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Security is a primary concern in this era of pervasive computing. Hardware based 

security mechanisms facilitate the construction of trustworthy secure systems; however, 

existing hardware security approaches require modifications to the micro-architecture of 

the processor and such changes are extremely time consuming and expensive to test and 

implement. Additionally, they incorporate cryptographic security mechanisms that are 

computationally intensive and account for excessive energy consumption, which 

significantly degrades the performance of the system. 

In this dissertation, I explore the domain of hardware based security approaches 

with an objective to overcome the issues that impede their usability. I have proposed 

viable solutions to successfully test and implement hardware security mechanisms in real 

world computing systems. Moreover, with an emphasis on cryptographic memory 

integrity verification technique and embedded systems as the target application, I have 

presented energy efficient architectures that considerably reduce the energy consumption 

of the security mechanisms, thereby improving the performance of the system. The 

detailed simulation results show that the average energy savings are in the range of 36% 

to 99% during the memory integrity verification phase, whereas the total power savings 

of the entire embedded processor are approximately 57%. 
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CHAPTER 1

OVERVIEW

The current trends in technology have allowed computing systems to evolve into

complex forms. Personal computers, smart-phones, PDAs, network sensors, and network

routers etc., have become ubiquitous in this era of computing. As the dependence on these

systems increase, so also does the sensitivity of information stored in them. This information

may include confidential personal data like secret passwords, credit card numbers and bank

account numbers etc. Thus information security has now become imperative so as to prevent

these systems from leaking out this critical information to unauthorized entities.

In general, computer security aims at providing confidentiality, integrity, and avail-

ability to computing systems. Confidentiality is breached when information is accessible to

an unwanted and unauthorized entity. This entity could be a human, a software program

or another computing system. Similarly, integrity is infringed when information is modified

by such an entity and availability is broken when this entity succeeds in making the host

computing system not serve legitimate user requests.

There are two approaches to provide security in a computing system. The first is to

include software protection mechanisms like software obfuscation, watermarking, encryption,

isolation, and so forth. The root of trust is entrusted in the security of the operating system

(OS). However commodity OS are significantly large with huge code base and are often prone

to security vulnerabilities. The most common software attack that exploits the software

vulnerabilities in application code and OS is the Buffer Overflow Attack [11]. Software

solutions share their memory with other softwares and the OS that could potentially contain

a vulnerability and hence provide an entry point to an attack. Moreover, this kind of security

cannot protect a system from a physical attack. Thus the security they provide is inadequate.

The second solution is more effective. The idea is to add some hardware security mechanisms

that can provide tamper evident and tamper resistant environment [44, 35]. These include

secure processor architectures like ABYSS [71], AEGIS [67], Arc3D [22], XOM [38], and
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HIDE [78] that propose modifications to the processor architecture. Typically they employ

hardware Encryption/Decryption and Memory Integrity Verification (MIV) mechanisms to

protect the confidentiality and preserve the integrity of the applications. Thus the root of

trust is delegated in the security provided by the secure hardware architectures. Hardware

support for security facilitates the construction of trustworthy secure systems. However,

there are two significant issues that hinder the adoption of secure hardware architectures.

These issues are described in Section 1.1 and form the crux of this research in terms of

problem definition and motivation.

1.1. Problem Statement and Motivation

• The secure hardware architectures require changes to the micro-architecture of the

processor and such changes are extremely time consuming and expensive to test

and implement. This is where, we derive our first motivation. A virtualization

layer can be used to test the security of an architecture. This provides a time

and performance efficient alternative to actual hardware testing. Also, once an

architecture is successfully tested for its security, the entire virtualized setup can be

used to secure applications running on a cloud service platform.

• The second issue with these architectures is that they incorporate cryptographic

security mechanisms that are computationally intensive and account for excessive

energy consumption. While this may not be a big issue in desktop computers and

large servers, it certainly becomes a huge problem in embedded systems. Embedded

systems are highly resource constrained. Most of these devices are battery powered

and it is essential to have minimal energy consumption in-order to achieve high speed

and performance. Therefore, the motivation is to propose secure but light weight

cryptographic alternatives so that the energy overhead imposed is minimal. In this

research, the emphasis is specifically on reducing the energy overhead imposed by

the MIV mechanism in embedded processors.
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1.2. Novel Contributions of this Dissertation

The major contributions of this dissertation are as follows.

• The first contribution is to provide a platform to test the hardware security mecha-

nisms in a time and cost effective manner. For this, we have proposed the Virtual-

ization Based Secure Framework (vBASE) that leverages the power of virtualization

technology to realize hardware security mechanisms inside the virtualization layer.

This makes the testing process flexible, time & cost efficient and comparatively easy

as against actual hardware testing. This is demonstrated in the proposed vBASE

Testing framework.

• We then present the vBASE Execution framework — SecHYPE and CTrust with a

primary goal to prove the practicality of secure hardware architectures, once they

are thoroughly tested. The inclusion of hardware security inside the hypervisor

leads to the design of a secure hypervisor framework - SecHYPE. With cloud com-

puting as the target application, we propose the Cloud Trust architecture - CTrust

that deploys the SecHYPE framework to provide root of trust and security to the

applications running in the cloud.

• The focus of the research then shift towards the performance overhead imposed by

the hardware security mechanisms. We have concentrated specifically on reducing

the energy consumption of the cryptographic MIV mechanism. The first technique

that we have proposed is the Memory Detect and Protect mechanism (MEM-DnP),

which relies on a sensor module to detect any memory based attack on the system.

The MIV operation is only carried out in an event of an anomaly i.e., when the

fluctuations exceed the threshold value VT . The simulation results show that the

average energy savings are in the range of 85.5% to 99.998% during the integrity

verification phase.

• The second technique is the Timestamps Verification (TSV) mechanism. This

scheme is based on the principle of locality and uses timestamps to uniquely iden-

tify the memory block written to the memory. The simulation results show that the
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energy savings are in the range from 36% to 81% during the integrity verification

phase.

• Finally, we present the Hash Function-Less Verification mechanism to completely

eliminate the performance cost of invoking a Hash Function during the MIV. The

simulation results prove that this mechanism reduces the power consumption of an

embedded processor by 57.24%. This is a significant improvement considering most

embedded devices are battery powered.

1.3. Organization of this Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents our proposed

Virtualization Based Secure Framework (vBASE). There are two flavors of vBASE framework

— Testing framework that is used to test the security of a given secure hardware architecture

and an Execution framework that constitutes the SecHYPE and CTrust, which are used

for secure and trustworthy application execution in cloud computing platforms. Chapter

3 briefly discusses the cryptographic memory integrity verification (MIV) mechanism and

describes the proposed MIV architecture and an algorithm to calculate total number of hash

invocation required during the execution of a program. Chapter 4 describes our first energy

efficient MIV solution known as the Memory Detect and Protect (MEM-DnP). Here, we

have demonstrated how on-chip sensors can be used to detect a memory based attack on

an embedded system. The MIV is executed only when there is an attack on the system.

This leads to significant energy savings as exhibited in the simulation results. Chapter

5 presents our second energy efficient MIV solution, called the Timestamps Verification

(TSV) mechanism. This scheme exploits the principle of locality to reduce the number MIV

invocations, thereby reducing the energy consumption of the processor. Finally, Chapter 6

describes the Hash Function-Less Verification mechanism, where the aim is to completely

eliminate the cost of invoking a hash function during the MIV process, thus significantly

reducing the power consumption of the processor. Chapter 7 presents the conclusion of this

dissertation.
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CHAPTER 2

VIRTUALIZATION BASED SECURE FRAMEWORK (VBASE) 1

2.1. Introduction

The recent years have seen a wide scale growth, adoption, and popularity of the vir-

tualization technology (VT) [68], to provide efficient and cost-effective usage of expensive

hardware. VT not only increases hardware utilization through server consolidation but also

provides benefits for application development and testing [70]. VT introduces a software

abstraction layer or virtualization layer (virtualization software) between the hardware and

the operating system, thus decoupling them from each other. This software abstraction layer

is known as the virtual machine monitor (VMM) [61] or the hypervisor. A VMM/hypervisor

allows the user to create multiple virtual machines (VMs) on a single physical hardware plat-

form, each capable of running an OS and its applications. A virtualization software emulates

the underlying hardware to provide a known interface for the OS and applications to run on.

The virtual CPU, memory, storage, and the introspection APIs in a VMM/hypervisor can be

modified to mimic any given secure hardware architecture. This makes it easier, time, and

cost efficient to test the security of a hardware architecture as compared to on-chip testing.

Besides, the combination of hardware secure architectures with the virtualization software

can strengthen the security of the hypervisors. They can then be used to provide trust and

security to the applications running in cloud computing systems. With this motivation, we

have presented two different designs of the vBASE framework: vBASE Testing and vBASE

Execution framework.

The vBASE framework is implemented on top of the XEN VMM/hypervisor [5], an

open-source virtualization software. Therefore our framework uses some of the components

already provided by XEN. However, it is important to stress that the security mechanisms

implemented in the vBASE framework are generic to any virtualization software and so the

1Parts of this chapter have been previously published, either in part or in full, from [34] with permission
from IASTED and Actpress, [50] with permission from IEEE and [51] with permission from Academy of
Science.
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vBASE framework can be easily ported to another VMM/hypervisor. Since vBASE adheres

to the structure of XEN VMM, it is worthwhile to discuss briefly, the architecture of XEN

before presenting the vBASE framework. The XEN VMM/hypervisor is the basic abstraction

layer (virtualization software) that resides directly on the hardware below the OS. It emulates

the underlying hardware and is responsible for CPU scheduling and memory partitioning

in order to allow multiple VMs to run on a single hardware platform. XEN controls the

execution of all the VMs running on it, however it has no knowledge of networking, external

storage devices, video, or any other common I/O functions found in a computing system.

The XEN structure defines two types of VMs: Domain 0 (DOM 0) and Domain U (DOM U).

Domain 0 is a privileged VM that has the capability to access physical I/O resources and

communicate with other VMs running on the system. In its simplest form, a Domain 0 is

a modified Linux kernel, that must be running on all XEN platforms before any other VM

could be started. Domain U is an unprivileged VM that is provided to the users to host

their applications.

The rest of this chapter is organized as follows. Section 2.2 describes the vBASE

Testing framework and its core software components. Section 2.3 presents the vBASE Ex-

ecution framework that constitutes the secure hypervisor framework - SecHYPE and the

cloud trust architecture - CTrust. The prototype implementation of vBASE framework is

presented in Section 2.4 followed by detailed analysis in Section 2.5. Section 2.6 details the

previous related research. Finally Section 2.7 presents the conclusion of the vBASE research

project.

2.2. vBASE Testing Framework

The primary goal of the proposed vBASE Testing framework is to provide a test

bench to evaluate the security capabilities of given hardware architecture. This provides a

time and cost efficient alternative to on-chip hardware testing. The framework is shown in

Figure 2.1. The main components of this framework are - secure architecture plugin interface

(SAPI), secure application, event trigger mechanism, monitor and the controller.
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Modified XEN Hypervisor

Privileged VM (DOM 0) Unprivileged VM (DOM U)

Secure Hypercall

Attacks
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VIRQ

Event Trigger
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DOM 0 Kernel

Monitor

Controller -
Attack Suite

DOM U Kernel

Secure
Application

Figure 2.1. vBASE Testing Framework

2.2.1. Secure Architecture Plugin Interface (SAPI)

The SAPI is a generic interface exposed by the vBASE framework to embed any

secure architecture within the XEN VMM. SAPI is a collection of APIs which are used to

modify the virtual CPU (VCPU), virtual memory management unit (VMMU) and provide

memory introspection functions into the modified components of XEN. Secure architectures

are typically changes to the CPU and memory of the hardware which facilitates secure

execution and isolation of a process. These components are available as software modules in

XEN. These modules are modified to resemble a particular secure architecture. As shown

in Figure 2.1, the SAPI primarily has three components: modified VCPU API, modified

VMMU API and modified memory introspection API. The modified VCPU API has all the

set of functions which modifies the Virtual CPU provided by XEN. These modifications
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include providing encryption and decryption capabilities to the processor, add additional

secure registers, modify or implement new cache memories etc. The modified VMMU has

set of functions which enhance the existing virtual memory management unit provided by

XEN. These changes include switching on/off the conventional virtual memory layout of

the OS, encryption and decryption functions for main memory and adding additional access

restrictions to the secure process memory pages. The modified memory introspection API

enhances the memory monitoring features provided by XEN.

2.2.2. Secure Application

This is a special process whose data needs to be protected from attacks on the system.

This process is aware of the security mechanisms provided by the secure architecture plugged

in to the vBASE framework. Secure applications or processes protect their confidential data

by storing them in specialized protected memory regions.

2.2.3. Event Trigger Mechanism

Event trigger provides a mechanism to initiate inter-VM communication. Tradition-

ally, XEN provides some mechanisms and tools like split device driver, xenstore, grant tables,

and ring buffers to carry out inter-VM communication. However the primary drawback of

these mechanisms and tools is that they need the support from DOM U kernel to initiate

communication. The vBASE framework assumes all DOM U kernels to be untrustworthy

and vulnerable to attacks. Hence instead of using the traditional mechanisms, a new hy-

percall mechanism independent of the DOM U kernel, has been developed. A hypercall

works similar to a system call in an OS. It is an interrupt, INT 82h in XEN that is used to

switch the control between the kernel and the XEN hypervisor. The hypercall interrupts the

processor and is trapped in XEN using the hypercall handler functions. A new mechanism

was developed to interrupt the processor from ring-3 of a DOM U VM. This is developed

by using the CPUID instruction. The CPUID is meant to report processor features to user-

level applications. A custom code — 0x92h was developed as an argument for the CPUID

instruction that can trap into the XEN VMM from DOM U user-space. At that point, the

8



control is transferred to the hypercall handler which will issue a virtual interrupt (VIRQ) to

the DOM 0. VIRQ is a software interrupt, notified by setting up a bit in the Virtual CPU

data structure present in XEN. It is used for communication from XEN to the VM kernel.

2.2.4. Monitor

It is a program running in the DOM 0 that receives notifications about the secure

application, through the Event Trigger mechanism. It is responsible for monitoring critical

events pertaining to the secure application and detect any possible attacks on it. It contains

a monitoring script, which is a collection of watch events and actions to be performed when a

particular event occurs. During secure execution, monitoring is carried out at multiple layers

such as, application layer: secure and normal applications, OS layer, hypervisor layer and

the secure architecture layer. In the application layer, common events that are monitored are

API function calls, library calls, network API calls and messages encapsulating secret keys

etc. At the OS layer, monitoring is done for software interrupt handlers, virtual memory

mappings, memory accesses, I/O accesses, process scheduling and so on. At the hypervisor

layer, common events are instruction execution, interrupt handlers, memory translations,

page fault mechanism and so forth. Finally, the events monitored at the secure architecture

layer are secure instruction entry and exit points, secure page fault mechanism, accesses to

secure memory locations and registers etc.

2.2.5. Controller

The secure hardware architectures must be rigorously tested against various attacks.

The Controller is a comprehensive attack suite made up of host and network based attacks.

During the execution of the secure application, the controller mounts attacks on different

layers of the system stack. A vulnerability at any layer in the stack is exploited to generate an

attack scenario. At the application layer, an attack is attempted to breach the confidentiality

and integrity of process’s code and data, inject malicious code during function calls, exploit

library calls, intercepting network traffic etc. At the OS layer, attacks attempt to modify the

virtual memory mappings, values passed to software interrupts and system calls, kernel level

9



data structures, I/O messages and so forth. At the hypervisor layer, attacks are aimed to

tweak the inter-VM memory mappings, parameters passed to hypercalls and interrupts and

I/O data packets etc. Finally, the plugged-in secure architecture is also attacked by trying

to read/modify its secure registers, modifying its essential data structures, attempt to leak

its cryptographic keys and so on.

2.2.6. Framework Functioning

The first step of the functioning is to plug-in a secure architecture by using the generic

interface provided by the SAPI. Once this is done, the VCPU, VMMU and virtual memory

introspection functions are appropriately modified to align with the plugged-in secure archi-

tecture. All the information pertaining to the security mechanisms provided by the secure

architecture is then reported to the Monitor through the Event Trigger mechanism. The

Monitor, thus now has complete visibility and understanding of the secure regions within

the secure architecture. The secure application can then start executing in an unprivileged

VM. A secure application identifies its critical confidential data and then transitions to secure

execution state. In the proposed framework, this is achieved by invoking a secure hypercall

enter vbase. Once the secure application invokes this hypercall, the secure architecture and

the Monitor are informed about the secure execution of the application. Its now the respon-

sibility of the secure architecture to protect the confidential data of the application, while

the Monitor is responsible for tracking all the necessary events related to the application.

While the application is executing securely, the Monitor informs the Controller to conduct a

series of attacks on the secure application. The secure application can exit secure execution

by invoking the exit vbase hypercall. At this instant, the Monitor stops tracking the events

while the Controller suspends its attacks. Once the secure application terminates, all the

events recorded by the Monitor are logged. This log serves as a benchmark to judge the

effectiveness of the security mechanisms provided by the secure architectures.
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2.3. vBASE Execution Frameworks - SecHYPE and CTrust

This Section presents the second type of vBASE framework called the Execution

framework. The target application of this framework is cloud computing. It has been

designed and developed with an intention to provide trust and security to the applications

executing in cloud computing platforms.

2.3.1. Introduction

Cloud computing [46], envisions universal access to a shared pool of configurable re-

sources such as compute, storage, network, and software. In the recent years, cloud comput-

ing platforms have procured great success due to its cost effectiveness, flexibility, increased

storage, and elasticity. It provides on-demand computing, where the customer has complete

control on its services to the finest granularity and can tailor them based on their needs.

Cloud computing allows consolidation of resources thus enabling new applications. Currently

e-commerce, on-line auctioning companies, travel agencies and other such services use clouds

to provide services to their users.

In-spite of several advantages, the adoption of cloud computing is impeded by critical

security issues. The National Institute of Standards and Technology (NIST), has identified

security as a primary concern in cloud computing. Security issues in cloud arise at different

levels: infrastructure level, software service level and user level. Prior research [9, 64, 10, 56]

exemplify how security vulnerabilities in cloud are exploited by motivated attackers. A recent

global information security survey, Into the Cloud, Out of Fog [28] conducted by Ernst &

Young in November 2011 states that 72% of respondents see an increasing level of risk due

to increased external threats in cloud computing.

Cloud computing currently relies heavily on VT to virtualize the CPU and storage

resources so as to meet its elastic demands. VT provides security by isolating the execution

of each OS and its applications in a VM. Thus a security breach in one VM does not affect the

working of other VMs. However, isolation security is inadequate to protect an application

from a malicious OS or another application running in the same VM. Thus additional security

measures have to be incorporated in the virtualization softwares to provide security in cloud

11



computing platforms. The security challenges in cloud computing can be reduced to, how to

establish root the trust and to protect the confidentiality and integrity of the applications in

the cloud. A VMM can be used as the root of trust. Given a small footprint of the VMM,

it would be reasonable to verify its correctness and thus the security of a VMM. As shown

in Section 2.2, it is possible to plugin a secure hardware architecture inside a VMM and this

modified secure VMM can be used to provide security to the applications executing in the

cloud. Here, the VMs are run on top of the modified secure VMM. Thus the root of trust

for the applications is relegated in the security of the VMM.

2.3.2. SecHYPE Framework

The idea behind the SecHYPE framework is to bolster the security features of a

virtualization software, so that it can be used as a root of trust for user applications running

in the cloud. The main advantage of this approach is that the underlying hardware need

not be modified in order to accommodate additional security features. We have already

demonstrated in Section 2.2 that it is feasible to realize and implement secure hardware

architectures inside the XEN VMM. Once, a particular hardware architecture is thoroughly

tested and proven to be secure, can be ported in cloud computing platforms to provide

security to the applications. We call this secure hypervisor as the SecHYPE framework,

shown in Figure 2.2.

The SecHYPE framework is very similar to the vBASE Testing framework in terms

of its software components and overall operation. The only exception is the Controller

component. The Controller is a software component of vBASE framework that is used to

launch attacks on secure Applications during the testing phase. It is a consolidated attack

suite that inter-operates with the Monitor program to thoroughly test the security features

of the secure hardware architecture under test. However, there is no need to launch attacks

on applications during the executon phase and therefore, the Controller is not present in the

SecHYPE framework. The rest of the components and framework functioning remains the

same as in the vBASE testing framework.
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Figure 2.2. SecHYPE Framework

2.3.3. CTrust Framework

The intuition behind the CTrust architecture is to deploy the SecHYPE framework

in a cloud environment to provide security and root of trust to the applications running

in the cloud. Figure 2.3 shows the proposed CTrust architecture. This represents a proto-

type implementation of a private cloud built on top of the SecHYPE framework. In this

architecture, the cloud is composed of a cluster of real computing machines known as the

physical nodes. The nodes could be easily added to the cloud based on its load. Each node

is connected to each other via a physical network. The CTrust architecture is implemented

on XCP 1.0 [72] that contains XEN hypervisor version 3.4.x and CentOS with 2.6.32.x Linux

kernel. Since the SecHYPE framework is developed by modifying the XEN hypervisor, it is

possible to replace the original XEN hypervisor in XCP 1.0 with the SecHYPE framework.
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The CTrust architecture is implemented with one HVM unprivileged VM. A HVM domain

is a type of XEN VM which is capable of running unmodified OS (e.g. Windows). The

HVM domain has been chosen to implement CTrust for two reasons. The first reason was

to present a solution which doesn’t require changes to the OS. The second reason is that

the HVM guests have great paging support available in XEN API. However, it is important

to stress that the same solution would be easier to port to PV domains also. The primary

reason for this is that a PV domain runs a modified OS which is aware of the changes done

by the underlying VMM.
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Figure 2.3. CTrust Architecture

A secure application can be under an attack from multiple avenues in a cloud envi-

ronment. The attacks can be (but are not limited to) network based attacks, attacks from

an external malicious VM or even parent VM and even attacks from applications running in
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the same VM. The secure hardware architecture inside the SecHYPE framework is responsi-

ble for protecting against these attacks. The security strength of the hardware architecture

determines the overall security of the cloud platform. If an attack is beyond the security

realms of the hardware architecture, then that particular attack would succeed. Hence it is

the decision of the cloud provider to determine the level of security desired and to choose the

most suitable hardware architecture. There are several advantages of the CTrust architec-

ture: it does propose and enforce a new security mechanism, but instead empowers the cloud

provider with the flexibility of choosing the most favorable security mechanism. It enables

the cloud vendor to provide security assurance to its clients, thus honoring the service level

agreements (SLAs). And finally, a client application can utilize the security mechanisms

exposed by this architecture and achieve security during the epoch of application execution.

2.4. vBASE Prototype Implementation

This section presents a prototype implementation of the vBASE framework. The

overall process is described in Algorithm 1. It is important to emphasize that the prototype

implemented is just a small instance of framework. This prototype serves as a proof of

concept to prove the effectiveness of the framework. This implementation includes a very

simple secure hardware architecture functionality and not a fully functional architecture.

The implementation is not as powerful as the framework itself as its primary goal is to

show the readers how the various components of vBASE work with each other during secure

execution. The secure application runs in a HVM DOM U and once it begins execution, it

allocates a chunk of memory for secure data/variables. Later the secure process allocates

memory from this secure chunk, to the secure data/variables. The implemented secure

architecture protects this chunk of memory from any memory based attacks. To achieve

this, the secure process copies the virtual address of the secure chunk of memory and passes

it to the hypervisor. The size of the secure chunk of memory is aligned with that of the

memory pages. It is relatively easier to mark the pages read-only than making individual

memory locations read-only.
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Algorithm 1 Secure Process Execution

1: Secure application/process begins execution.

2: It allocates secure memory buffer.

3: Transmit virtual address (VA) of secure memory buffer through a ring3 hypercall.

4: Receive VA in hypercall handler in the hypervisor.

5: Compute guest frame number (GFN) for the VA.

6: Compute machine frame number (MFN) for the GFN.

7: MFN is marked read-only.

8: Dispatch VIRQ to the DOM 0 kernel.

9: Dispatch a SIGNAL from DOM 0 kernel to the Monitor program.

10: Monitor prints the events to user.

The primary advantage of vBASE implementation is that, it eliminates the OS in

making the secure process’s memory read-only. To achieve this, it uses the CPUID instruc-

tion. All other instructions except CPUID are short circuited to the OS’s interrupt table

and do not directly trap in to the VMM. The CPUID, on the other hand, traps directly

into the VMM. This instruction was originally intended to report processors features to

ring-3 software applications. It takes various parameters and reports different features of the

processor depending on those parameters. A custom parameter: 0x92, has been added to

the CPUID instruction. This parameter is passed in the eax register and takes the virtual

address of the secure memory in the ebx register. The secure application code containing

the CPUID instruction is trapped in the VMM. The VMM recognizes the operand 0x92 and

passes the virtual address to the SAPI component. In the SAPI component, the virtual

address is translated into Guest Frame Number (GFN) and eventually into Machine Frame

Number (MFN). This MFN is then made read-only and a Virtual Interrupt (VIRQ) is sent

to the DOM 0. The VIRQ is handled by the kernel module in the DOM 0 and it notifies

the Monitor through a Signal. The Monitor prints the confirmation message to the user and

the secure process resumes its execution. Since the secure memory pages are protected by

the VMM, even overwriting requests from OS will be ignored. The xm daemon will report
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char secure_mem[PAGE_SIZE] secure_memory __attribute__ ((

__aligned__(PAGE_SIZE)));

Listing 2.1. Secure Memory Allocation

long * secret_key =(long *) secret_mem;

*secret_key = 654321;

Listing 2.2. Secret Key Linked to Secure Memory

if any such attempts to overwrite the read-only (secure) pages is done.

We now present the source code implementation of vBASE. In the listing 2.1, a chunk

of memory: secure mem of PAGE SIZE is allocated and the beginning of the chunk of the

memory is aligned to beginning of a page.

In listing 2.2 we have declared a long pointer - secret key and type casted the char

buffer pointer to an long pointer (secret mem). The secret key is assigned the address of the

secure memory. Now the contents of the address contained in secret key will be stored in

the chunk of memory allocated in listing 2.1.

The address of the secret key is to be protected. To protect it we will make it read

only. In listing 2.3, we pass the secret key to the hypervisor using ring3 hypercall. The

ring3 hypercall is an assembly macro which takes the virtual address of the secure memory

and a command integer as parameters. In the macro these parameters are passed as operands

for the CPUID instruction. The CPUID instruction will then trap into the VMM. Along

with the virtual address we send a command to the SAPI module in the hypervisor which

decides the action to be performed on the virtual address. Initially we will send a PROTECT

command. This will protect the virtual address by making the corresponding Machine Frame

Number read-only. Originally XEN allows hypercalls to be done only through privileged

interface in the OS. But we have solved this problem by using CPUID instruction. We call

this mechanism as ring3 hypercall, which stands for hypercalls made from ring3 of DOM U.

Hypercalls are trapped into the VMM, thus giving VMM control. The blocks of VMM
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int ring3_hypercall(unsigned long gva , int cmd)

{

int ret;

__asm__ __volatile__(

"cpuid"

: "=a"(ret)

: "a"(0x92), "b"(gva), "c"(cmd)

:"cc", "edx"

);

return ret;

}

unsigned long gva=( unsigned long) secret_key;

ret = ring3_hypercall(gva , PROTECT);

Listing 2.3. Pass the virtual address to the VMM

where hypercalls are handled is called as hypercall handler. The Guest Virtual Address

(GVA) is received in the hypercall handler and Machine Frame Number (MFN) is computed

which is the hardware machine’s RAM frame number. The function that computes MFN

needs Guest Frame Number (GFN) as the argument. So first we computed GFN using

paging gva to gfn() function. This GFN is then passed on to the gmfn to mfn where MFN

is calculated. This MFN is marked read-only by the XEN’s in built function. This function

requires previous type (read-only, write-able) of the MFN. Hence we first invoke a function

which returns the old type of the MFN. The MFN is passed along with the old type and new

type (p2m ram ro). This will update the MFN type in XEN’s tables. Any further requests

to overwrite the pages identified by the MFN are dropped by XEN. Attempts for trying

to write to the read-only MFN are reported to DOM 0 through Xend. This is shown in

listing 2.4 below.

In listing 2.5 the code sends a global VIRQ to the DOM 0. In XEN VIRQ’s are
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struct vcpu *v=current;

struct domain *d=v->domain;

p2m_type_t old_type;

mfn_t mfn;

gfn=paging_gva_to_gfn(current , gva , &pfec)

mfn=gfn_to_mfn(d, gfn , &old_type);

p2m_change_type(d, gfn , ot ,p2m_ram_ro);

Listing 2.4. Translate GVA to MFN and mark MFN read-only

send_guest_global_virq(dom0 , VIRQ_VBASE);

bind_virq_to_irqhandler(VIRQ_VBASE ,0,vbase_handler ,NULL ,NULL ,

0);

Listing 2.5. Dispatch VIRQ from XEN

handled by the guests as interrupts. So we need to bind the VIRQ to an IRQ Handler. After

the VIRQ is populated from the hypercall handler, the DOM 0 is resumed and an interrupt

(dynamically bound by the kernel) is issued. This will trap the control into the IRQ handler

bound earlier.

In listing 2.6 the task structure of the Monitor process is found using find task by pid

function provided by the kernel (note that pid of the monitor can be sent through a system

call or by writing to kernel filesystems). After finding the task struct a signal is issued to

monitor process. This will notify that the virtual address of the secure process has been

made read-only.

Therefore it is evident from the prototype implementation, that the vBASE frame-
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find_task_by_pid_type(PIDTYPE_PID , monitor_pid);

send_sig_info(SIG_VBASE , &info , task_structure);

Listing 2.6. Dispatch a SIGNAL to the Monitor

work detects any unwanted modification to the secure application memory. These mod-

ifications can result from malicious applications, VMs, vulnerable OS and network chan-

nels. The plugged-in secure hardware architecture, for implementation purposes, employs

an encryption and integrity verification mechanism. This allows vBASE to detect malicious

modifications and eventually discard them.

2.5. vBASE Analysis

In this Section, we present a formal analysis of the vBASE framework in terms of its

security and performance.

2.5.1. Security Analysis

The vBASE framework is designed and implemented in XEN hypervisor. Therefore its

architecture conforms to the overall structure of XEN. Nonetheless, the security mechanisms

available in vBASE are developed using software and hardware utilities that are universal to

any virtualization software. In XEN, the hypervisor layer and the Domain 0 (DOM 0) are

at higher privilege level as compared to Domain U (DOM U), where user applications are

executed. The vBASE framework exploits this design by placing the Monitor and Controller

components inside the privileged DOM 0. The application that needs to be protected is

run inside the DOM U. The first assumption in vBASE is that there are no preexisting

vulnerabilities in the XEN hypervisor itself. The XEN hypervisor is shipped with a modified

Linux kernel that is by default loaded at system. It is assumed that this Linux kernel

does contain vulnerabilities that can be exploited by potential attackers. Though, in such

scenarios it is reasonable to assume that a TPM can be used to verify the integrity of the

XEN hypervisor. With regards to the execution frameworks – SecHYPE and CTrust, it is

reasonably considered that the cloud provider itself is not malicious. Also, it is expected
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that the secure application that needs to be protected, is itself not malicious. It is important

to emphasize that vBASE by its own does not propose any secure architecture. It is a

reconfigurable framework to test the security of a hardware architecture and then export the

most suitable hardware architecture into the cloud to provide root of trust to the applications

running in the cloud.

Finally it is also essential to discuss about cryptographic key management in the

vBASE framework. This may not be important in the testing framework, but certainly

becomes crucial in the execution framework. The secure hardware architectures integrated

within the SecHYPE framework typically include an Encryption and a Memory Integrity

Verification security mechanisms to provide confidentiality and preserver integrity of the

data. These mechanisms require cryptographic keys for computing cyphertexts. These

keys must be kept secret and distributed to only trusted entities as leaking of keys would

compromise security of the entire system. Thus the management of such keys becomes

very important. The vBASE framework does not handle the process of cryptographic key

management and instead relies on the hardware architecture vendor to define this process.

There are multiple recommendations and best practices to securely and efficiently manage

keys in cryptography. These can be found in NIST recommendations on key management [6].

2.5.2. Performance Analysis

The current computing frameworks have been predominantly designed around the

principle of resource sharing and performance. Be it the virtual memory in traditional

computers, or a virtualized desktops or a cloud computing system, the primary goal is to

improve resource utilization and enhance the performance of the system. However, security

and performance are two sides of a coin and security implementations may often lead to

severe performance bottlenecks. Since, the sole purpose of the vBASE testing framework

is to test hardware security architectures, analyzing its performance is of no use. However,

performance analysis becomes imperative in vBASE execution frameworks (SecHYPE and

CTrust) as their main focus is cloud computing platforms. In cloud systems, performance

is very important as multiple VMs and application are competing for shared hardware re-
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sources. The security implementations in cloud computing can introduce severe performance

trade-offs in the system. Furthermore, the backbone of vBASE security implementation is

the embedded hardware secure architecture. A vital facet of hardware security mechanisms

is that they require modifications to the internal design of the processor, so as to add new

hardware components. This additional hardware consumes logic, memory and clock re-

sources, thereby impacting the performance of the system. Thus analyzing the performance

of vBASE becomes utmost important.

The performance of the vBASE framework is analyzed by measuring the total time it

takes to complete the secure communication channel. This channel is composed of a secure

hypercall, Event Trigger Mechanism and a SIGNAL. The communication channel contains

the following intermediary steps.

• Secure process (in DOM U) invokes the hypercall.

• Hypercall gets trapped in the VMM.

• Hypercall handler in VMM issues a VIRQ.

• The VIRQ gets trapped in the DOM 0 kernel.

• VIRQ handler in DOM 0 issues a SIGNAL to Monitor in DOM 0 userspace.

• Monitor receives and prints appropriate notification to user.

• Control goes back to DOM 0 kernel.

• Control goes back to VMM.

• Control gets back to DOM U secure process.

For each of the steps mentioned above, time has been measured from user-space, by using

the time utility provided by the Linux kernel. In reality, multiple VMs run simultaneously

in a cloud system. Each VM is in-turn capable of running multiple applications that may

require secure execution. Hence the secure execution channel may be invoked several times

at any given instant of time. This may introduce unwanted and unavoidable latency in the

system. To simulate the effect of simultaneous secure channel invocations, the performance

of the vBASE is measured for three values: 10,000, 100,000 and 1,000,000 invocations. These

invocations are introduced at the same time and the corresponding time required to serve
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these requests is measured.
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Figure 2.4. Time required for Secure Channel Invocations

The Figures 2.4a 2.4b 2.4c show the total time required for 10,000, 100,000 and
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1,000,000 secure channel invocations respectively. For each type, four sets of reading are

presented along with an average reading. The average reading for 10,000 invocations is

approximately 0.2 seconds, while for 100,000 invocations is approximately 1.9 seconds and

finally for 1,000,000 invocations is approximately 15 seconds. The measured time increases

at lower rate from 10,000 invocations to 100,000 invocations but rises steeply from 100,000

invocations to 1,000,000 invocations. These readings are further used to estimate the average

amount of time it takes to serve a single secure channel. The average time is 20 µs (Average

= 0.2/10,000) during 10,000 invocations, 19 µs during 100,000 invocations and 15 µs during

1,000,000 invocations. This indicates that the performance overhead imposed by the security

mechanisms implemented in vBASE is significantly low and hence it does not degrade the

overall performance of the cloud system.

2.6. Previous Related Research

This Section provides a detailed description of the previous related research to the

vBASE project. This literature survey is segregated in three categories - virtualization-

based security approaches, cloud-based security security approaches and software security

approaches.

2.6.1. Virtualization-Based Security Approaches

A lot of research has been focused towards the design and implementation of new and

secure hypervisors. Some of these solutions are described in this section.

Overshadow [73] is a virtual machine based system that protects the privacy and

integrity of application data even in an event of total OS compromise. This approach is

designed and built on the concept of multi-shadowing — a mechanism that presents dif-

ferent views of physical memory, depending on the context performing the access. In a

virtualized system, there are 2 levels of memory translations. A VMM/hypervisor maps the

machine page number (MPN) to a guest physical page number (GPPN). This gives a VM

an illusion that the entire memory is available for it to use. The OS in each VM trans-

lates each GPPN to a guest virtual page number (GVPN) to support multiple application
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execution. In this case, multi-shadowing is a mechanism that supports context dependent,

one-to-many GPPN-to-MPN mappings. Memory cloaking combines multi-shadowing with

encryption, thus presenting different views of memory plaintext and encrypted to differ-

ent guest contexts. Overshadow provides and efficient and reliable solution for securing

applications against a malicious guest OS. Its primary disadvantage is that all its secu-

rity mechanisms are built around assuring application security against malicious guest OS.

However, there is no consideration made for attacks originating from malicious application

running in the same VM.

TrustVisor [40] is a specialty hypervisor that furnishes code/data integrity and secrecy

for applications, permitting certain parts of an application to run fortified with security, by

being in isolation, from OS and DMA capable devices. These security sensitive codeblocks

are known and names as Pieces of application Logic (PALs). What serves to safeguard

the memory, are 3 basic operating modes: Host, legacy, and secure. Host mode allows for

TrustVisor code execution at the highest level of privileges. Host mode subsequently sup-

ports the two other modes of legacy guest and secure guest. In legacy guest mode, an OS

and its applications can execute free from the adjacency and collaboration of TrustVisor’s

presence. This is not so far for secure guest mode, for which a PAL executes separately from

legacy OS and its applications, eliminating any party’s presence. TrustVisor relies upon

available hardware virtualization support to offer memory isolation and DMA protection

for each PAL. The authors have devised a mechanism called the TrustVisor Root of Trust

for Measurement (TRTM) for applicable conductings of PALs. The TRTM is actualized by

including a TrustVisor-managed, software micro TPM (µTPM) instance to be associated

with each PAL. The TRTM and its microchip safekeeps sensitive code at a very fine granu-

larity and also has a very small code base (approximately 6K lines of code) that makes its

verification realistically possible and duplicable. TrustVisor can also establish the existence

of execution running in isolation to an external entity. This specialized hypervisor imposes

less than 7% overhead on the legacy OS and its applications, in most typical conditions.

sHype [54] is a secure hypervisor architecture, independent of an OS, to control in-
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formation flow between the OS and the shared hardware platform. This approach is an

extension of full-isolation hypervisor with security mechanisms that enable controlled re-

source sharing among VMs. it deploys a reference monitor interface inside the hypervisor

to enforce information flow constraints between partitions. This reference monitor is imple-

mented by using Enforcement hooks. These hooks retrieve access control decisions from the

access control module (ACM). The ACM applies access rules based on security information

stored in security labels attached to logical partitions. The ACM stores all the security

policy information in the hypervisor and supports efficient policy management through a

privileged H Security hypervisor call. sHype is build on top of vHype, which utilizes CPU

protection rings to ensure that the partitions cannot execute privileged instructions. The

protection mechanisms in sHype only talk about access control and privilege separation.

It has been shown in the past that only employing these mechanisms are not adequate to

protect against a more powerful and resourceful attack. The information about the logical

partitions is reported to the ACM by the means of a secure H Security hypervisor call. Tradi-

tional hypercall mechanisms depend on guest OS functions and so the authors have assumed

the guest OS to trustworthy. There have been a lot of research depicting the vulnerabilities

in commodity OS due to their bulky codebase and hence these OS cannot be considered

untrustworthy.

VMInsight [37] is a hardware-virtualization-based security monitor system, which can

supply load-time and run-time monitoring for processes and can intercept system calls and

process behaviors by observing changes in the VM CPU register. VMInsight is transparent

to the softwares and OS running in the VM, because it is implemented in the hypervisor.

VMInsight has 3 modules: information obtaining module, monitoring analysis module and

information display module. The information obtaining, monitoring analysis, and informa-

tion demonstration. The information obtaining module, being within the KVM module,

possesses 3 functions: register reading, memory reading and PageFault. The monitoring

analysis module is managed by the Linux system driver module method and able to load and

unload per requirements. It obtains two callback interfaces of module: writeCr3Handle() and
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pageFaultHandle(). Finally the information demonstration module provides ioctl interface

through the monitoring analysis module, obtains the process security monitoring informa-

tion of virtual machine, saves to the security event database and finally demonstrates the

information using the WEB method. It also collects user control information and sends its

feedback to the monitoring analysis module, to handle the operation of processes. What the

experimental results reveal is that the performance overhead of VMInsight comes at less than

10%, which makes it feasible to join into application for third-party security monitoring. The

drawback to this approach is that the monitoring process functions at the granularity of a

VM but yet not so for specific processes contained inside the VM. Consequently, the mon-

itoring that would be needed could be an extortionately unwieldy amount. This bulkiness

can markedly degrade the performance when more than one VM is in operation on just one

sole hardware platform. The monitoring module is entirely constructed inside the kernel and

relies on the kernel drivers to garner monitoring information. Inasmuch, the kernel becomes

integral to the TCB, which can open back doors for determined attackers to exploit current

security vulnerabilities in kernel code.

VASP [42] is a hypervisor based monitor that allows a trusted execution environment

to monitor various malicious behaviors in the OS. This approach leverages the features pro-

vided by x86 hardware virtualization and self-transparency technology to provide an unified

security protection to unmodified OS such as Linux and Windows. The VASP hypervisor

Layer exports 3 sets of interfaces - memory management interface, trap register interface

and debugging interface. Memory management interface is used to realize the memory man-

agement of VASP itself. Trap register interface supports the extension usage of VASP and

provides configurable interceptions. And finally the debugging interface is used for dynamic

analysis when developing the hypervisor. The monitoring mechanism in VASP is imple-

mented in the form of kernel module that can execute any special instruction with highest

privileges. Thus it relies on the kernel which may introduce some security vulnerabilities. To

close this vulnerability, the authors have implemented memory self-transparency in VASP.

In this, a clone of OS page table is made and provided to the hypervisor while executing.
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Also, some spare memory space is used as pseudo memory space of the hypervisor and the

physical address of hypervisor is modified. As a result, the application or kernel in the guest

operating system can only access the physical address of pseudo memory when using the

virtual address of hypervisor, but hypervisor can access its real physical address using the

same virtual address when it executes in the root mode. A significant disadvantage of VASP

is that it provides a monitoring mechanism to protect against an entire OS. This in itself is

a rigorous task as every single access that goes through the OS has to be monitored. And

even though the performance analysis in the paper, does not reflect this, the performance

will degrade exponentially when multiple VMs run on the same hypervisor. Moreover since

the monitoring mechanism is implemented as kernel module, it has to be pre-included in the

VM image.

Finally authors Dwoskin et. al [14] have proposed a testing framework, which provides

APIs for monitoring hardware and software events in the system under test. The testing

framework is divided into two systems - the System Under Test (SUT) and the testing System

(TS). The SUT is meant to behave as closely as possible to a real system which has the new

security architecture. It runs a full commodity guest OS, which is vulnerable to attack and

is untrusted. The TS machine simulates the attacker, who is trying to violate the security

properties of the SUT. It is kept as a separate virtual machine so that the TS Controller

can be outside of the SUT to launch hardware attacks. Attack Scripts reside on the TS and

specify how particular attacks are executed on the SUT. Based on the requirements, the

attack model and attack scripts can be elegantly modified.

2.6.2. Cloud-Based Security Approaches

This section emphasizes on research ideas that present consolidate frameworks/archi-

tectures to provide security in cloud computing environments.

NoHype [31] proposes the approach of removing the virtualization layer while retain-

ing only its key features. The multi-tenant design of virtualization technology, though has

several advantages, is a serious security concern in Cloud Computing. A motivated attacker

can attack the virtual machines or the virtualization software and if successful it will com-
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promise the confidentiality and integrity of the user applications and data in the cloud. In

NoHype framework, only one VM is run on each processor core. This removes the need

for active VM scheduling done by the hypervisor and protects against software cache based

side channel attacks. Each guest OS has a view of memory where it has a dedicated and

guaranteed fraction of physical memory. The guest operating system is assigned it own phys-

ical device and given direct access to it. The Ethernet switches in the data center network

should perform the switching and security functions, not a software switch in the virtual-

ization layer. Some of the drawbacks of NoHype are that it allocates each VM to a core.

Such hard allocation of server resources can cause performance overheads and can be inef-

fective. The hardware memory is partitioned and each guest OS has the view of the entire

memory. Here the authors are assuming that the OS itself is not malicious. Whereas it has

been proved over and over again that OS can have a lot of vulnerabilities. In such cases ,

attackers could carry out memory based attacks thus compromising the confidentiality and

integrity of data of all other VMs. The biggest disadvantage is that the OS is root of trust

in this architecture.

CloudVisor [76] - In this paper, the authors propose a transparent, backward-compatible

approach that protects the privacy and integrity of customer’s VMs on commodity virtual-

ized infrastructures, even facing a total compromise of the VMM and the management VM.

The key feature of this approach is the separation of the resource management from security

protection in the virtualization layer. A tiny security monitor is introduced underneath the

commodity VMM using nested virtualization that provides protection to the hosted VMs.

CloudVisor is an extremely lightweight security monitor that runs at the host mode i.e.

highest privilege level in the system. The VMM is deprivileged to a lower privilege level.

CloudVisor enforces the isolation and protection of resources used by each guest VM and

ensures the isolation among the VMM and its guest VMs. The traditional virtualization

functions such as resource management, VM management and scheduling etc. are still done

by the VMM. CloudVisor transparently monitors how the VMM and the VMs use hardware

resources to enforce protection and isolation of resources used by each guest VM. CloudVisor
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relies on TPM and trusted execution design for ensuring the security of a cloud system. This

is a significant drawback as the TPM cannot protect against many of attacks that threaten

privacy of users. Also the TPM does not reduce the threat from spywares that could monitor

and profile user’s activities, such as browsing habits, and send them to a remote party. It is

also vulnerable to power analysis which can break tamper-evident property of the TPM by

being able to extract information from protected storage without being detected. In Cloud-

Visor, the security of the VMs and itself is tested at start up by comparing its current image

to a know secure image stored in the TPM. This still does not protect from vulnerabilities

and attacks introduced during the running of VM and CloudVisor. Since the VMM is now

deprivileged but is still placed at a higher privilege level than the guest VMs, this introduces

another level of paging within CloudVisor. This adds to complexity of the system.

CloudSec [27] is a virtualization-aware monitoring appliance that supplies active,

transparent and real-time security monitoring for hosted VMs in the IaaS model. It relies

on virtual machine introspection (VMI) techniques to supervise the physical memory of

guest VMs at the hypervisor level. CloudSec externally reconstructs a high-level semantic

picture of the running OS kernel data structures instances for the monitored VM’s OS. The

predominant concept here is to map with accuracy the underlying hardware memory layout

as against the OS kernel structure. The VMI layer in CloudSec holds two components: the

back-end component that enables the hypervisor to acquire control over the hosted VMs in

order to, if necessary, delay any access to the physical memory and CPU, and the front-end

component, which is comprised of APIs that enable attainment of data about the monitored

VM’s running OS from the hypervisor and the regulation of accesses to the physical memory

and CPU registers. A proof-of-concept prototype has been developed using VMsafe libraries

on a VMware ESX platform. The primary preoccupation centers on the performance of

CloudSec. Reconstructing the OS high level semantic view externally of all the VMs running

in the cloud daunts as an especially costly process, time-intensive and performance-burdened,

notwithstanding that a large pubic cloud could be occupied by thousands of VMs and thus

the scalability of CloudSec at that dominates as an issue. No clarification exists on how this
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framework will be able to assure that its own execution is a secure one. If ever should occur an

attack that succeeds on the CloudSec itself, the whole VMI will be rendered untrustworthy.

In [39], Lui et. al present a framework where a measurement module (MM) is added

in each guest VM. It measures every running executable in that VM. The MM transfers new

measurement values to the trusted VM via standard inter-VM communication mechanisms.

The trusted VM stores those values in sequence in a measurement table (MT). At the same

time, the system extends these measurement values into a specified platform configuration

register (PCR). To ensure the measurement process’s trustworthiness, a memory watcher

(MW) module has been added to the VMM. The assumption that the guest OS is trustworthy

is the biggest drawback on this framework. A lot of research has shown that the commodity

OS can extremely vulnerable to attacks due to their code size and thus highly untrustworthy.

The security measurement is only performed statically during boot up time. This does not

account for attacks introduced while the executable is running. The inter-VM communication

channel used for storing the executable measurement relies on kernel functions, which may

be compromised themselves. The verification process only involves hash verification. This

only guarantees the integrity of the executable. There is no verification like encryption to

ensure the confidentiality of the executable is also intact.

2.6.3. Software Security Approaches

Some researchers are motivated to propose new software security solutions that deal

with application level and OS level changes to provide trustworthy and secure execution in

cloud computing. For instance, Ashish Thakwani has proposed dfork [1] to provide process-

level isolation using virtualization. dfork is a clone of posix fork where a separate kernel

and file-system is allocated to every new process to isolate its operations and interactions

from other processes. This method gives an ability to review the changes done by the

application before committing to the underlying hardware, thus giving control to accept,

isolate or discard some of these changes. Rutkowska et al. propose a new (modified Linux)

operating system called Qubes OS [29]. It is very similar to dfork in a way that every

process that is being secured gets its own kernel and environment in a virtualized container.
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Qubes OS provides security by isolating application execution in its own virtual machine.

Finally, Microsoft OS research has proposed an approach called Singularity [26] to solve the

process isolation problem by introducing a new concept of software assisted process isolation

as opposed to widely accepted, de-facto, standard of hardware assisted process isolation.

2.7. Conclusion

Advances in computing power and constant inter-connectivity have made modern day

attackers extremely powerful. Softwares are increasingly vulnerable to attacks originating

from multiple sources and growing into various forms. Therefore, Software Protection is

critical n this era of computing. The need for hardware assisted software security stems

from the ever expanding worth of softwares. In addition to this, the security mechanisms

implemented in softwares are inadequate and untrustworthy. Trust can be removed from the

softwares by properly leveraging the hardware security mechanisms. However, the wide scale

adoption of hardware security mechanisms has been impeded due to the emphasis given to

performance over security during the design phase.

In an effort to answer this question, we have proposed the virtualization based secure

(vBASE) framework. In the vBASE testing framework, we have successfully demonstrated

how hardware secure architectures can be realized and tested in an efficient manner using

the data structures provided by the virtualization technology. The mechanisms implemented

in vBASE removes OS from the Trusted Computing Base (TCB), which has proved to be a

big challenge for years.

We have extended vBASE to an execution framework. Here we present the Cloud

Trust architecture - CTrust, which is developed around a fundamental security paradigm of

root of trust. The intuition behind this approach is to strengthen the security of the virtu-

alization software that forms the backbone of any cloud platform. Thus we have proposed

SecHYPE, a secure hypervisor framework that contains enhanced security implementations.

The SecHYPE is deployed in CTrust architecture to root the trust of user applications in its

security implementations. The SecHYPE framework employs secure architectures that are

proven to achieve high level of security. This framework is flexible to incorporate any secure
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architecture as desired by the cloud provider. We have also presented performance evalua-

tion that proves that the time latency introduced by a single secure channel is significantly

low in the range of 15 µs to 20 µs.
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CHAPTER 3

MEMORY INTEGRITY VERIFICATION IN EMBEDDED SYSTEMS 1

3.1. Introduction

An embedded system, in contrast to a general purpose computing system, is a dedi-

cated system designed to serve a specific task within a larger system. They are high perfor-

mance systems, flexible enough to perform a variety of computing tasks in a cost effective

manner. Embedded systems have now evolved into complex systems. The modern day em-

bedded devices are often small, portable and highly interconnected. They are capable of

tracking, storing information and even transmitting essential data over the internet. These

characteristics have enabled embedded systems to pervade all facets of human life. They

are being used everywhere from home media systems, portable players, smart phones, auto-

mobiles, embedded medical devices to mission critical defense systems. These systems are

empowered to access, store and communicate sensitive information. This information may

also include confidential personal data including secret passwords, credit card information,

bank account details and so forth. Thus security has become very important in embedded

systems.

To make matters worse, the operating environment of embedded systems allow the

adversary to have complete control of the computing node for example acquiring supervisory

privileges along with complete physical and architectural object observational capabilities.

The design phase of embedded systems often does not provide for the security axis thus

increasing the security risks. Moreover, embedded systems are physically dispersed to public

locations that are available to potential attackers. This makes them vulnerable to physical

attacks. Though these systems are small and flexible, their design is complex which adds to

their security issues. Despite these problems, embedded systems are deployed widely. Hence

motivated attackers can exploit these vulnerabilities to extract confidential information from

1Parts of this chapter have been previously published, either in part or in full, from [48] with permission
from Elsevier and [49] with permission from Springer.
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these devices. For instance, Mobile and Smart Device Security Survey [43] conducted by Mo-

cana Corporation in Spring 2011, revealed that 65% corporate personnel require a regular

attention from their information technology staff for mobile and smart phone based device

attacks. The Cyber Security Watch Survey [12] conducted by CSO, the U.S. Secret Ser-

vice, the Software Engineering Institute CERT Program at Carnegie Mellon University and

Deloitte in January 2011, disclosed that more than 58% of attacks are caused by outsiders

i.e by unauthorized access to network systems and data, thus contributing to a staggering

annual monetary losses of $123,000 per organization.

A security solution for embedded systems is the use of hardware secure architec-

tures. To achieve this, the micro-architecture of the embedded processors must be modified

to incorporate security mechanisms. These typically include (but are not limited to) the

addition of an encryption mechanism to protect the confidentiality of the data, memory in-

tegrity verification mechanism (MIV) to preserve the integrity of data, new registers, cache

memories and so forth. However, these security mechanisms are computationally intensive

and often consume logic and timing resources of the processor, thereby degrading its per-

formance. Embedded systems are highly resource constrained. Most of these devices are

battery powered and it is essential to have minimal energy consumption to achieve high

speed and performance. The excess energy consumed by the security mechanisms degrades

their performance and becomes a critical issue. As a case study, Potlapally et. al [53] have

proposed a framework to analyze the energy consumption of security mechanisms and pro-

tocols. Their work primarily focuses on investigating the impact of security processing on

the battery-life constraint of an embedded system. For battery powered embedded systems,

the biggest challenge is the trade-off between energy and performance due to security pro-

cessing. As this trade-off increases, so also does the battery gap in embedded systems. The

Tables 3.1 and 3.2 show the energy consumption in µJ/Byte for most commonly known and

used encryption and hashing algorithms. Hashing algorithms are most commonly employed

in secure processors to achieve memory integrity verification.

In order to provide security in embedded systems, it is essential to design energy
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Table 3.1. Energy Consumption of Encryption Algorithms [53]

Algorithms

DES 3DES IDEA CAST AES RC2 RC4 RC5

Energy Consumption (µJ/Byte) 2.08 6.04 1.47 1.21 1.73 3.93 0.79 0.89

Table 3.2. Energy Consumption of Hashing Algorithms [53]

Algorithms

MD2 MD4 MD5 SHA SHA1 HMAC

Energy Consumption (µJ/Byte) 4.12 0.52 0.59 0.75 0.76 1.16

efficient implementations of these security mechanisms and protocols. Thus their research

becomes pivotal for addressing the challenges related to energy efficient security mechanisms

in battery constrained embedded systems.

The rest of this chapter is organized as follow. Section 3.2 formally defines the

memory integrity property. Section 3.3 describes the attacks on memory integrity followed

by a detailed description on verification mechanisms in Section 3.4. Section 3.5 presents our

proposed memory integrity verification framework. We then discuss the Related Previous

Research in Section 3.6. Section 3.7 presents the Conclusion of this chapter.

3.2. Memory Integrity Property

The memory integrity property can be defined as follows. A processor communicates

with memoryM. MemoryM has two attributes, addresses A and contents V . It maintains

associations between addresses and contents. A read of memory at address A denoted by

M[R,A] returns the value associated with A. A write into memory address A of value V

is denoted by M[W,A, V ]. A write of A with value V immediately followed by a read of

address A must return value V . As memory reads and writes have a notion of time, the
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model needs to associate time T with reads and writes as M[R,A, T ] and M[W,A, V, T ].

Definition 1. A read of address A at time T should return the value written to

address A at time T ′ < T such that no other write to A occurs between time T ′ and T . In

other words: M[R,A, T ] = V if an only if ∃M[W,A, V, T ′] for T ′ < T and ∀ t ∈ [T ′+1, T−1],

6 ∃M[W,A, ∗, t]. At T = 0 the entire memory is initialized with value 0.

3.3. Attacks on Memory Integrity
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Figure 3.1. Attacks on Memory Integrity

An embedded device has to operate in an insecure environment and is thus vulnerable

to a variety of attacks. The threat model is shown in Figure 3.1. The main hypothesis is

that the processor chip is resistant to all physical attacks and is thus trusted. Sidechannel

attacks are not taken into account in this research. As a result, it is considered that the

on-chip registers and memories cannot be observed or tampered with by an adversary. The

off-chip memory, peripherals and other devices are assumed to be untrustworthy. It is also

assumed that the OS and its application are also untrustworthy and may be vulnerable to

attacks. The attacks on an embedded system can either be software based attacks or physical

attacks. These attacks can be categorized in 3 classes — splicing attack, spoofing attack

and replay attack. In a splicing attack the adversary modifies the associations between the
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memory addresses and its values. For example, if value VA is associated with address A and

value VA′ is associated with address A′, a splicing attack would return the value VA′ for a

memory read corresponding to address A. In a spoofing attack the adversary modifies the

value VA to a random value V ′A. In a replay attack the adversary modifies the association

between the value and the time. For example, if value VA is associated with address A at

time T and the value V ∗A is associated with address A at time T ∗, and T < T ∗, a replay

attack would return the value VA when a memory read is performed at time t > T ∗.

3.4. Verification Mechanisms

In cryptography, a hash function – H, is used to protect the integrity of a message. It

takes in a input of arbitrary length and produces an output of fixed size. All hash functions

possess the properties of pre-image resistance, second pre-image resistance and collision

resistance. In pre-image resistance, given the hash (h) of a message (m) is known, it should

be unfeasible to find the message. With second pre-image resistance, given a message (m1),

it should be unfeasible to find another message (m2) such that m1! = m2 and h(m1) = h(m2).

Finally with collision resistance, the hash of two different messages m1 and m2 should never

be the same. Some of the most commonly used hash functions today are SHA, SHA1, MD2,

MD4, MD5 and HMAC etc.

To authenticate data, a sender creates a message authentication code (MAC) using a

secret key K together with the message m as MACm = H(m||K). It sends both the message

m and the corresponding MACm to the receiver. The receiver, which shares the secret key

K with the sender, can verify the integrity of the message by recomputing the MAC. The

security properties, collision resistance, pre-image resistance and second pre-image resistance

of the hash function H ensures that any modification to message m or MACm go undetected

with negligible probability. One solution for the memory integrity problem is to use message

authentication codes. Processor generates a MAC hV,A = H(V ||A||K) for every memory

write that stores a value V in address A. This MAC, hV,A, is stored in the memory. On

every memory read the processor computes the MAC h′V,A and verifies it against the MAC

stored in the memory. This solution can protect memory integrity against splicing and
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spoofing attacks. A replay attack will still succeed as the MAC does not have any notion of

time and hence the adversary could replay both the value and its corresponding MAC.

1 2 3 4 5 6 7 8 N-1 N

H1 H2 H3 H4 HN

H1,2 H3,4

H12,34

Root
Hash

On-Chip CPU Trusted Boundary

Off-Chip CPU Untrusted Boundary

Leaves - Data Blocks

V
er

ifi
ca

ti
on

O
ve

rh
ea

d
-

lo
g
N

1

Figure 3.2. Merkle Hash Tree

Protecting memory against replay attacks requires the processor to have some memory

about the recentness of the value. A Merkle hash tree, shown in Figure 3.2, provides an

optimal solution for this problem, requiring least amount of on-chip memory. A Merkle hash

tree of address range [A,A + k] creates a tree of hashes with k + 1 leaves corresponding to

addresses A,A+1, . . . , A+k. Any write to an address A+ i in this address space can modify

all the hash values from the leaf node corresponding to A+ i upto the root of the tree. Any

read from address A + i needs to check the hash values along the path from the leaf node

A+ i upto the root of the tree. The root of the tree is stored in the trusted processor storage,

so that it cannot be tampered. All the other tree nodes along with the leaf nodes can be

kept in the untrusted memory.

3.5. Proposed Memory Integrity Verification Framework

The motivation for proposing the memory integrity verification (MIV) framework is

to simulate the behavior of a Merkle hash tree based memory integrity verification in a

secure processor architecture. This is essential to determine the number of hash invocations
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Figure 3.3. Memory Integrity Verification Framework

required per memory access. In this implementation, this process is being simulated by

creating a custom hash cache with N levels to store the hash addresses. The configuration

of hash cache is similar to the Level 1 Data cache configuration.

Figure 3.3 shows the working of memory integrity verification in a secure processor

architecture. In the memory write operation, shown in Figure 3.4a, for every write miss in

the level 1 data cache, the corresponding hash and hash address are calculated. This hash is

stored in the hash cache in it corresponding hash address. If the hash address already exists

in the cache, then it is updated or else a suitable replacement block is selected and evicted

to store the hash. The data is then encrypted through the memory encryption mechanism

and then stored to the off-chip untrusted memory. During a memory read operation, shown

in Figure 3.4b, the data is first decrypted and the hash address of the data is recomputed.

The presence of this hash address is verified against all the addresses in the hash cache.

If there is a cache hit in the hash cache, the hash of the data is checked against the hash

that is stored in the respective hash address memory location. If the hash matches then it

is concluded that the state of the data is valid, if no then, it is concluded that the data is
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corrupted and the CPU aborts any operation on this data. If the hash is not present in the

hash cache then the CPU checks for the next level in the hash cache until it reaches the root

hash. The process of creating the Merkle hash trees and computing the hash addresses and

hashes repeats recursively for all the data blocks written and read from the memory, during

the execution of a process.
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Figure 3.4. Memory Integrity Verification Operations

The pseudo code of the function to compute the hash address at each level in a Merkle

hash tree is given in Algorithm 2. The function takes three arguments — level of hash tree,

data block address and index for the hash level. The hash block size, data block size, tree

size, maximum levels of hash tree and offset address for each level are pre-initialized. At

first, the block address is calculated based on the level and its offset address. Depending on

the level, the block number is calculated which is then computed with tree size and index to
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Algorithm 2 Function to compute Hash Address in a Merkle Hash Tree

Require: hash size; block size; tree size

Require: max hash levels; BlockOffset

Ensure: level < max hash levels

Ensure: index < tree size

1: block addr ⇐ block addr - BlockOffset[level]

2: if level == 0 then

3: block number ⇐ block addr/block size

4: else

5: block number ⇐ block addr/hash size

6: end if

7: block number ⇐ block number / tree size

8: block number ⇐ block number ∧ index

9: hash addr ⇐ BlockOffset[level+1] + (block number × hash size)

10: return (hash addr)

fetch the hash address.

The overhead of MIV operation is several hashing operations, logN for N leaf nodes.

One can cache some of these hash tree nodes to increase the efficiency. The granularity of

a leaf node can be increased beyond a single word to an entire cache block. Despite these

optimization, such hash trees are expensive primarily due to the cost of the underlying hash

function. The two types of cost associated with hash function are performance cost and

energy cost. AEGIS [67] charges 160 cycles for each hashing operation presumably at a cost

of 2 cycles per round for 80 rounds of SHA [62]. This is an exorbitant performance cost

for a memory integrity architecture that spawns many hash function instantiations for each

memory read and memory write. Hence, more efficient mechanisms for memory integrity

protection are required.
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3.6. Related Previous Research

Blum et. al [7] have discussed the possible attacks on the contents of the memory and

have demonstrated the need for memory integrity verification even if the memory contents

are encrypted. They have proposed a hash tree based approach that is built on top of a

trusted memory to authenticate rest of the untrusted memory. They have also proposed an

offline checker that computes a running hash of all the memory reads and writes. This offline

checker is used to verify the correctness of the memory after a sequence of operations are

performed. The cost of their approach is O(log(N)).

Lie et. al have proposed a hardware secure architecture called XOM (eXecution

Only Memory) [38], to authenticate the application data residing in external memory. In

this approach, the application data and code are encrypted and stored in separate memory

blocks. A MAC of the data and address is then computed for each memory block. This

MAC is then used to verify the integrity of application data. Unfortunately, this approach

does not protect replay attack, where the attacker replaces the current data value with a

previously used stale value.

Suh et. al have also proposed a secure processor architecture known as AEGIS [67]. In

this framework, it is assumed that only the components on the processor chip are trustworthy

whereas all other components including the RAM and peripherals are considered to be

untrustworthy. Hence encryption and authentication of memory contents is necessary to

ensure both tamper evident and tamper resistant processing. Here, a Merkle hash tree

is used to provide authentication to the data in memory. In [16], they have combined

caches and hash trees to deliver the most performance efficient memory integrity verification

scheme. The paper presents CHash and LHash with varying cache block sizes to analyze the

performance overhead of each configuration.

Rogers et. al [59] have presented an Address Independent Seed Encryption (AISE)

mechanism, which is a counter-mode based memory encryption scheme with a seed compo-

sition. It uses logical identifiers as a seed along with a counter instead of using the block

address. These logical identifiers are unique across the entire physical and swap memory and
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over time. They have also proposed a Merkle hash tree based memory integrity verification

mechanism known as the Bonsai Merkle Trees (BMT). In this approach, a MAC of encrypted

data and its corresponding counter is computed and stored in the untrusted memory. Since

the counters generated in the AISE mechanism have a notion of time, the integrity of data

can be verified by solely comparing the MACs instead of computing the entire Merkle hash

tree. Simulation results prove that this technique reduces the overhead on the system by

12% to 2% as compared to traditional approaches.

Yan et. al [74] have presented a combined memory encryption/authentication scheme.

They have proposed split counters for counter-mode encryption, which eliminate counter

overflow problems and reduces the size of the counter for each memory block. For the

purpose of memory authentication, they have used the Galois/Counter mode of operation

(GCM) that leverages counter-mode encryption to reduce the latency involved in the memory

authentication process. In this approach, the memory authentication is done in parallel with

encryption. Tags are updated when memory contents are modified to protect against replay

attacks.

Rogers et. al [58] present an analogous tag generation approach as was proposed

by [74]. The primary difference in this approach is that it applies a Parallel Message Au-

thentication Code (PMAC) algorithm as against the GCM approach. The PMAC scheme

allows for using a single hardware encryption component for both encryption and authenti-

cation, thus reducing the overall resource cost in an embedded system. Hong et. al [25] have

also proposed a new tag generation approach. In this approach, a static inverse transform

scheme is used for tag generation that offers a parameterized security design. They have

customized the tag size and tag generation algorithm to achieve an optimal tradeoff between

security and the design overhead.

Shi et. al [63] present an architecture for authenticating memory that is often shared

amongst multiple processing elements in a computing system. They have proposed Authen-

tication Speculative Execution (ASE), a new scheme to incorporate memory authentication

into the processor pipeline. Here, the data and its integrity code (MAC) can be transmitted
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separately by virtue of tagging each data transaction. This tag is known as the transaction

number. The ASE scheme is combined with one time pad (OTP) memory encryption mech-

anism to provide reliable security. The use of transaction number for authentication reduces

memory latency, while only imposing a performance overhead of less than 5%.

Geobotys et. al [17] present optimized synthesis of new low energy masking alterna-

tives into cryptographic softwares. The master key is initially masked with a set of masks.

Masks are then periodically added throughout the life-cycle of key generation. A mask set is

generated from an initial set of masks by combining all possible masks to create new masks.

The final round keys are constrained to have a fixed mask. This mechanism uses the Boolean

masking methodology combined with either Rijndael or the Advanced Encryption Standard

(AES). Experimental results reveal that this scheme achieves an energy overhead savings of

up to 2.5%.

Power-Smart System-On-Chip Architecture [69], presents an architecture for prevent-

ing sensitive information leakage via timing, power and electromagnetic channels. This archi-

tecture depends on a current sensing module to measure the power and current consumption

of the system. They achieve significant success in measuring the current consumption of the

system while limiting the power overhead to less than 12% of the total power.

In [57], Roger et. al describe an efficient hardware mechanism to protect integrity of

softwares by signing each instruction block during program installation with a cryptographi-

cally secure signature. This technique serves as a secure and performance efficient alternative

to conventional memory integrity verification module. While, Gelhert et. al [18] presents

an architectural approach that protects against memory spoofing attacks. In this architec-

ture, a secure hardware component called the FPGA guard is used, which can accelerate the

execution of encrypted programs in a secure environment. The data protection techniques

proposed in this paper achieves high level of security with significantly low performance

overhead.

45



3.7. Conclusion

While designing computing systems there is always a trade-off between security and

performance. A classic example of this are the embedded systems. Embedded devices are

typically fast, miniaturized and specific to their application and hence often have severe

energy constraints. As they now handle a lot of critical information, security becomes a

crucial requirement. Therefore the need arises to design new security mechanisms so that

their energy consumption is minimal while still preserving the security of the system. In this

research project, the focus is specifically on reducing the energy consumption of memory

integrity verification mechanisms in embedded systems. In this chapter, we have proposed

a memory integrity verification framework to accurately measure the total number of hash

function invocations during the execution of a program. This value is directly related to the

total energy consumed by the MIV mechanism and therefore serves as baseline to compare

the total energy savings offered by our proposed mechanisms presented in Chapter 4, Chapter

5 and Chapter 6.
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CHAPTER 4

MEM-DNP: DETECT AND PROTECT MECHANISM 1

4.1. Introduction

Embedded processors utilize multiple sensors to interact with their environment.

These sensors can detect any physical or software attack against the memory. As an attack

initiates, fluctuations can occur in the processor’s physical properties (e.g. an instantaneous

current spike or a jump in power or some kind of dissipation thermally and so forth). The

corresponding sensors can thus measure such fluctuations. Only when the fluctuations ex-

ceed a pre-determined value is MIV executed. This use of sensors is nontraditional as an

operation, for the MIV must be carried out for all the memory blocks read from the off-chip

memory. Under the traditional MIV approach, for every memory write operation, the Merkle

hash tree is constructed over the entire memory and a root hash is computed and stored

in the on-chip memory. This process proves uncircumventable considering that the most

recent root hash is always required to productively carry out the verification process during

the memory read operation. Thus the processor expends huge amount of energy in the MIV

process. However, in the MEM-DnP approach the Merkle hash tree based verification is only

turned to when the fluctuations reach a certain threshold. Resultingly, significant amount

of energy is conserved during the verification phase. Primarily, this mechanism intuitively

anticipates the occurrence of an attack and only then engages the hash verification. Dur-

ing conditions of normalcy, therefore, exists no requirement for hash verification and so the

processor can simply trust the data values read from the memory.

The use of sensors within the processor chip boundary, to measure critical physical

properties has been mined by research perennially now. For example, Oh et al. [52], Mc-

Gowen et al. [41], and Zhang et al. [77], deploy hardware sensors in order to measure power

dissipation and thermal dissipation in the CPU. Similarly, Muresan et.al. [69] make use of a

1Parts of this chapter have been previously published, either in part or in full, from [47] with permission
from IEEE and [49] with permission from Springer.
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Current Sensor Module to forecast the power consumption of their architecture.

This chapter is organized as follows. Section 4.2 describes the architecture and the

overall functioning of the MEM-DnP mechanism. Section 4.3 introduces the concept of

Disjoint hash Tree with regards to MEM-DnP operation. Section 4.4 presents a theoretical

basis for the sensor operation in MEM-DnP. Section 4.5 analyses the performance of MEM-

DnP, and Section 4.6 presents the conclusion.

4.2. MEM-DnP Architecture

The architecture of the MEM-DnP mechanism is shown in Figure 4.1. The Sensor

Module (SM), exemplifies the hardware sensors in an embedded system. The SM constantly

monitors the memory bus for any vacillations in its physical properties. The architecture

contains a specialized cache — hash cache for storing the generated hash addresses and hash

values during MIV. The hash cache holds the hash address and the corresponding hash value

of each memory block written to the off-chip memory. This hash address and the hash value

are used to verify the memory’s integrity. Owing to the processor chip being trustworthy,

the SM and hash cache are located inside the processor boundary. Importantly to note here

is that the research in this dissertation only targets MIV and not encryption/decryption

mechanisms. An encryption/decryption block, componential in the general architecture of

the MEM-DnP, merely represents a broader view of a secure processor architecture.

The functioning of the MEN-DnP can be illustrated per its two fundamental memory

operations — memory write operation and memory read, shown in Figure 4.2.

in terms of its memory operations, as shown in Figure 4.2. Here, there are two basic

operations — memory write operation and memory read operation. During the memory write

operation (Figure 4.2a), prior to writing a memory block to the off-chip memory, the CPU

computes a corresponding hash value and hash address and stores it in the hash cache. This

memory block is then encrypted and stored in the off-chip memory. During the memory read

operation (Figure 4.2b), the memory block ascertained from the memory is first decrypted.

The SM continuously monitors the memory bus to detect an attack, keeping a Threshold

value (VT ) for the fluctuations. If the systems fluctuations exceed this VT , that an anomaly
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Figure 4.1. MEM-DnP Architecture

lies in the system stands apparent. In the case of such an anomaly, the hash address of the

data is re-computed. The hash address is checked against all the addresses in all hash cache

levels. If there is a cache hit in the hash cache, the hash of the data is corroborated against

the hash that is stored in the hash cache. If hash matches hash, then the state of the data

is valid; else if the hashes do not equate, the data is corrupted and there is an attack on the

system. In such a case, the CPU aborts any operation on this data. This process is recursive

and continues for all the memory reads performed in the window of fluctuations exceeding

VT . During this time, if the fluctuations equilibrialize and then drop below the VT , then the

threat has subsided. At this point, the hash address verification process ceases. The SM and

the MIV (hash cache) modules are in enjoinment with each other so that the MIV is only

performed when required, i.e., at the time of unconventional changes or steep discrepancies.

The experimental results in Section 4.5, prove that this mechanism yields impactful energy

savings as compared to a traditional MIV mechanism.
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Figure 4.2. Memory Operations in MEM-DnP Architecture

4.3. Disjoint Hash Trees

The SM continuously superintends the memory bus, while the CPU operates on the

memory blocks. The MIV module (hash cache) works closely with the SM to commence

verification when discrepancies in the readings are found. From this point, the MIV module

starts recomputing the hash address and the corresponding hash for the verification purpose.

This is cyclic process and lasts until the fluctuations stabilize. To reduce the energy con-

sumption in the verification phase, this we present a novel mechanism of Disjoint hash trees,

evinced in Figure 4.3. The cerebration to this approach is to divide the original Merkle hash

tree into smaller trees. According to the location of the infected memory block, a suitable

Disjoint Tree is relied on for the verification process. The MEM-DnP mechanism trusts the

precision of the SM to accurately locate the infected memory block. The primary advantage

of this technique is that the hash tree is not re-constructed over the entire memory; instead,

what is re-constructed is only that particular Disjoint tree which contains the infected mem-

ory block. At this point, importantly what needs to be emphasized is that the number of

Disjoint Trees built in the memory forthrightly relates to the number of secrets able to be
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stored on-chip. In a traditional implementation of a Merkle hash tree, only one root hash

i.e. one secret is kept on-chip. Whereas in the proposed mechanism, multiple root hashes,

i.e. numerous secrets corresponding to each Disjoint Tree are placed on-chip. Hence this

approach exploits the availability of on-chip memory space to provide energy saving returns

during the integrity verification process.

1 2 3 4 5 6 7 8 N-1 N

H1 H2 H3 H4 HN−1 HN

H1,2 H3,4

Root
1

Root
i

On-Chip CPU Trusted Boundary

Off-Chip CPU Untrusted Boundary

Leaves - Data Blocks

Figure 4.3. Disjoint Hash Tree

4.4. Relation between Process Variations in Sensors and VT

The measurements recorded from a sensor manufacture an error profile that can be

accredited to the distribution of noise that impacts the sensor’s readings. What is responsible

for this noise owes itself to Process Variations [20] [19] [45] that occur in the VLSI circuit

of a sensor. Zhang et al. [75] have shown that the noise related to the process variations

is the phase noise of the circuit. The assumption that “all transistors are alike” is not

valid when considering nanochips. It is essential that the variations in two transistors in

a chip or else two or more different chips having the same design are considered in any

design decisions for making circuits robust and for improving the target outcome of the

Design for Manufacturing (DFM). The device parameters, chip performance, and the chip

yield are influenced by industrial/engineering/fabrication process variations. The electrical
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parameters and the wholesale performance of any chip is decisively affected by the process

variations and the effects from inconsistencies become evident in the variations in power and

delay and other attributes that reside with and are demonstrated by the chip. The process

variations can be either inter die or intra die, can fall as random or as systematic, can be

correlated or uncorrelated, or can be spatial or temporal. If such variations as these (and

other potentially) are not considered, such a design oversight may lead to significant design

errors and yield losses.

Therefore, recently, researchers have explored approaches to designing alternatively

to guarantee that the yield of the VLSI circuit undergoes minimal impact from process vari-

ations. The three main types of approaches for modeling process variations are as follows:

statistical design approach, post silicon process compensation/correction, and avoidance of

variation induced failures. Statistical design methodology has been widely looked into as

an efficient method for yield under process variation. Whereas the post-silicon process com-

pensation/correction has also been extensively explored, it detects process variations using

the on-chip process sensors and it may also involve manufacturing tests and compensating/-

correcting circuit parameters that may have deviated due to process variations. And finally

avoidance of variations-induced failures is based on the concept of critical path isolation that

makes a circuit subject to voltage scaling while still being robust to parametric variations.

For this dissertation, the statistical modeling technique for modeling the process

variations in a sensor (directly related to the sensor noise) has been chosen. A sensor’s

noise samples are generally modeled as continuously valued random variables, while the

noise waveforms are modeled as random processes. A continuous random variable X with

non-negative density F, is specified by its probability density function (PDF) and is given

in Equation 1.

(1) fX(x) =

∫ ∞
−∞

fX(x) dx.

Given a PDF for a random variable, it is then possible to calculate the mean (µ) and the

variance (σ2) for the random variable. Both µ and σ2 estimate the power of noise or the
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random variable X and are given in Equations 2 and 3.

µX =

∫ ∞
−∞

xf(x) dx,

µ2
X =

∫ ∞
−∞

x2f(x) dx

(2)

σ2
X = µ2

X − (µX)2.(3)

The most common random variable used to model noise is the Gaussian. Also, the noise dis-

tribution in sensors follow a Gaussian distribution with a zero mean [15], shown in Figure 4.4.

The PDF in a Gaussian distribution is given in Equation 4

f(x) =
1

σX
√

2π
e
−1

2
(
x− µX

σX
)2

(4)

In the case of MEM-DnP approach, the sensor module measures many independent signals

f
(x
)

Probability Density Function

Normal Distribution

� +���

Figure 4.4. Gaussian Distribution Curve

each having its own individual error/noise profiles. Thus mathematically a sensor module

can be viewed as a Gaussian process P with 1...N individual continuous valued random

variables. While modeling the VT for the sensors, key is to know the relationship between

individual signals at different time instants. For ease of understanding, let us consider X

and Y as two individual normally-distributed random variables with zero mean. Let F(X)
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and F(Y) be the PDFs, respectively, of X and Y. The co-variance of X and Y is given in

Equation 5.

COV (X, Y ) = F (XY )− F (X)F (Y )(5)

However, since both X and Y are individual random variables, F (XY ) = F (X)F (Y ). There-

fore COV (X, Y ) = 0. Thus the two individual random variables X and Y in the same

Gaussian process stand uncorrelated. The similar also shows true for 1...N random variables

in the same Gaussian process. Now, since the individual random variables are uncorrelated,

the resultant variance of the Gaussian process (σ2
P ) is nothing but the product of variances

of N individual random variables in the process, given in Equation 6.

σ2
P = σ2

1 ∗ σ2
2 ∗ σ2

3.. ∗ ..σ2
N(6)

Regarding sensor, there are false positives and false negatives affecting its reading. A false

positive measurement will indicate an attack when in reality none exists, whereas a false

negative measurement is the one where an actual attack goes undetected by the sensor.

While modeling such a system both false positives and false negatives must stay within a

minimal allowable range. Using the MEM-DnP approach, the emphasis lies on false positives.

As for the MEM-DnP simulations, a Random value (RV) is embedded to simulate one such

false positive that indicates fluctuations in the readings. The details about RV is discussed

in Section 4.5.3. The Threshold value VT is directly related to an RV. For an N -bit RV the

probability that a fluctuation occurs is given by 1
2N

. Also in the case of sensors, the mean

(µ) and variance (σ2) of a sensor is modeled during its design process so as to accommodate

the random noise in a sensor’s readings. Thus given the values of µ, σ and RV, to compute

the tolerance (τ) of the sensor circuit becomes doable. The tolerance τ of a sensor circuit is a

point on the Gaussian distribution curve, beyond which we consider that the false positives

occur in the system, a system then considered under an attack. This can be optimally

explained by the following example.

As a case study, Figure 4.5 represents a statistical characterization of process variation

54



F
re

qu
en

cy
 o

f 
oc

cu
rr

en
ce

275.2 psec
106.1 psec

200p 400p 600p0.00

300

200

100

0.00

Frequency Plot of Delay

Figure 4.5. Example: Propagation Delay PDF in a 2-input NAND Gate

in a 2-input NAND logic gate. This example illustrates a plot of propagation delay in the

NAND gate. The NAND gate is designed, tested and realized in a 45 nm CMOS technology.

Monte Carlo simulations [8] are executed to translate the process and design variations at the

input side, to the propagation delay at the output side. The CMOS transistor parameters

in the NAND gate, considered during these simulations are channel length (L), device width

(W), gate oxide thickness (Tox), device threshold voltage (Vth) and supply voltage (Vdd). It is

observed that the propagation delay follows a Gaussian distribution. For ease of simulation,

modeling and understanding we have only considered a single 2-input NAND gate. However,

realistically a circuit may contain several NAND gates. Since the propagation delay PDF is

Gaussian in nature, the input distribution at each gate is statistically independent. Therefore

in the case of N NAND gates in a sensor circuit, the mean (µ) and the variance (σ2) of the

distribution is given in Equation 7.

(7) µSENSOR =
N∑
i=1

µNANDi
σSENSOR =

√√√√ N∑
i=1

σ2
NANDi

Similarly, a sensor circuit may contain several logic. But since the output distribution of each

gate is Gaussian in nature, the overall PDF of the sensor will also be Gaussian in nature.

For instance if X, Y...N are the Gaussian output distributions of the logic gates in a sensor

circuit, the overall PDF of circuit = X + Y + ... + N ||X ∗ Y ∗ .... ∗ N ||X ⊕ Y ⊕ .... ⊕ N is

also Gaussian in nature. This curve has a µ=275.2 psec and σ=106.1 psec. As discussed
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earlier, since the value of µ and σ is known, it is possible to compute the τ for the sensor

circuit for RV=16, 20 and 24. In a Gaussian distribution curve this can be achieved using a

cumulative distribution function (CDF) given in Equation 8.

CDF =
1

2
[1 + erf(

x− µ√
2σ2

)](8)

Here erf stands for error function that is typically used for measurement in probability and

statistics. For a random variable X, the CDF represents the probability of X as - P (X) < x

on the Gaussian curve. However, to calculate τ we will fix the probability as - P (X) > x.

Thus this probability will be (1 - CDF). Therefore by applying to Equation 8, we will get

Equation 9.

1− CDF = 1− 1

2
[1 + erf(

x− µ√
2σ2

)] =
1

2
[1− erf(

x− µ√
2σ2

)](9)

Now for RV=16, the probability of a false positive occurring in the sensor’s reading is:

P(FP)= 1
216

. In order to compute the value of τ , we will fix this probability. Hence consider

that (1 - CDF) = P(FP) = 1
216

. Also the co-ordinate “x” on the Gaussian curve will represent

the value of tolerance - τ of the sensor, where the false positives will occur. Hence given the

values of RV, µ and σ, the goal is to compute the value of τ .

1

216
=

1

2
[1− erf(

τ − µ√
2σ2

)](10)

Hence by solving Equation 10, the value of τ can be computed. Therefore solving Equation 10

gives us the value of τ as: τ = µ + 435.01 × 10−12 = 710.21 psec. Similarly the tolerance

of the sensor can be computed for RV=20 and 24 as well. The tolerance value is a crucial

parameter that indicates, where on the Gaussian curve, a false positive reading might be

recorded, based on the µ, σ and RV. At this point it is important to understand that the

values of µ, σ and RV should be optimally selected during designing and modeling the sensor

circuit, so that the value of τ is low. A higher value of τ may lead to severe issues. This

is shown in Figure 4.6. This figure shows a Gaussian distribution curve for a typical sensor

circuit. It is represented as an original PDF with mean µo and standard deviation σo. Now
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Figure 4.6. Tolerance of Sensor as compared to Attacker PDF

consider that an attacker is assaulting the system and the sensor is responsible for measuring

the fluctuations in the system. The attacker distribution also follows a Gaussian distribution,

represented by an attacker PDF with mean µa and standard deviation σa. In such scenarios,

the value of tolerance τ factors significantly in the overall security of the system. As the τ is

closer to µo, the probability of false positives is more than the probability of false negatives.

But as the τ moves further away from µo, the overlap of attacker PDF on original PDF

increases and thus the probability of false negatives increases over the probability of false

positives. This is a critical security condition as the sensor will fail to detect a legitimate

attack measurement. Therefore the value of τ should be designed depending on the value of

µo, σo and RV.

4.5. Experimental Evaluation

This section presents an analysis of the energy consumption in a traditional MIV

process as opposed to the energy consumption of the proposed MEM-DnP mechanism.

4.5.1. Simulation Framework

The simulation framework derives from Simplescalar Tool Set [4], which is configured

to execute ARM binaries. Since the primary goal here is to demonstrate the energy efficiency
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Table 4.1. Cache Configurations

Cache Specifications

L1-D Cache 8KB, 2-way, 32B Line

L1-I Cache 16KB, 2-way, 32B Line

L2-D Cache None

L2-I Cache None

of the proposed MEM-DnP mechanism in embedded systems, MiBench [23] embedded bench-

mark suite has been used, that best replicates the variety of practical applications run on

embedded devices. The results obtained from different benchmark programs are presented,

to demonstrate the efficiency of the proposed mechanism. All the simulations performed are

cache based simulations, using the sim-cache simulator in simplescalar. The cache configu-

rations used for the simulations is given in Table 5.1. Here, the level 1 cache configurations

are selected to match the typical configurations of embedded ARM processors [3].

4.5.2. Baseline Energy Consumption

As described in Section 3.4, MIV is performed by constructing a Merkle hash tree

in the memory and storing the final hash, known as the root hash in the on-chip memory

storage. For every memory read, the Merkle hash tree is re-constructed and the resulting

root hash is compared with the one already present on-chip. If both the values match, then it

is concluded that the memory block is verified; otherwise, else, it is infected. Typically, this

is implemented by partitioning the memory into fixed sized blocks (usually the same in size

as those of the cache) and generating multiple levels of hashes. Hence energy is consumed

while generating the hash from the memory all the way up to its root. To measure this,

we have exhibited Algorithm 2 in Section 3.5. Here the algorithm is used to measure the

number of hash invocations required per data miss in the level 1 data cache. Hence, given

that the energy consumption per hash invocation is known, the results obtained from the

algorithm can be used to calculate the total energy consumption of the MIV mechanism.
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Table 4.2. Baseline Simulations showing Total Hash Invocations and the

Average Hash Rate

Benchmark DL1 Misses Total Hash Invocations Avg. Hash Rate

dijkstra small 1501134 21007122 13.99

fft large 6570198 91732597 13.96

jpeg large 2923393 40925500 14.00

lame large 39221353 549097030 14.00

patricia large 9138017 127930138 14.00

qsort large 7114792 99603844 14.00

math large 1318621 18090557 13.72

sha large 264246 3287898 12.44

stringsearch large 76794 1070293 13.94

susan large 109933 1537169 13.98

blowfish large 5074709 70618620 13.92

crc large 11237338 97672098 8.69

Table 4.2 shows the DL1 Misses, Total Hash Invocations and the Average Hash Rate

for 12 embedded benchmark applications. The average hash rate is calculated by dividing the

total hash invocations by the DL1 Misses in each of the benchmark applications. Since the

average hash rate is directly related to the total hash invocations, it is also directly related

to the energy consumption in the MIV mechanism. The more the average hash rate, the

more are the total hash invocations and thus the more is the energy consumed by the MIV

mechanism and vice versa. Therefore, here, in this research, the emphasis is on reducing the

average hash rate by employing a sensor module to detect possible attacks on the system.

This is explained in detail in Section 4.5.3 along with the results.
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4.5.3. MEM-DnP Energy Consumption

The SM and the MIV module work together for the memory: to detect for it and

protect it from physical attacks, as explained in Section 4.1. Sensor accuracy is responsible

for sleuthing with precision the infected memory blocks. The functioning of MEM-DnP

mechanism results in two false positives. The first false positive arises due the action of

sensors. A typical non-ideal sensor would manifest certain abnormal fluctuations. This

non-ideal sensor characteristics is modeled in the simulation framework by using a Random

Value (RV), which is a random number generator that can generate 16 bit, 20 bit, or 24 bit

random numbers. The RV represents the probability of occurrence of such fluctuations in

the sensor readings. For an N -bit RV the probability that a fluctuation occurs is given by

1
2N

. The fluctuations may, as should be stressed, arise even if there is no potential attack on

the system. The second false positive again relates to the activity of the sensor. At the time

of fluctuations in the readings, a sensor paradigmatically has the enablement to auto-correct

itself and stabilize its readings. For an ideal sensor the time required is 0 for auto-correction.

In practice, however, a finite amount of time is always mandatory if the sensor is to auto-

correct itself. This finite time is modeled in the simulation framework through the use of

Window Size. Window Size corresponds to the number of memory accesses required for the

sensors to stabilize. The Window Size accommodates 3 possible values — 2000, 8000, and

15000 memory accesses. Finally, the Disjoint Trees correspond to the number of secrets or

root hashes that can be stored on-chip. Therefore the number of Disjopint trees depend on

the amount of memory available in the on-chip storage. The number of Disjoint Trees are

tested for three values — 16, 64, and 128.

The simulation Algorithm 3 displays the steps for the simulation of MEM-DnP mech-

anism. A predetermined Attack Seed of the same size as that of the Random Value is em-

bedded in the simulation framework. During the simulations, when the values of Random

Value and Attack Seed match, it can be concluded that fluctuations in the sensor readings

have exceeded VT and that an anomaly rests within the system. At this point, the MIV

module generates the Disjoint hash tree and computes the hash address and hash of the
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memory blocks and proceeds with the verification process. This process is recursive i.e. the

Random Value and the Attack Seed are constantly checked to detect if the match exists. If

again a match comes up, the reappearance/reoccurrence indicates that the anomaly persists

and the hash verification process continues. If the sensor measurements stabilize, the MIV

module halts the hash verification process.

Algorithm 3 Simulation Algorithm

Require: Random Value, Window size, Disjoint Trees.

1: SM will monitor the system to detect an attack.

2: if Random attack seed = Random Block. (Fluctuations >VT . Anomaly exists)

3: Invoke MIV for given Window size and Generate Disjoint Trees.

4: Keep repeating steps 2 & 3.

5: If there is match again. (Anomaly persists)

6: Extend the Window size; keep generating Disjoint Trees.

7: Else, otherwise, attack has subsided.

8: Stop the MIV process.

9: Keep repeating step 2.

The MEM-DnP mechanism is tested for all possible combinations of the two false

positives: Random Value and Window Size and the parameter Disjoint trees. Using Algo-

rithm 3, simulations were performed on the same embedded benchmarks applications that

are used in basecase simulations and the new average hash Rate was recorded. The new

average hash rate was compared with the one in basecase simulations. Note, the lower the

average hash rate, the greater are the energy savings. Figures 4.7a, 4.7b and 4.7c show

the reduction in average hash rate for Disjoint trees = 16, 64, and 128 respectively. The

reduction in average hash rate plotted for all possible values of Window Size and Random

Value. Here the reduction in average hash rate is almost 1.00, i.e., 100% for Random Value -

24. This is expected as the probability that the random number generator would generate a

Random Value matching the Attack Seed is the least for value - 24 as compared to 16 and 20.

Also except for Disjoint tree-128, the reduction in average hash rate is the least for Random
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Value-16 and Window Size-15000. This is due to fact that the Random Value-16 will result

in a higher probability of a match with the Attack Seed and the number of memory accesses

(Window Size) for which MIV functions are predominantly higher. Hence the reduction in

average hash rate will be lower.

Figures 4.8a, 4.8b, and 4.8c show the reduction in average hash rate for Window Size

= 2000, 8000 and 15000 respectively. The reduction in average hash rate is plotted for all

possible values of Disjoint tree and Random Value. Here again the reduction in average hash

rate is almost 1.00 i.e. 100% for Random Value - 24, whereas for Random Value - 16 it is

the least.

Finally Figures 4.9a, 4.9b, and 4.9c show the reduction in average hash rate for

Random Value = 16, 20 and 24 respectively. The reduction in average hash rate is plotted

for all possible values of Window Size and Disjoint trees. Here the reduction in average hash

rate comes in highest for Window Size-2000. This is expected as the number of memory

accesses for which the MIV functions reside significantly low and hence the average hash

rate resides low.

Based on the reduction in average hash rate, the average energy savings with regards

to the basecase simulations, are calculated. Tables 4.3, 4.4 and 4.5 indicates the average

energy savings for Disjoint trees = 16, 64 and 128 respectively. The energy savings are least

for Disjoint tree = 16, Window Size = 15000 and Random Value = 16 with approximately

85.5%. While the energy savings are the highest for Disjoint trees = 64, Window Size =

2000, and Random Value = 24 with 99.998%.

4.6. Conclusion

This chapter presents the MEM-DnP mechanism, a novel approach to achieve energy

efficient memory integrity verification in embedded systems. This mechanism relies on a

sensor module to detect any kind of a memory based attack on the system. The MIV

operation is only carried out in the event of an anomaly i.e. when the fluctuations rise above

the Threshold value VT . Hence a lot of energy is saved by de-coupling the MIV process

during normal execution of the system. The simulation results prove that the average energy
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Figure 4.7. Reduction in Average Hash Rate for different Disjoint Trees.
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Figure 4.8. Reduction in Average Hash Rate for different Window Sizes.

64



 0.8

 0.85

 0.9

 0.95

 1

16 64 128

R
ed

uc
tio

n 
in

 A
ve

ra
ge

 H
as

h 
R
at

e

Disjoint Trees

Random Value = 16

Window_Size=2000 Window_Size=8000 Window_Size=15000

(a) for Random Value-16

 0.8

 0.85

 0.9

 0.95

 1

16 64 128

R
ed

uc
tio

n 
in

 A
ve

ra
ge

 H
as

h 
R
at

e

Disjoint Trees

Random Value = 20

Window_Size=2000 Window_Size=8000 Window_Size=15000

(b) for Random Value-20

 0.8

 0.85

 0.9

 0.95

 1

16 64 128

R
ed

uc
tio

n 
in

 A
ve

ra
ge

 H
as

h 
R
at

e

Disjoint Trees

Random Value = 24

Window_Size=2000 Window_Size=8000 Window_Size=15000

(c) for Random Value-24

Figure 4.9. Reduction in Average Hash Rate for different Random Value.
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Table 4.3. Average Energy Savings for Disjoint Tree = 16

Disjoint Tree = 16

Window Size Random Value Average Energy Savings

2000

16 97.990

20 99.880

24 99.993

8000

16 92.394

20 99.475

24 99.971

15000

16 85.492

20 99.080

24 99.934

savings are in the range of 85.5% to 99.998% as compared to the basecase simulations with

traditional MIV techniques.
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Table 4.4. Average Energy Savings for Disjoint Tree = 64

Disjoint Tree = 64

Window Size Random Value Average Energy Savings

2000

16 98.717

20 99.954

24 99.998

8000

16 93.995

20 99.543

24 99.989

15000

16 92.804

20 96.828

24 99.985
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Table 4.5. Average Energy Savings for Disjoint Tree = 128

Disjoint Tree = 64

Window Size Random Value Average Energy Savings

2000

16 98.823

20 99.947

24 99.998

8000

16 92.461

20 99.837

24 99.989

15000

16 94.546

20 99.696

24 99.984
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CHAPTER 5

TSV: TIMESTAMPS VERIFICATION MECHANISM 1

5.1. Introduction

The Timestamps Verification (TSV) mechanism runs on the principle of locality. Most

programs display this behavior of utilizing a small set of addresses, names a working set,

during an epoch of execution. The Working Set Model [13], offered by Peter J. Denning,

models program behavior in computing systems. It was observed that during computational

operations, programs obey the principle of locality (i.e. a program’s formerly referenced

pages) and may predict which pages will likely be revisited/re-referenced. To this end, the

working set model was suggested as the one to provide the solution to system’s general

resource allocations. From the program’s standpoint, the working set of information W(t,

τ) of a process at time t is the assemblage of information referenced by the process in time

interval (t - τ ,t), where τ is the working set parameter. The cerebration here is to encourage

the processor to recall the timestamps of any one working set of addresses. These timestamps

can then aid in verifying the integrity of the data instead of re-constructing the Merkle hash

tree for integrity checking. In this way, large energy conservings can be realized during the

verification phase. In Chapter 4, we proposed the MEM-DnP mechanism that relies on on-

chip sensors to detect and protect against any attacks on memory integrity. Here our goal is

to present a mechanism that is independent of any sensors, thereby completely eliminating

the false-positives introduced by the sensor operation.

The rest of this chapter is organized as follows. Section 5.2 describes the architecture

and the overall functioning of the TSV mechanism. Section 5.3 analyses the performance of

TSV and Section 5.4 presents the conclusion.

1Parts of this Chapter have been previously published, either in part or in full, from [48] with permission
from Elsevier.
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5.2. TSV Architecture

In the proposed TSV architecture, shown in Figure 5.1, the processor timestamps

every value on a memory write operation and encryptedly stores the timestamp along with

the data. The timestamps can be generated via pseudorandom number generators (e.g.

block ciphers). These timestamps are kept on-chip having space limitations; this cache is

the Timestamp Cache, as it is called. When the cache fills up, older timestamps, must,

as a result, be evicted; therefore, merely a confined set of timestamps remain stored. In

this mechanism, two operations exist: memory write and memory read, per, respectively,

Figures 5.2a and 5.2b.

Trusted On-Chip Boundary

CPU

L1 Cache

Verify Hash

Hash Cache

Verify
Timestamp

Timestamp
Cache

Enc/Dec

Memory
(Extended for Timestamp) Merkle Hash

Figure 5.1. Timestamp Verification Architecture (TSV)

During memory write, the CPU initially constructs the hash tree and saves the root

hash in the hash cache. Subsequently, an unique timestamp, which is itself warehoused in

the Timestamp Cache for later verification, get created for each memory block. The mem-

ory block and the given timestamp are then encrypted through the encryption module and

written to the main memory. During the read operation, the CPU first fetches the decrypted
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Do not Check
Hash Tree
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HIT

NO
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(b) Read operation

Figure 5.2. Memory Operations in TSV Architecture

memory block and its timestamp. The CPU then compares the associated timestamp against

those preexisting in the Timestamp Cache. If it comes up a miss, then the processor performs

the Merkle hash tree verification as an integrity validation. But it falls on the side of being a

hit, then the processor compares timestamp values. If both the values match, the processor

conclusively affirms that the integrity of the data is intact; otherwise, if a mismatch is appel-

lated, an attack on the system is identified and the processor aborts any further operations

regarding that line of data. The security of the integrity protection owes its effectiveness to

the security of the encryption function. Any splicing, spoofing, and replay attack will be

detected because the decryption function will generate a pseudorandom timestamp very less

likely to match the timestamp stored on-chip. The security is proportional to the size of the

timestamp. For an N -bit timestamp the probability that any attack on memory will not be

detected (attack succeeds) is 1
2N

.
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The advantage primarily to this approach is in the hash verification phase. If the

timestamp is available in the Timestamp Cache, then the processor is no longer required

to re-route its way along the hash tree to ascertain the integrity of each memory block it

acquires from the memory. Also, while verifying the hash, the CPU has to expend energy in

likening the hash values at each level, until a hit results. This expending may be required

until the root hash is verified. Hence, an amplitude of energy is used up by the processor

in this undertaking. To remedy this taxation, the timestamps mechanism tries to mitigate

both performance and energy burdens during the verification phase. The Timestamp Cache

is a much more energy efficient data cache, whose configuration is set to optimum, by its

execution of a series of performance simulations. This approach requires the memory to be

modified to store the timestamps. This modification is transparent to the processor.

5.3. Experimental Evaluation

This section details about the simulation framework/test bench and specifies the

configurations needed to arrive at the given results. It then presents the baseline results

illustrating the performance of traditional Merkle hash tree verification followed by the per-

formance of the proposed TSV scheme. Finally the performance analysis section concludes

with an elaboration of both the baseline and TSV energy consumption results, in comparison.

5.3.1. Simulation Framework

The simulation framework is based on Simplescalar Tool Set [4], which is configured

to execute ARM binaries. With this dissertation having for its main goal to demonstrate

the energy efficiency of the proposed memory integrity verification mechanism in embedded

systems, what has been used, that best replicates the variety of practical applications run on

embedded devices, is MiBench [23] embedded benchmark suite. Here, the results obtained

from different benchmark programs are presented to demonstrate that the efficiency of the

proposed TSV mechanism is thorough. All the simulations performed are cache based, and

employ the sim-cache simulator in simplescalar. The cache configurations used for the sim-

ulations, presented in Table 5.1, have the configuration of the Level 1 Data Cache optimally
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chosen to complement the typical configurations of an Embedded ARM processor [3]. More-

over, the TSV mechanism is straightly implemented for data only and hence neither to its

instructions or to the simulation’s I-cache is applied any emphasis.

Table 5.1. Cache Configurations

Cache Specifications

L1-D Cache 4KB, 1-way, 32B Line

L2-D Cache None

5.3.2. Baseline Energy Consumption

The adoption of the Merkle hash tree in MIV leads to excesses in energy consumed.

To measure this computation, an MIV architecture has been proposed in Section 3.5. Here

the algorithm is wielded to compute and count the number of hash invocations required per

data miss in the Level 1 Data Cache, in order to verify data integrity. Hence, given that the

energy consumption per hash invocation is known, the results obtained from the algorithm

can serve to calculate the total energy consumption of the MIV mechanism. For comparison

purposes, the configuration of hash cache is left akin to that of the L1 Data cache. Therefore,

the hash cache is 1 way associative i.e. direct mapped cache. At this point it should be noted

that the number of hash invocations grows incrementally as onward proceeds the verification

from the first level to the root level.

Table 5.2 shows a relationship between the DL1 misses and Hash verification at each

level, for 14 embedded benchmark applications. The Merkle hash tree constructed is a

4−ary hash tree with 14 levels. The hash level (HL) indicates the number of times the hash

verification was invoked. Here the total DL1 misses are distributed amongst 14 hash levels

to indicate in which level the miss was verified. Hence in general, the total DL1 misses is

equal to the summation of misses verified at each hash level as given in equation 11. Here n
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Table 5.2. Hash Accesses at different Levels

Benchmarks HL1 HL2 HL3 HL4 HL5 HL6 HL7 HL8 HL9 HL10 HL11 HL12 HL13 HL14

dijkstra small 93 46 626 0 2 0 0 11 0 3 1 0 8 1500344

jpeg large 65 35 56 10 0 0 0 0 0 0 7 0 0 2923220

lame large 66 21 44 12 15 6 0 1 0 0 0 4 1 39221183

lame small 66 21 44 12 15 6 0 1 0 0 0 4 1 3135942

patricia large 130 19 9 4 1 0 0 0 0 0 6 8 0 9137840

patricia small 130 19 9 4 1 0 0 0 0 0 6 8 0 1529667

qsort small 61 14 21 18 0 0 121 0 0 0 0 0 8 1876005

math large 74 30735 18 7 7 0 0 0 0 0 0 12 0 1287768

sha large 31556 18 94 3 2 0 0 1 0 0 4 0 2 232566

sha small 2950 18 94 3 2 0 0 1 0 0 4 0 2 23269

stringsearch small 125 140 21 0 0 0 0 3 0 0 1 198 0 1756

bitcount large 113 20 37 3 1 0 0 0 0 0 0 0 0 719

bitcount small 112 21 38 3 1 0 0 0 0 0 0 0 0 706

dijkstra large 93 46 626 0 2 0 0 11 0 3 1 0 8 7020003

represents maximum Hash level.

Total DL1 Misses =
n∑

i=1

Misses at each HLi(11)

For example, in the case of bitcount large application, there are a total of 893 misses in DL1

cache (= HL1 +HL1 +HL2 + .....+Hl14). Out of these misses, 113 are verified in Level 1.

The number of hash invocation in Level 1 are 113∗1 = 113. Similarly, 719 misses are verified

in Level 14 accounting for 719 ∗ 14 = 10066 hash invocations. What this brings to bear is

that the total number of hash invocations for a particular benchmark can be calculated using

Equation 12.

Total Hash Invocations =

n∑
i=1

Misses at each HLi × i
(12)

This can then be related to average energy consumption of the integrity verification hash
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function per invocation to calculate the total energy consumption of the integrity verification

module as given in Equation 13.

Total Energy =Total Hash invocations ×

Energy per invocation

(13)

For instance, from Table 3.2, if it is assumed that the energy consumed per hash invocation by

the SHA-1 algorithm is 0.76 µJ, then for bitcount large application, the energy consumption

for hash verification will be 0.76∗10066 = 7.65mJ at Level 14 alone. Hence the total energy

consumption arrws over to the addition of energy consumption at each hash level. From this

discussion, it is evident that as the verification process traverses up the levels, the energy

consumption increases rapidly. Moreover, for all the applications in the above simulation, a

majority of the DL1 misses are verified in the last level-14, thus consuming the maximum

energy possible. These statistics render themselves as a baseline for comparisons with the

proposed Timestamps Verification mechanism.

5.3.3. TSV Energy Consumption

In the timestamps mechanism, a TS cache is created to store unique timestamps

associated with each memory block. This timestamp is later taken by the processor to verify

integrity of the block, before reverting to the orthodox approach of a Merkle hash tree. The

timestamps generated are, as far as size, small and so the size of the TS Cache is likewise

small, as compared to the DL1 cache. This is a significant advantage for embedded systems

that are stringent with size and energy requirements. The timestamps stored in the TS

Cache may possess 8 or 16 Bytes. Therefore, the TS Cache size may vary depending on

the size of the timestamps. The performance of the TS cache is analyzed depending on the

number of timestamps it can store. These can be 8, 16, 32, and 64. For each type, four

separate configurations are analyzed, based on the number of ways and number of sets in the

TS cache. Various configurations are detailed in Table 5.3. The TS cache size is equal to the

product of the number of timestamps stored in the cache and the size of each timestamp.

Hence assuming the size of timestamps is 8 Bytes, the size of TS cache of 8 timestamps is
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64 Bytes. Similarly the size of TS cache storing 16, 32 and 64 timestamps is 128, 256 and

512 Bytes, respectively.

Table 5.3. TS Cache Configurations

# Timestamps stored in TS Cache Configurations

8 1 Set-8 Ways; 2 Sets-4 Ways; 4 Sets-2 Ways; 8 Sets-1 Way

16 1 Set-16 Ways; 2 Sets-8 Ways; 4 Sets-4 Ways; 8 Sets-2 Way

32 1 Set-32 Ways; 2 Sets-16 Ways; 4 Sets-8 Ways; 8 Sets-4 Way

64 1 Set-64 Ways; 2 Sets-32 Ways; 4 Sets-16 Ways; 8 Sets-8 Way

For each TS cache capable of storing different number of timestamps, detailed perfor-

mance results have been presented along with their relative performance. Figure 5.3a, shows

the percentage of TS hits w.r.t the DL1 misses for a TS cache capable of storing 8 times-

tamps, for 15 embedded benchmark applications. To revisit the discussion in Section 5.2, a

hit in TS cache reduces the energy consumed by the integrity verification as the values in the

TS cache can be trusted, without any Merkle hash tree verification required. In this case, the

percentage of TS hits stands highest for benchmark application - susan, with almost 81%

and the least for benchmark application patricia, with almost 8%. The average percentage

of TS hits = 36.5%. Figure 5.3b, reveals the percentage of TS Hits w.r.t the DL1 misses for

a TS cache capable of storing 16 timestamps. Here, the percentage of TS hits is highest for

benchmark application - susan, with 88% and the least for benchmark application patricia,

with almost 17%. The average percentage of TS hits is almost 56%. Figure 5.3c, shows

the percentage of TS hits w.r.t the DL1 misses for a TS cache able to store 32 timestamps.

Here, the percentage of TS hits is highest for benchmark application - susan, with 91% and

the least for benchmark application sha with almost 18%. The average percent of TS hits is

almost 71%. At the last, Figure 5.3d shows the percentage of TS hits w.r.t the DL1 misses

for a TS cache of 64 timestamps. Here, the percentage of TS hits is highest for benchmark

application - stringsearch, with 96%, and the least for benchmark application sha, with

almost 18%. The average percentage of TS hits is almost 77%.
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Figure 5.3. Average percentage of TS Hits

The results about the four individual configurations of each timestamp - 8, 16, 32

and 64 are presented. These spell out a generality of which configuration could offer the best

energy savings for a particular TS cache. Figure 5.4a, shows the relative performance of the

4 possible configurations of TS cache made to store 8 timestamps. Here, the configuration

1Sets-8Ways results in higher TS hits and thus dramatic energy savings for the majority

of the benchmark applications. For most of the benchmarks, the configuration 2Set-4Ways

yields similar TS hits as compared to 1Sets-8Ways. Contrarily, the configuration 8Sets-

1Ways results in no TS hits and thus no energy savings for any benchmark applications.

The TS hits abound more for configuration 2Sets-4Ways than 4Sets-2Ways. Therefore it can

be said that the impact of number of ways on TS hits is more than number of sets in the
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Figure 5.4. Relative performance of various TS cache configurations

case of the TS cache with 8 timestamps. The TS hits and in turn energy savings go up with

a rise in number of ways.

Figure 5.4b, shows the relative performance of the 4 configurations of TS cache ca-

pable of storing 16 timestamps. Here, the configurations 1Sets-16Ways and 2Sets-8Ways

results in the highest TS hits and thus the highest energy savings for most of the benchmark

applications, whereas, the configuration 8Sets-2Ways results in the least TS hits for most

of the benchmark applications. Here again, the TS hits are more with an increase in the
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number of ways. Figure 5.4c indicates, the relative performance of the 4 configurations of TS

cache capable of storing 32 timestamps. Here again, the configurations 1Sets-32Ways and

2Sets-16Ways result in the highest TS hits and thus highest energy savings for most of the

benchmark applications. On the contrary, the configurations 4Sets-8Ways and 8Sets-4Ways

yield similar results with lower TS hits for most of the benchmark applications. For the

benchmark application of math large, the 3 configurations of 2Sets-16Ways, 4Sets-8Ways

and 8Sets-4Ways result in similar TS hits. Therefore again in this case, the TS hits occur

more with an increase in the number of ways. Figure 5.4d, shows the relative performance of

the 4 configurations of TS cache capable of storing 64 timestamps. Here, the configurations

1Sets-64Ways and 2Sets-32Ways provide similar results with higher TS hits whereas the con-

figurations 4Sets-16Ways and 8Sets-8Ways provide similar results with lower TS hits. For

the benchmark application math large, all the 4 configurations yield similar results. Here

again, the TS hits tally higher when put with an increase in the number of ways.

Based on the discussion in Sections 3.5 and 5.3.2, the percentage of TS hits are directly

related to the energy savings. Recall, that for each miss in the DL1 cache, an amplitude

of energy is consumed in re-constructing the Merkle hash tree and verifying the root hash.

But in the case of Timestamp mechanism, for every hit in the TS cache corresponding to

a DL1 miss, to spend any energy on Merkle hash verification becomes unneeded. Hence

these hits directly relate to energy savings in an embedded system. At this point, it is

important to emphasize that an increasing amount of energy is lost during Merkle hash

verification as it moves from level 1 to level 14. To show this effect, the hash invocations at

each level are computed, for TS cache storing 8, 16, 32 and 64 timestamps using the same

approach described in Section 5.3.2. This is used to calculate the weighted averages of all the

benchmarks in the timestamps simulation. The geometric mean of these weighted averages

for TS = 8, 16, 32 and 64 is compared with that of basecase simulations. This is shown

in Table 5.4. Here, the geometric mean of weighted averages of hash invocations steadily

decreases for timestamps configurations as compared to basecase simulations. Thus fewer

invocations means bigger energy savings.
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Table 5.4. Geometric Mean of Weighted Averages of Hash Invocations

Basecase TS = 8 TS = 16 TS = 32 TS = 64

48672.78 30537.76 27925.43 10106.65 7674.06

Using the equation 13 and the values in Table 5.4, we present a synopsis of average

energy savings in the TSV approach when compared to basecase simulations. The energy

savings for TS cache with 8 timestamps comes in at the atleast, at 36% and that for TS

cache with 64 timestamps comes up with the most, at 81%, as shown in Table 5.5. The

energy savings vouchsafed here are the averages of all the configurations in a particular TS

cache. Section 5.3.5 analyzes the energy savings in each configuration and its impact on the

entire system. Also, it is important to emphasize that the goal of this research is to present

a variety of options for using the TSV mechanism instead of just suggesting/exhibiting the

best option. It ultimately lies with the chip designer to evaluate all the possible options and

each of their impacts on the system before selecting the most suitable option.

Table 5.5. Energy Savings in Timestamps Approach

Timestamps (TS Cache) Energy Savings

8 timestamps 36%

16 timestamps 62%

32 timestamps 73%

64 timestamps 81%

5.3.4. Theoretical Evaluation for TSV Mechanism

In this section, we present a theoretical basis for the TSV mechanism and aim at

theoretically justifying our results. Much prior research [55, 2, 60, 65, 66] has focused on

modeling caches and their performance. We leverage this body of research to give here
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a model that encapsulates TS cache and its performance. In the same vein as the cache

organization Agrawal et.al [2] describe, TS cache organization - TSC , is denoted as (S, A,

B), where S is the number of sets, A is the degree of associativity and B is block size.

The TS cache size in bytes is the product of number of sets, degree of associativity and

the block size. The number of blocks (i.e. the timestamps) and each block size (i.e. the

timestamp size) is fixed in the TSV mechanism. Therefore the number of sets and the degree

of associativity manifests the working set of the TS cache. Further, analysis is presented to

show how altering the size of the working set influences the energy savings of the TS cache.

If considering the TS cache, the working set is dependent on the possible combinations

of the number of sets and the degree of associativity. This is represented by the TS cache

configurations. Also, in the TSV mechanism, the time factor in the working set model is

represented by the total number of accesses. It is important to note that the TS cache

configurations resemble any general purpose cache configurations - Direct Mapped, Fully

Associative and Set Associative. For instance 1 sets - 8 ways, 1 sets - 16 ways, 1 sets - 32

ways, 1 sets - 64 ways resemble a fully associative cache, whereas, 8 sets - 1 ways resembles

a direct mapped cache with the rest as set associative.

The Independent Reference Model [55] was proposed by Rao to analyze the perfor-

mance of a cache. This model is analytically tractable and presents miss rate estimates for

direct-mapped, fully-associative, and set-associative caches using the arithmetic and geomet-

ric distributions for page reference probabilities. The effectiveness of the TSV mechanism

is analyzed by the energy savings offered by the TS cache. The energy savings correspond

with TS cache hit rate (or 1 - TS cache miss rate). Therefore the Independent Reference

Model serves best to analyze the TS cache performance in terms of its miss rate for varying

TS cache size.

With reference to [55], the miss rate or the fault rate in a cache is written as

Ff =
n∑

t=1

ptqt(14)

where F is the fault rate, f is the replacement policy, n is the logical pages in the
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backing store, pt is the page reference probability and qt is the probability of not finding a

page in the cache.
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Figure 5.5. Miss Rate vs. TS Cache Size in terms of Number of Timestamps

If a graph of the fault rate/miss rate is to be plotted versus the cache size, then what

is observed is that the fault rate decreases exponentially as increase the cache size. This

trend is also exhibited in the TS cache and appears here in Figure 5.5, which represents a

graph of miss rate vs. TS cache size in terms of number of timestamps. Since the block

size is kept constant at 8 bytes, the TS cache climbs from 64 Bytes for 8 timestamps to 512

Bytes for 64 timestamps. The miss rate depicted ( 5.5) is calculated by averaging the miss

rates obtained from all the configurations i.e. working sets in a particular TS cache. It is

therefore evident that the miss rate decreases exponentially as increases the size of the the

TS cache.

5.3.5. Overhead Evaluation of TSV Mechanism

The proposed timestamps mechanism does not mandate a unique timestamp to be

stored in the TS cache to serve readily all the data blocks accessed by the L1 Data Cache.

An L1 Data cache of size 4KB with 32 Byte block size contains a total of 128 cache blocks.

However, the TS cache is configured to house only 8, 16, 32 or 64 timestamp blocks. More-
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Table 5.6. Energy Savings vs. Area Overhead in TS Cache

Number of

Timestamps

Size of TS Cache

with Block Size = 8

Bytes

TS Cache Configura-

tions

Energy Sav-

ings (%)

TS Cache Area Overhead w.r.t

L1 Data Cache of size 4KB (%)

8 64

1 Sets-8 Ways 56.92

1.56

2 Sets-4 Ways 53.40

4 Sets-2 Ways 33.11

8 Sets-1 Ways 0.00

16 128

1 Sets-16 Ways 74.10

3.12

2 Sets-8 Ways 73.94

4 Sets-4 Ways 53.23

8 Sets-2 Ways 46.91

32 256

1 Sets-32 Ways 83.50

6.25

2 Sets-16 Ways 89.57

4 Sets-8 Ways 59.78

8 Sets-4 Ways 57.46

64 512

1 Sets-64 Ways 92.36

12.50

2 Sets-32 Ways 92.10

4 Sets-16 Ways 70.02

8 Sets-8 Ways 68.84

over, a timestamp is unique data pertaining to a particular cache block and hence its block

size is significantly smaller than that of the cache block. The timestamp block size can be

either 8 Bytes or 16 Bytes as compared to 32 Bytes in a L1 Data cache. In this research,

the timestamp block size is set to 8 Bytes. Table 5.6 below presents an analogy between the

size of the TS cache, its energy savings and its area overhead with respect to L1 Data cache

of size 4KB. The area overhead is calculated using the equation 15 below. For simplicity, we

have ignored the size of the cache tag in both L1 Data Cache and TS Cache configuration.

Nonetheless, it is important to stress that the size of tag will be higher in L1 Data Cache

as compared to that in the TS Cache. Thus the area overhead will be even less in practical
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scenario.

TS Cache Area Overhead =

Area of TS Cache

Area of L1 Data Cache
× 100

(15)

Since the size of each TS block is fixed at 8 Bytes, the size (in bytes) of the TS cache storing 8,

16, 32 and 64 timestamps is 64, 128, 256 and 512 respectively. For each TS cache mentioned

above, the energy savings (in percentage) for every configuration and its area overhead (in

percentage) is presented. The area overhead for the TS cache of 64, 128, 256 and 512 bytes

is 1.56%, 3.12%, 6.23% and 12.50%, respectively. Therefore the overhead of the TS cache is

significantly low as compared to the energy savings it can offer.

The energy savings of TS cache with 8 timestamps is in the range of 33.11% to 56.92%

with an area overhead of 1.56%. The energy savings of TS cache with 16 timestamps falls

in the range of 46.91% to 74.10% with an area overhead of 3.12%. The energy savings of

TS cache with 32 timestamps is in the range of 57.46% to 89.57% with an area overhead

of 6.25%. And finally the energy savings of TS cache with 64 timestamps is in the range

of 68.84% to 92.36% with an area overhead of 12.5%. Importantly, we here emphasize that

the affect of number of ways or associativity on the energy savings is profoundly higher than

that of number of sets. Energy savings only decrease as the associativity decreases. This

attribute is expected as a general characteristic in caches.

To stress the importance of the energy savings offered by the proposed TSV mech-

anism and to provide a comparison between the configurations of various TS caches, we

calculate a new parameter — the Energy Savings/Area Overhead factor, in short the E/O

factor. The value of the E/O factor stands in the range of 0% to 100% and it should ideally

be as high as possible. Table 5.7, shows the E/O factor for all the TS cache configurations.

Where the E/O factor is the highest is for the TS cache configuration of 1 sets-8 ways (Fully

Associative), at 36.49%, and where the E/O factor is lowest is for TS cache configuration of

8 sets-1 ways (Direct Mapped), at 0%. This nonce reading of 0% indicates that this config-

uration did not receive TS hits and consequently resulted in no energy savings. But if this

configuration is ignored, the E/O factor decreases steadily with 5.51% as the lowest for the
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Table 5.7. Energy Savings/Area Overhead (E/O) factor for TS Cache Con-

figurations

TS Cache Configurations E/O Factor (%)

1 Sets-8 Ways 36.49

2 Sets-4 Ways 34.23

4 Sets-2 Ways 21.23

8 Sets-1 Ways 0.00

1 Sets-16 Ways 23.75

2 Sets-8 Ways 23.70

4 Sets-4 Ways 17.06

8 Sets-2 Ways 15.03

1 Sets-32 Ways 13.36

2 Sets-16 Ways 14.33

4 Sets-8 Ways 9.57

8 Sets-4 Ways 9.19

1 Sets-64 Ways 7.39

2 Sets-32 Ways 7.37

4 Sets-16 Ways 5.60

8 Sets-8 Ways 5.51

TS cache configuration of 8 sets-8 ways. This trend implies that the energy savings offered

by the TS cache does not increase at the same rate at which its area overhead does. Since

area overhead bears a greater impact, it gradually pulls down the E/O factor. Figure 5.6

presents the average E/O factor as well as the lower and upper bounds for TS cache with

8, 16, 32 and 64 timestamps. The fitted curve shows that the average E/O factor decreases
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exponentially as increases the TS cache size. The fluctuation in the upper and lower bounds,

also known as the error fluctuation, falls as the TS cache increases. This trend points to the

Law of Diminishing Returns. It is important to stress that as the TS cache size increases, the

impact of associativity on the energy savings decreases. Accordingly, for a smaller TS cache,

this trend possesses importance. It is key to select the fully associative cache configuration

to arrive higher energy savings. Notwithstanding, for a larger TS cache, even the direct

mapped configuration could yield savings in energy comparable to that gained by the fully

associative cache configuration.
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5.4. Conclusions

This chapter presents a novel mechanism of Timestamps Verification - TSV. This

scheme is based on the principle of locality, also known as the working set of the program in

execution. TSV uses timestamps to take advantage of the locality principle and reduce the

energy consumption of the Merkle hash tree during the phase of integrity verification. The

simulation results show that the energy savings with TSV mechanism can range from 36%

to 81%, compared to baseline results. We have also detailed here our theoretical analysis
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to prove the simulation results. What we have done last, we have also presented the E/O

factor to consider the area overhead imposed by the Timestamp Cache.
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CHAPTER 6

HASH FUNCTION-LESS MEMORY INTEGRITY VERIFICATION

6.1. Introduction

Secure architectures employ both encryption and memory integrity verification, as

protecting integrity without confidentiality does not provide any security. A cryptographi-

cally secure encryption function, by definition, is a pseudo-random function [30]. Any mod-

ification to the ciphertext C, resulting in C ′, corresponding to a message M (C = Ek(M))

will cause every bit in the decrypted message M ′ = Dk(C ′) to flip with a probability of 1
2
.

Another distinctive characteristic of memory integrity problem is that the sender is always

the receiver. In other words, processor which writes a value in the memory is the ultimate

consumer of the value. This allows the processor to store some partial information about

the message (data to be stored in the memory) and use the partial information to verify the

integrity.

The rest of this chapter is organized as follows. Section 6.2 describes the architec-

ture and the overall functioning of the Hash Function-Less Memory Integrity Verification

mechanism. Section 6.3 analyses the performance of Hash Function-Less Memory Integrity

Verification mechanism and Section 6.4 presents the Conclusion.

6.2. Hash Function-Less MIV Architecture

The overall architecture is shown in Figure 6.1. In the figure the function that ex-

tracts partial information is referred as fp. For example, for a 256-byte block a simple partial

extraction function could be extracting every 16th bit to extract 128-bit partial information.

The security of the solution is independent of the partial extraction function, as encryption

function should affect every bit equally likely. This partial information is stored in a dedi-

cated cache known as the fp cache. Such an operation creates a tree of partial data known

as the Merkle fp tree, as shown in Figure 6.3. The root of this tree is stored in the fp cache

whereas the rest of the encrypted tree values are stored in the off-chip untrusted memory.

88



Trusted On-Chip Boundary

CPU

L1 Cache

Verify Partial
Data (fp)

Partial Data
fp Cache

Enc/Dec

Memory
Merkle
fp Tree

K ′ = K ⊕Address

Figure 6.1. Hash Function-Less Verification Architecture

The primary difference between a hash tree and the tree of partial values is that the

partial values are encrypted and stored in the memory. In our earlier work [21] we have

proven that, in such a setup, security against integrity attacks can be guaranteed only with

collision resistance. Since the value is stored encrypted on memory, the pseudorandomness

property of the encryption function provides the necessary collision resistance. The solution

is to build a tree using partial information and store the root on-chip. Hence this will provide

security against splicing and spoofing attacks. However, since there is no notion of time in

this setup, a potentially powerful adversary could perform a replay attack. In such an attack,

a memory block located at a given address is recorded and inserted at the same address at

a later point in time. Thus the processor is made to process a stale value instead of the

most current one. To prevent this attack and to add a notion of time to the memory address

and value, the encryption function key (K) is combined with the memory block address –

K ′ = K ⊕ Address. Any change in the memory address and its associated value should be

detected by the encryption function and hence should protect against the replay attack.

The memory write and read operations are shown in Figures 6.2a and 6.2b respec-
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Figure 6.2. Memory Operations in Hash Function-Less Verification Architecture
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Figure 6.3. Merkle fp Tree
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tively. During a write operation, the processor first extracts the partial data using the partial

extraction function. It then updates the merkle fp tree and the root value in the fp cache.

Finally, it writes the encrypted data and encrypted partial data value to the off-chip memory.

During a read operation, the data value and partial data values are first decrypted. The

processor then checks the fp cache to determine if the partial data value is already present

in the cache. If the value is not present i.e. if there is cache miss, then it re-computes the

entire tree for verification. In an event where the value is present i.e. if there is cache hit,

then the processor compares the two values. A match of two values proves that there was no

tampering done to the data and so the processor continues its operation. On the contrary,

if the values do not match, it is concluded that there was an attack on the system and the

processor aborts further operation on that data.

Lemma 6.1. The proposed hash-function less memory integrity scheme detects replay, splic-

ing, and spoofing attack on memory with probability 1− 1
2128

.

Proof. Consider two data blocks DA and DB stored at addresses A and B respectively.

Let the encrypted values stored in the memory by CA and CB and their partial values are

fpA and fpB respectively.

Splicing attack: Splicing attack changes the association of addresses and data. The

decrypted value after a read from address A would be D′A = DK⊕A(CB). Since the encryption

function is a pseudorandom function the change in the key and the data value will result in

pseudorandom output. Thus P [f ′pA = fpA ] = 1
2128

. The attack succeeds if the partial data

matches, which happens with probability 1
2128

.

Spoofing attack: Spoofing attack randomly modifies the data. The decrypted value

after a read from address A would be D′A = DK⊕A(C ′A). Since the encryption function is a

pseudorandom function the change in the key and the data value will result in pseudorandom

output. Thus P [f ′pA = fpA ] = 1
2128

. The attack succeeds if the partial data matches, which

happens with probability 1
2128

.

Replay attack: Replay attack replaces the data in an address from its previous in-
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stance. The partial data are constructed as a merkle tree and their root is stored in the

trusted boundary on-chip. This root fproot will result in a different value when any of its leaf

nodes are modified. Thus P [f ′proot = fproot ] = 1
2128

. The attack succeeds if the partial data

root matches, which happens with probability 1
2128

. �

6.3. Experimental Evaluation

6.3.1. Simulation Framework

To measure the power dissipation in our research, we are using Sim-Panalyzer[32], a

cycle accurate power simulator for ARM instruction set architecture. Specically, it simulates

the StrongArm SA1100 processor and is widely used for power estimations in ARM proces-

sors. The latest version of Sim-Panalyzer provides very detailed power estimation models

for various components on System-on-Chip (SoC). Some of the power models include - cache

power model, datapath and execution unit power model, clock tree power model and I/O

power model etc. Sim-Panalyzer computes the power dissipation in a program, based on

counting the number of transitions in these parts of the processor. Since this research is

primarily targeted towards embedded systems, we have used the MiBench[23], an industry-

standard embedded benchmark suite. MiBench is divided into multiple classes which are

representative of different embedded application domains such as automotive, consumer,

networking and security etc. The results presented in rest of this section were obtained by

running power simulations on these benchmark applications.

The processor specifications used in the simulation test bench are listed in Table 6.1.

These specifications are mimicked to represent an ARM Cortex A9 embedded processor. The

first set of results, shown in Figure 6.4, presents the average power (%) consumed by various

components of an embedded processor. Here, the cache hierarchy consumes the most amount

of power (75%) followed by the CLOCK (14%) and IRF (8%). Whereas, negligible power is

consumed by Others (1%), constituted of the ALU, MULT, FPU, LOGIC and FPRP. These

results form a base line for the MIV power dissipation results presented in the next section.
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Table 6.1. Embedded Processor Specifications

Feature Value Property

Technology 0.18 µm CMOS

Supply Voltage 1.2 V to 1.8 V

Clock Frequency 233 MHz

I-Cache 32 KB

4-Way Set Associative.

Line Length = 8 words

Block Size = 32 Bytes

D-Cache 32 KB

4-Way Set Associative.

Line Length = 8 words

Block Size = 32 Bytes

L2 Cache 512 KB 8-way set-associative

Instruction TLB 32 Entries Fully Associative

Data TLB 32 Entries Fully Associative
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6.3.2. Power Dissipation in MIV

During the MIV process, there are two stages where power is consumed. First, when a

hash function is invoked to create the hash of the data block and second, while caching some

of these hashes in the on-chip memory. Hence, if PHashFunc resembles the power consumed

by the hash function and PHashCache resembles the power consumed by the cache that stores

these hashes, then the total power (PT ) consumed by the MIV process is:

(16) PT = PHashFunc + PHashCache

PHashFunc can be calculated using the formula given in Equation 17.

PHashFunc =
EHashFunc × HSZ × HT × CF

SC

where EHashFunc = Energy consumption per data bit

HSZ = Size of Input to the Hash function

HT = Total number of Hash function Invocations

CF = Clock Frequency

SC = Total Simulation cycles

(17)

As discussed in Section 3.4, during a Merkle hash tree based verification, hashes are generated

from the leaf nodes and compared against the hashes that are present in the hash cache. For

every hash cache miss, this process is repeated at all the levels of the hash tree up until the

root hash is calculated. Thus if L represents the total number of levels in a Merkle hash tree

and M represents the hash misses then HT can be calculated using Equation 18.

(18) HT =
N∑

L=1

Misses at each ML × L

We have simulated a hash cache structure using the hash address algorithm proposed in

Section 3.5. This allows us to measure the hash cache misses at each level of the tree (ML)

so that we can calculate HT . We rely on Sim-Panalyzer to provide the PHashCache value.

In order to get the EHashFunc, we have referred to the implementation of BLAKE [24], a

cryptographic hash function that is one of the five finalist at the NIST SHA-3 competition.
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In [33], the authors have analyzed the performance of all the round 2 candidates in the NIST

SHA-3 competition. According to their results, BLAKE consumes 4.66 pJ/bit of dynamic

energy i.e. EHashFunc = 4.66 pJ/bit. The hash tree simulated in this research is a 4-ary tree

with 14 levels and each data block as 32 bytes. Hence HZ = 32 × 4 × 8 = 1024 bits. The

value of CF is 233 MHz while HT and SC can be calculated from the simulation results.

Using the equations, algorithm and parameter values mentioned above, we have mea-

sured the PHashFunc and PHashCache and shown in Figure 6.5. Here, PHashFunc is represented

as HFunc and PHashCache is represented as HCache. As seen from the results, the hash func-

tion consumes 922.85 mW of power while the hash cache consumes 139.29 mW of power

during the entire simulation cycle. This is significantly higher than the power consumed by

rest of the processor components.
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6.3.3. Power Savings in Hash Function-Less Verification

In the proposed Hash Function-Less MIV mechanism, we have completely eliminated

the use of hash function to generate the hashes. Instead, we have proposed the use of an

existing encryption function or a pseudo random function to generate the hashes. Since a

hash function and a pseudo random function posses similar characteristics, the security of
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the system does not get comprised. To measure the power savings offered by our mechanism,

we have measured the power consumed by an encryption function to compare against that

of the hash function. In [36], the authors have analyzed the power consumption of AES-128

encrytpion function at 1.8 V input voltage and 0.18µm CMOS technology. Here, AES-128

consumes energy of 0.432 nJ/Byte. Similar to the MIV power dissipation in Section 6.3.2,

we have calculated the power dissipation of AES-128 encryption function. At this point,

it is important to stress two things. First, the number of encryption function accesses at

level 1 will be required in regular encryption/decryption operation. Hence energy consumed

at level 1 is not considered. The energy overhead occurs when the encryption function is

accesses from levels 2 to 14. Second, the hash cache structure is required to store the partial

data tree blocks. The Figure 6.6 shows that the average power consumed by AES-128 to

generate and verify hashes is 185.66 mW as opposed to 922.85 mW required for BLAKE

hash function.
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Figure 6.6. Power consumption of AES-128 Encryption Function in a Processor

The Table 6.2 shows that the total power consumed by an embedded processor with

a hash function is 1287.8 mW whereas the total power consumption is 550.61 mW when an

encryption function is used to perform the hash verification process. Thus, our proposed

mechanism achieves a total power savings of 57.24%, which is significant in battery operated,
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energy constrained embedded systems.

Table 6.2. Total Power savings in an Embedded Processor

Total Power with Hash

Function(mW)

Total Power with Encryp-

tion Function(mW)

Power Savings(%)

1287.80 550.61 57.24

6.4. Conclusion

This chapter presents the Hash Function-Less Memory Integrity Verification mecha-

nism for embedded systems. The goal of this approach is to completely eliminate the use

of a hash function during the process of memory integrity verification. Here, an encryption

function can be used to perform memory integrity verification. Our cryptographic analysis

proves that since the security properties of an encryption function are similar to that of a

hash function, the overall security of the system is not compromised. The simulation results

prove that the proposed mechanism leads to a total power savings of 57.24%, which can

significantly improve the battery life of an embedded system.
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CHAPTER 7

CONCLUSION

The modern day computing devices have pervaded in all facets of human life. They

are empowered to store, track and relay essential data over the network. This data may often

contain sensitive information that must be protected from leaking out to unwanted entities.

Thus security becomes a primary concern. Now a days, the attacks may originate from a va-

riety of sources and may evolve into various sophisticated forms, due to the computing power

available to the hackers. These may be software based attacks or even physical attacks on the

system. Physical attacks are more prevalent on embedded systems like smart cards, smart

phones, PDAs, network sensors and so forth as they comparatively easily accessible. Thus

the traditional software-only security solutions fail to provide adequate protection against

these attacks. To achieve reliable and robust security, it is essential to have hardware support

for security. Hardware support for security facilitates the construction of trustworthy secure

systems. However, a significant disadvantage of hardware security mechanisms is that they

require modification to the micro-architecture of the processor. This is an extremely expen-

sive and time consuming process and cannot be conceived unless the security mechanisms

are thoroughly tested. Another serious concern with hardware security is that they consume

system resources, thereby causing a huge performance bottleneck. Owing to these concerns,

the adoption of hardware security mechanisms is hampered in modern computing devices.

With an emphasis on hardware security mechanisms, the objective of this dissertation is to

propose solutions to answer the two concerns related to hardware security mechanisms.

Therefore, we first propose the Virtualization Based Secure Framework (vBASE) that

takes advantage of the virtualization technology to realize hardware security architectures

inside the virtualization layer. The vBASE framework has two forms: Testing and Execu-

tion framework, based on its mode of operation. The Testing framework serves as a generic

platform to test the security implementations of hardware architectures. The Execution

framework, constitutes the Secure Hypervisor (SecHYPE) framework and the Cloud Trust
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(CTrust) architecture, which presents a security solution for cloud computing platforms.

With the motivation of improving the performance of cryptographic memory integrity veri-

fication mechanism, we have proposed three novel mechanisms: Memory Detect and Protect

mechanism (MEM-DnP), Timestamps Verification (TSV) mechanism, and Hash Function-

Less Memory Integrity Verification mechanism. The MEM-DnP approach yields energy

savings of approximately 86% to 99% during the integrity verification phase. The TSV

mechanism offers energy savings in the range of 36% to 81% during the integrity verification

phase. Finally, the Hash Function-Less verification reduces the power consumption of an

embedded processor by 57.24%. These energy and power savings are significant, considering

most embedded devices are battery powered.
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