was a significant

difference between the MFIs of Sumter and Denton. In Sumter, the H0 is rejected since p =

2.2×10−16 < α = 0.05 for sample 1 (MFI=41.1962, SD=1.0973) and sample 2 (MFI=66.9981,

SD=0.2015). Similarly in Denton, the H0 is rejected since p = 2.2 × 10−16 < α = 0.05

for sample 1 (MFI=50.1951, SD=0.2272) and sample 2 (MFI=85.5711, SD=0.2396). The

difference in the means indicates that the distribution of the first population is different than

the distribution of the second population. Considering that the MFI of each sample is the

central tendency value for the force of infection, we can conclude that there was a variation

of this parameter during the progression of the disease. Additionally, the small width of the

confidence intervals for Sumter (0.7897) and Denton (0.1854), highlight the high precision

of the result.

To compare the variances of the two samples of each population we conducted the

Levene test. We converted the data following equation 7 and Table 6.12 depicts a summary

for the modified samples. The modified samples were used to perform the test and the results

obtained are presented in Table 6.13.

From the results depicted in table 6.13, we conclude that there was no significant

difference in the variances of Sumter and Denton. In Sumter, the H0 is accepted since p =

0.4581 > α = .05 for sample 1 (MMFI=0.9084, SD=0.6016) and sample 2 (MMFI=0.8093,
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Table 6.12. Summary of data used in Experiment III for Sumter and Denton

in a homogeneous population and a population with differentiated PIR

Sumter Denton

Sample n MMFI Std. Dev Std. Err. Mean n MMFI Std. Dev Std. Err. Mean

1 50 0.9084 0.6016 0.0850 50 0.1955 0.1199 0.0169

2 50 0.6906 0.5351 0.0756 50 0.1780 0.1603 0.0226

Table 6.13. Results from the Levene test in Experiment III for Sumter and

Denton in a homogeneous population and a population with differentiated PIR

Sumter Denton

tl df p 95 % CI t df p 95 % CI

Lower Upper Lower Upper

1.9128 98 0.0586 -0.0081 0.4438 0.6165 98 0.539 -0.0387 0.0736

SD=0.7233). Similarly in Denton, the H0 is accepted since p = 0.886 > α = .05 for sample 1

(MMFI=0.1955, SD=0.1199) and sample 2 (MMFI=0.1994, SD=0.1511). The acceptance of

the H0 indicates that the shape of the distribution did not change between samples. Further,

the similarity reflects a comparable degree of contribution towards the epidemic from the

census blocks in both populations. Furthermore, the small width in the confidence intervals

for Sumter (0.4357) and Denton (0.0349), indicate a high precision in the results.

The results from the tests revealed that the shape of the distribution of the properties

of the trajectories is similar between samples for homogeneous populations and populations

with differentiated PIR in both regions. However, the results also exhibited a shift in mean

force of infection between the samples of those aforementioned populations. Hence, this

result exposed fluctuations in the properties of the epidemic trajectories produced by the

incorporation of a differentiated PIR into the population.
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6.3.4. Experiment IV

The final experiment depicts and measures the effects PIR produced in the outbreak

dynamics in the county of Sumter compared with the effects it generated in Denton county.

To examine those effects, we conducted simulations in homogeneous populations and popu-

lations with differentiated PIR in both Sumter and Denton. Since, these experiments explore

the effects PIR produced in the outbreak dynamics, all individuals follow a homogeneous

contact profile. Figure 6.6 depicts the average number of infected individuals per day in both

homogeneous populations and populations with differentiated PIR in Sumter and Denton.

For ease of visualization, this figure does not portray the end of those epidemics and only

presents results until day 1200. In the figure, we observe that the shape of the epidemic in

the simulations in which the populations are homogeneous follows a traditional bell shape

curve. However, the epidemics in which we incorporate PIR, the peak is followed by a long

tail. The long tail is caused by the longer infectious periods of the elderly and children

populations. The prolonged epidemics are caused by individuals with a prolonged infectious

period since they are presented with an increased opportunity to infect individuals in regions

that, otherwise, will not be reached.
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Figure 6.6. Number of infected individuals per day in homogeneous popu-

lations and populations with PIR in Sumter and Denton

To quantitatively estimate the effects PIR caused in a particular region, we measured
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the variation of the mean force of infection of the epidemic in the experiments with homoge-

neous populations and those with differentiated PIR. In order to contrast the effects of PIR

in both regions, we compared the variation in Denton with the variation in Sumter. In table

Table 6.14 we present a summary of the information depicted in Table 6.10 of the results

from the experiments with homogeneous populations and populations with differentiated

PIR for Sumter and Denton.

Table 6.14. Mean force of infection for Sumter and Denton in a homogeneous

population and a population with differentiated PIR

Sumter Denton

Experiment MFI MFI

Homogeneous 41.1962 50.1951

PIR 66.9981 85.5711

However, since both populations are different, aiming to compare the effects of PIR in

the two regions using the data from Table 6.14 is not accurate. In our model, each interaction,

and, consequently, the mean force of infection (MFI), is driven by three main factors: contact

rate, population, and infectious period. Those factors are unique in each census block since

they are calculated based on the demographic characteristics of the population of every

block. Furthermore, the characteristics of a census block might change in experiments with

a homogeneous population and in experiments that include PIR. Subsequently, in order to

compare two regions, it is necessary to normalize the MFI of each experiment to a common

scale. The force of infection is converted to the normalized force of infection, x̂, with the use

of equation 42

(42) x̂1 =
x̄

CRA ∗ PA ∗ IPA + CRC ∗ PC ∗ IPC + CRE ∗ PE ∗ IPE

in which PA, PC , PE, CRA, CRC , CRE , IPA, IPC , IPE are the population, contact

rate, and infectious period of the adults, children, and elderly, respectively. However, since
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these experiments were constructed with the goal of exploring the effects PIR produced in

the outbreak dynamics, all individuals follow a homogeneous contact profile. Consequently,

the value of the contact rate is equal for all groups and equation 42 can be simplified to

equation 43.

(43) x̂2 =
x̄

PA ∗ IPA + PC ∗ IPC + PE ∗ IPE

The values for the population of each group are obtained from Table 6.1. Further, the

infectious period for each age group is the rounded mean of 20000000 values extracted from

each age probability distribution presented in Figure 6.5. The value of the infectious period

of each age group are: IPA= 6, IPC= 10, and IPE= 15. Furthermore, for a homogeneous

population, in which all individuals are considered to be adults, the value for IP is six for

all individuals. Table 6.15 depicts the normalized values for the mean force of infection

(NMFI) for each experiment. The normalized values for both experiments were calculated

using equation 43.

Table 6.15. Normalized mean force of infection for Sumter and Denton in a

homogeneous population and a population with differentiated PIR

Sumter Denton

Experiment NMFI NMFI

Homogeneous 0.0000734964 0.00001262553

PIR 0.0000568708 0.00001513098

Variation 0.0000166252 0.000002505453

We observe in Table 6.15 that the variation caused by incorporating PIR in Sumter

is six times greater than the variation produced in Denton. The increased variation in

Sumter indicates that the effects of incorporating PIR in regions with an increased elderly

population are greater than those in which the population is more diverse. In general, these

results indicate that the age demographics, and subsequently the immune response quality, of
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a region greatly influences the properties of the trajectory of the epidemic and, consequently,

the outbreak dynamics.

6.4. Summary

In this chapter, we introduced a formal definition of the global stochastic contact

framework (GSCF) and explored the effects of the population immune response (PIR) in the

outbreak dynamics. We conducted that study in the counties of Sumter, FL and Denton,

TX. with the use of a computational implementation of this framework. In the GSCF,

the population is spatially distributed in geographic regions and individuals are assigned

a group memberships based on their socio-physiological characteristics. To reflect those

characteristics, we use the group membership to establish the value of the contact rate,

mobility, group affinity, and the quality of the immune response of the individuals.

In this framework, interactions are modeled at the regional level such that each con-

tagious individual from a region will contribute to the number of possible transmissions its

region initiates. However, since this framework aims to mimic the dynamics of the SIR,

the transmissions from all regions are combined and, subsequently, distributed among the

entire set of regions proportionally to their number of infectious individuals. Once a region

is selected as the origin of the transmission, the infection can be directed to an individual of

the same region or be aimed to an individual in an external region. If a transmission is aimed

to an external region, we determine its destination by the use of an interaction coefficient.

In this research, we define the interaction coefficient as the product of the populations

of the regions divided by the distance between them. The interaction coefficient represents

the notion that populous regions have a higher interaction rate between themselves than with

more sparsely populated regions. Also, the likelihood of interaction is directly impacted by

the distance between regions. Once the destination region has been selected, it is necessary

to determine the individual to whom the transmission will be directed to. This resolution

is determined by the group membership of the individual originating the infection and the

affinity of its group to the other groups. This process is repeated until there are no more

infectious individuals.
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We conducted four experiments that highlighted the crucial role of the demographic

and immunological characteristics of the population during the progression of an epidemic

in a geographic space. All experiments simulate the spread of an influenza epidemic in the

counties of Sumter, Florida and Denton, Texas. Those counties were specifically selected for

their differences in age demographics. In these experiments, we simulated the progression

of the disease in homogeneous populations and populations with differentiated PIR. In the

homogeneous populations all individuals are assumed to be adults. However, in the popu-

lations with PIR the age of the individuals is determined by the use of the census data of

2010. Consequently, the age group of the individual is used to determine the length of its

infectious period.

In the first and second experiment, the statistical method clearly indicated consistency

while comparing the properties of similar trajectories. The trajectories compared originated

from either two regions with homogeneous populations or two regions with populations with

PIR. The results indicated the correctness of the method to compare the properties of two

trajectories that result from an epidemic with similar characteristics. Further, the third

experiment investigated the variations in the properties of the trajectories of an epidemic in

a region with a homogeneous population and a region with a population with differentiated

PIR. The results from this experiment highlighted the change in the force of infection after

incorporating PIR into the population.

Finally, the last experiment depicted and measured the effects PIR produced in the

outbreak dynamics in Sumter county compared with the effects it generated in Denton. We

observed that the variation caused by incorporating PIR in Sumter is six times greater than

the variation produced in Denton. The increased variation in Sumter indicates that the

effects of incorporating PIR in regions with an increased elderly population are greater than

those in which the population is more diverse. In general, these results indicated that the

age demographics and the immune response quality of individuals in a geographic region

greatly influence the outbreak dynamics.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1. Summary

Computational epidemiology aims to provide new and robust tools to public health

officials for policy and decision making. In this research, we highlighted the importance

of developing tools that incorporate social/behavioral and physiological characteristics to

the populations of study. Furthermore, we developed methods and models that integrate

those characteristics and measure the effects they inflict on the outbreak dynamics. In the

following section we present a summary of the methods and results from each chapter.

7.1.1. Epidemics in Time and Space

In Chapter 3, we introduced the concept of epidemic trajectory and studied some

of its properties. An epidemic trajectory is defined as a path, with multiple branches, of

a contagion process that spreads in a fuzzy neighborhood. Further, we considered that the

properties that define the characteristics of that path are the force of infection and the

transmission trend. To analyze those properties, we developed a model that simulates the

transmission of the disease in a population. In this model, the disease spreads at the regional

level, such that the transmission of disease from a region A to region B is represented by

a directed edge between A and B. This approach allows to represent all transmissions as a

complete directed weighted graph. Furthermore, we developed a method to compare two

epidemic trajectories in two populations.

This method determines statistical significance of the variations in the properties

of the trajectory of two epidemics and asserts the statistical significance of incorporating

variations to the population characteristics. By means of statistical tests, we contrasted the

characteristics of two epidemic trajectories. If statistical similarity is observed, we conclude

that there is strong evidence that both samples were extracted from the same trajectory.

This result discourages the incorporation of the parameter that we expected would cause

a significant variation in the epidemic. Contrarily, the rejection of the similarity by the
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test statistics, indicates that the variations were not caused by randomness and further

investigation on the parameter that caused that fluctuation must be conducted.

7.1.2. Modeling Social/Behavioral Characteristics

In Chapter 4, we introduced an infectious-disease transmission model in which the

contact patterns between individuals create a social network in which the infectious individ-

uals and the population at large interact. Based on this social network, different person-to-

person interaction probabilities can be expressed and hence integrated into the model. The

model was further expanded to include clusters of individuals representing differentiated so-

cial groups. The social network determines the interaction behavior in each group. Group

behaviors are expressed by their corresponding inter and intra cluster interaction frequency

and affinity. Finally, we assessed the effects of incorporating differentiated behavior into the

model and its relevance to the outbreak by implementing and constructing multiple exper-

iments. The results indicate that the inclusion of heterogeneity and diverse group behavior

into an outbreak simulation is important to achieve a more realistic and complete prediction.

7.1.3. Modeling Physiological Differences

In Chapter 5, we highlighted the importance of integrating the viral/bacterial load

during an infectious outbreak simulation. This value is utilized to measure the severity

of the disease and the host’s capacity to transmit it. More importantly, we emphasized

the direct relationship between the quality of the immune response and the quantity of

the viral/bacterial load. A stronger immune response controls the growth of the pathogen

more efficaciously. Further, the viral/bacterial load is utilized to determine the length of

the infectious periods. A minimum transmission threshold is established as the minimum

quantity of viral/bacterial load required for an individual to become contagious. Once the

viral/bacterial load surpasses this threshold, the individual becomes contagious and capable

to infect others until his or her load falls below that threshold.

We defined the concept of population immune response (PIR). PIR captures the col-

lective immune response of individuals in a population represented by the superposition of
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individual immune responses. A computational model that captures the effects of PIR on

the outbreak dynamics has been presented. This model is divided into three compartments:

population and disease database, immune competence, and infectious disease outbreak simu-

lation. The population and disease database includes demographic information that is used

to determine the efficacy of the immune response of the individuals. The database also

contains disease-specific data utilized to establish the transmission rate and the value of the

minimum infection threshold. The immune response upon infection of each individual is

determined by the immune competence module. In this research, we exemplified this cal-

culation with a mathematical approach that models the immune response of an individual

during viral infection. The mathematical model determines the value of the viral/bacterial

load in each iteration. This value is used to establish the length of the infectious periods

by implementing the minimum infection threshold. The infectious disease outbreak model

simulates the spread of an infectious disease among a population. The population is created

based on the data obtained from the other two compartments. This model must incorporate

unique characteristics for every individual and simulate the interactions between them. The

execution of this model captures the disease dynamics during an infectious outbreak.

Last but not least, we analyzed some of the effects PIR has on the disease dynamics.

Our results suggested that it is essential for the public health establishment to increase their

understanding of the augmented role of the immune response as a function of the socio-

demographic characteristics of the population and its prominent role during the epidemic

progression.

7.1.4. Modeling Outbreaks in Geographic Context

In Chapter 6, we introduced a formal definition of the global stochastic contact frame-

work (GSCF) and explored the effects of the population immune response (PIR) in the

outbreak dynamics. We conducted that study in the counties of Sumter, FL and Denton,

TX with the use of a computational implementation of this framework. In the GSCF, the

population is spatially distributed in geographic regions and individuals are assigned a group

memberships based on their socio-physiological characteristics. To reflect those characteris-
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tics, we used the group membership type to establish the value of the contact rate, mobility,

group affinity, and the quality of the immune response of the individuals.

In this framework, interactions are modeled at the regional level such that each infec-

tious individual from a region contributes to the number of possible transmissions its region

initiates. However, since this framework emulates the dynamics of the SIR, the transmissions

from all regions are combined and, subsequently, distributed among the entire set of regions

proportionally to their number of infectious individuals.

We conducted four experiments that highlighted the crucial role of the demographic

and immunological characteristics of the population during the progression of an epidemic

in a geographic space. All experiments simulate the spread of an influenza epidemic in the

counties of Sumter, Florida and Denton, Texas. These counties were specifically selected

for their great differences in age demographics. In these experiments, we simulated the

progression of the disease in homogeneous populations and populations with differentiated

PIR.

The results highlight the change in the force of infection after incorporating PIR into

the population. Furthermore, we conducted an experiment that compared the effects PIR

produced in the outbreak dynamics in Sumter county compared with the effects it generated

in Denton county. We observed that the variation caused by incorporating PIR in Sumter is

six times greater than the variation produced in Denton. The increased variation in Sumter

indicates that the effects of incorporating PIR in regions with an increased elderly population

are greater than those in which the population is more diverse.

In general, this research highlights the importance of incorporating behavioral changes

and immunological characteristics when investigating the spread of diseases in populations.

We presented multiple methods and simulations to support the inclusion of those factors into

mathematical and computational models. Based on the evidence presented, we encourage

public health officials to carefully examine the effects of demographics and corresponding

physiological characteristics when preparing for an infectious disease epidemic.
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7.2. Future Work

Although the results presented in this document have highlighted the importance of

incorporating behavioral changes and immunological characteristics during the study of the

spread of diseases in populations, we recognize that this work can be further extended in the

following ways:

7.2.1. Study of Clustering of Regions during the Epidemic Progression

When we introduced the concept of trajectory of an epidemic, we defined a method-

ology that analyzes the progression of the disease from one region to another. However,

we consider that our methodology could be expanded to capture the infectious clustering of

regions during an epidemic. An infectious cluster of regions represents a group of regions

that mostly transmit the disease among themselves. However, some of the transmissions

from this group are directed to regions outside the cluster. Identifying and studying this

clusters is an important effort since it can lead to the implementation of strategies that could

diminish the spreading of a pathogen in the population.

7.2.2. Effects in the Transmission Trend

The methodology to compare the properties of two epidemics presented in this re-

search provides an analysis of the changes caused in the force of infection between two

trajectories. However, the effects caused in the transmission trend are not analyzed. We

consider that studying the transmission trend is important, since any changes in appeal or

affinity of a region could result in changes in the degree to which regions interact. Future

studies will focus in different characteristics of the population such as affinity and interaction

coefficient.

7.2.3. Estimation of the quality of the immune response

In this research, we introduced a methodology to calculate the immune response

quality of the individuals from the population with the use of demographics and an immune

response model. However, given the scope of this research and the limited data available, we

calculated the population immune response quality with the use of probability distributions
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and the reported data from the World Health Organization. We consider that our method-

ology could be further augmented with the use of realistic data. However, such data has yet

to be collected. Furthermore, considering that our study highlighted the augmented role of

the demographics of a population in shaping the outbreak dynamics, we encourage public

health officials to capture the required information.

7.2.4. Study of combination of heterogeneous parameters

In this research, we presented a profound analysis of the importance of incorporat-

ing behavioral changes and immunological characteristics during the study of the spread of

diseases. We highlighted the effects produced by those characteristics in the epidemic tra-

jectory and, eventually, the outbreak dynamics. However, we consider that this study could

be expanded by introducing variations in the rest of the disease and population parameters.

Some of the parameters that could be expanded are the contact rate, mobility, and trans-

missibility. In general, future studies would analyze the effects of multiple combinations of

factors in the epidemic progression and, ultimately, the disease dynamics.
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APPENDIX

LIST OF SYMBOLS
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Table A.1. List of symbols for Chapter 2

Symbol 〈Name〉 Definition

S Susceptible

L Latent

I Infectious

R Recovered

ǫ 〈epsilon〉 Latency rate

γ 〈gamma〉 Recovery rate

β 〈beta〉 Force of infection
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Table A.2. List of symbols for the methodology of Chapter 3

Symbol 〈Name〉 Definition

P Population

pi Individual from the population

ǫ 〈epsilon〉 Disease type

R Geographic space

ra Region from the geographic space

Mt(ra, rb) Numerical value of transmissions commenced by ra and directed to rb

Mt Matrix that stores a sample trajectory

TP,R,ǫ Total possible trajectories for a P , R, and ǫ

G(t) Graph representation of Mt

γ(t, i) 〈gamma〉 Total number of interactions initiated by individuals from region ri

δ(t, j) 〈delta〉 Total number of interactions in which individuals from rj were contacted

deg+(i) Out-degree of vertix i in G(t)

deg−(j) In-degree of vertix i in G(t)

∆(t) 〈Delta〉 Transmission trend of the epidemic for trajectory t

Γ(t) 〈Gamma〉 Force of infection of R

τ(P,G, ε) 〈tau〉 Set of all sets of Γ(t) for a P , R, and ǫ

Υ(P,G, ε) 〈Upsilon〉 Set of all sets of ∆(t) for a P , R, and ǫ

|E| Number of experiments

π(i) Properties of the force of infection

η(i) 〈eta〉 Properties of the transmission trend

x̄i Mean force of infection of a region

X(E, t) Group of all x̄i of a trajectory

X(E, t) Mean force of infection (MFI)
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Table A.3. List of symbols for the comparison methods of Chapter 3

Symbol 〈Name〉 Definition

H0 Null hypothesis

α 〈alpha〉 Level of significance

Ha Alternative hypothesis

tw Welch t-test t statistic

x̄i Sample mean for sample i

s2i Sample standard deviation for sample i

ni Sample size for sample i

v Degrees of freedom

t(α2 , v) Critical value of Welch t-test

CI Confidence interval

tl Levene test t statistic

Xs Original sample

xi,s Element from Xs

X̃s Median of sample Xs

Ys Modified sample

yi,s Element from Ys

SY1−Y2 Standard error of the difference between the means

LP Latent period

IP Infectious period
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Table A.4. List of symbols for Chapter 4

Symbol 〈Name〉 Definition

P Population

pi Individual from the population

N Population size

S Susceptible

L Latent

I Infectious

R Recovered

CR Contact rate

ti Timestep in the epidemic

tπ End of the epidemic

LP Latent period i

IP Infectious period

ci Cluster of the population

Ω 〈Omega〉 All groups from the population

A(ci, cj) Affinity function between two clusters

δj 〈delta〉 Affinity to a cluster from all clusters

γi 〈gamma〉 Affinity from a cluster to all clusters

̺ 〈rho〉 Pivot group

CR̺ Contact rate of the pivot group

A(ci, c̺) Affinity to the pivot group

CRj Contact rate of group j

118



Table A.5. List of symbols for Chapter 5

Symbol 〈Name〉 Definition

R0 Average immune response

R+ Hyperimmune response

R− Hypoimmune response

R∗ Immune

vbl Viral/bacterial load

vbl∗ Transmission threshold

PIR Population immune response

LP Latent period i

IP Infectious period

IPA Infectious period of group A

Table A.6. Model parameters for the Wodarz model in Chapter 5

Symbol 〈Name〉 Definition

λ 〈lambda〉 Production rate of uninfected cells

d Death rate of uninfected cells

β 〈beta〉 Infection rate of uninfected cells by viruses

a Death rate of infected cells

p Lysis rate of infected cells by the CTL response

k Production rate of virus by infected cells

u Decay rate of viruses

q Neutralization rate of viruses by antibodies

g Development rate of antibodies in response of virus exposure

h Decay rate of antibodies

c Development rate of CTL in response to infected cells

b Decay rate of CTL
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Table A.7. List of symbols for the socio-physiological characteristics of in-

dividuals in Chapter 6

Symbol 〈Name〉 Definition

P Population

pi Individual from the population

R Geographic space

ra Region from the geographic space R

S(i) Residence rl of individual i

G Groups in the population

gk A group from the set of groups G

G(i) Group membership gk of individual pi

M(gk, rl) Set of individuals from group gk and reside in region rl

CRi CR of element pi

CRgk Contact rate of members of group gk

mi Proportion of contacts pi will direct to individuals in its own region (mobility)

mgk Mobility of individuals that are members of group gk

A(gk, ge) Affinity between any individual from group gk and any individual in group ge

GA(gk, ge) Group affinity matrix

νgk 〈nu〉 Sum of probabilities for a group gk to contact all other groups

IRi Quality of the immune response of individual pi

Igk Immune response quality value of individuals that are members of group gk.
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Table A.8. List of symbols for the contact model in Chapter 6

Symbol 〈Name〉 Definition

S Susceptible

L Latent

I Infectious

R Recovered

CR Contact rate

IN(gk, rl) Set of infectious individuals in group gk and region rl

ICo(rl, t) Number of infectious contacts originating from region rl in a given time t

κ(t) 〈kappa〉 Set of regions that have at least one infectious individual at timestep t

ξ(t) 〈xi〉 Total number of infectious contacts on timestep t

λ(rm, t) 〈lambda〉 Regional attenuation rate of region rm

S(rm, t) Set of susceptible individuals in region rm at time t

Prm Set of total individuals in region rm at time t

η(t) 〈eta〉 General attenuation rate

β 〈beta〉 Transmissibility

Ω(t) 〈Omega〉 Total number of transmissions in a given time t

IR(rl) Set of infectious individuals in region rl

D(rl) Regional distribution rate of Ω(t)

Γ(rl, t) 〈Gamma〉 Total number of transmissions a region rl initiates at timestep t
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Table A.9. List of symbols for the contact model in Chapter 6 cont.

Symbol 〈Name〉 Definition

gk Group of the individual pi that its commencing the infectious contact

E(rl, gk, t) Group rate of Γ(rl, t)

Ψ(rl, gk, t) 〈Psi〉 Number of transmissions from region rl initiated by an individual from

group gk at timestep t

ρrl,t 〈rho〉 Array with the group membership of the initiators of all transmissions

commenced by rl

LΓ(rl, t) 〈Gamma〉 Number of transmissions that originate in region rl and are directed to

region rl in time t

GΓ(rl, t) 〈Gamma〉 Number of transmissions that originate in region rl and are directed to

all regions besides rl in time t

γrl 〈gamma〉 Proportion of transmissions initiated by individuals from region rl that

are directed to individuals within region rl

̺(rl) 〈rho〉 Set of individuals that are located in region rl.

IC(rl, rm) Interaction coefficient between region rl and rm

ICN(rl, rm) Normalized interaction coefficient between region rl and rm

E Normalized interaction coefficient matrix

erl,rm Normalized interaction coefficient between region rl and rm in matrix E

ηrl 〈eta〉 Sum of interaction coefficients from a region rl to all other groups

σ(rl) 〈sigma〉 Interaction coefficient from all regions to a region rl

rl Region that originates the transmission

rm Destination region

gk Group membership of the originator of the transmission

ge Group membership of the individual that the disease is transmitted

pj Individual to whom the disease is transmitted

MFI Mean force of infection

MMFI Modified mean force of infection
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