

APPROVED:

Enrique Barbieri, Major Professor and Chair of
the Department of Engineering
Technology

Robert G. Hayes, Committee Member
Huseyin Bostanci, Committee Member
Costas Tsatsoulis, Dean of the College of

Engineering
Mark Wardell, Dean of the Toulouse Graduate

School

CONTROL AND AUTOMATION OF A HEAT SHRINK TUBING PROCESS

Shahrokh Yousefi Darani

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

Augu st 2014

http://engineering.unt.edu/dr-costas-tsatsoulis

Yousefi Darani, Shahrokh. Control and Automation of a Heat Shrink Tubing Process.

Master of Science (Engineering Systems-Electrical Systems), August 2014, 59 pp., 2 tables, 25

figures, references, 26 titles.

Heat shrink tubing is used to insulate wire conductors, protect wires, and to create cable

entry seals in wire harnessing industries. Performing this sensitive process manually is time

consuming, the results are strongly dependent on the operator’s expertise, and the process

presents safety concerns. Alternatively, automating the process minimizes the operators’ direct

interaction, decreases the production cost over the long term, and improves quantitative and

qualitative production indicators dramatically. This thesis introduces the automation of a heat

shrink tubing prototype machine that benefits the wire harnessing industry. The prototype

consists of an instrumented heat chamber on a linear positioning system, and is fitted with two

heat guns. The chamber design allows for the directing of hot air from the heat guns onto the

wire harness uniformly through radially-distributed channels. The linear positioning system is

designed to move the heat chamber along the wire harness as the proper shrinkage

temperature level is reached. Heat exposure time as a major factor in the heat shrink tubing

process can be governed by controlling the linear speed of the heat chamber. A control unit

manages the actuator position continuously by measuring the chamber’s speed and

temperature. A model-based design approach is followed to design and test the controller, and

MATLAB/Simulink is used as the simulation environment. A programmable logic controller is

selected as the controller implementation platform. The control unit performance is examined

and its responses follow the simulation results with adequate accuracy.

http://en.wikipedia.org/wiki/Electrical_engineering

Copyright 2014

by

Shahrokh Yousefi Darani

 ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Enrique Barbieri, for his support and guidance

during my study at UNT. I also acknowledge my appreciation to thesis committee members, Dr.

Robert G. Hayes and Dr. Huseyin Bostanci, for their feedback.

Particular thanks goes to my beloved parents, and my brothers for being a constant

source of moral support and guidance in my whole life.

Zohreh, your friendship and love have given me a new meaning of life. You stood beside

me and encouraged me constantly during these years. I dedicate this work to you.

Lastly, I thank God for giving me the opportunity of coming to this country and

completing my study at UNT. I present my regards to all friends and nice people I have met in

this country.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .. iii

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER 1 INTRODUCTION .. 1

1.1 Wire Harnessing Process .. 1

1.2 Heat Shrink Tubing in Wire Harnessing Process .. 2

1.3 Motivations .. 2

1.4 Existing Solutions in the Market ... 3

1.5 Planned Objectives and Scope Definition ... 6

1.6 Proposed Solution ... 9

1.7 Methodology: Model-Based Control Design .. 10

1.8 Contents of the Following Chapters ... 12

CHAPTER 2 SYSTEM MODELING AND CONTROL DESIGN .. 13

2.1 Different Types of System Modeling ... 13

2.2 Model Development, Assumptions, and Parameters Estimation 14

2.3 Model Validation .. 16

2.4 Controller Design ... 16

CHAPTER 3 CONTROLLER IMPLEMENTATION .. 26

3.1 Hardware Implementation ... 26

3.2 Software Implementation ... 29

3.3 Position Controller Test .. 31

CHAPTER 4 CONCLUSION AND FUTURE WORKS ... 43

4.1 Conclusion ... 43

4.2 Future Works ... 47

APPENDICES ... 51

REFERENCES ... 57

iv

LIST OF TABLES

Page

Table 3.1 Modules and Equipment Used in the Controller Hardware ... 28

Table 3.2 Exchanged Data between MATLAB/Simulink and PLC .. 37

v

LIST OF FIGURES

Page

Figure 1.1 Shrinking Tube Conveyor System .. 5

Figure 1.2 Triple Element Bench Glo-Ring Heating Tool ... 5

Figure 1.3 Prototype Heat Shrink Tubing Machine (Single Gun) .. 7

Figure 1.4 Heat Chamber Design (Double Gun) .. 8

Figure 1.5 Heat Chamber Exploded View (Double Gun) .. 8

Figure 2.1 Linear Positioning System MATLAB/Simulink Model .. 15

Figure 2.2 State-Chart Diagram to Manage the Operation Mode .. 18

Figure 2.3 Typical Feedback Control System with Parallel Structure PID Controller 19

Figure 2.4.A System Model Along with the Designed Controller Block Diagram 23

Figure 2.4.B Controller Block Diagram in Detail ... 23

Figure 2.5 Chamber Position and Speed Respect to the Temperature Variations 24

Figure 2.6 Armature Current and Chamber Speed in Response to the Rapid Changes in

Temperature ... 25

Figure 3.1 Modular Based CompactLogix Controller .. 28

Figure 3.2 PLC Code Generation and Deployment Sequence for System Level Logic 30

Figure 3.3 Chamber Position Control Ladder Diagram ... 31

Figure 3.4 Experimental Setup .. 34

Figure 3.5 Data Communication Architecture in the Experimental Setup 34

Figure 3.6 A Simple OPC Read/Write Example in MATLAB/Simulink (Block Diagram) 35

Figure 3.7 OPC Read/Write Example in MATLAB/Simulink (Plots) ... 35

vi

Figure 3.8 Modeled Process in MATLAB/Simulink Connected to the Real Controller (PLC) 38

Figure 3.9 Motor Speed and Current (in MATLAB/Simulink) for the Modeled Controller 39

Figure 3.10 Motor Speed and Current (in MATLAB/Simulink) for the Real Controller 40

Figure 3.11 Chamber Position and Speed (in MATLAB/Simulink) for the Modeled Controller ... 41

Figure 3.12 Chamber Position and Speed (in MATLAB/Simulink) for the Real Controller 42

Figure 4.1 Cable Thickness Measurement Instrument (A Typical Conceptual Design) 48

vii

CHAPTER 1

INTRODUCTION

The aim of this thesis is to provide a practical solution for a problem of direct industrial

relevance. For this goal potential resources in academia are utilized to direct us in addressing

the existing challenge in the real world. Although wire harnessing industry is targeted for

achievements of this project, the results could be expanded for a variety of other control and

automation applications in industrial environments. Moreover, the research will provide a solid

framework to be used for any other similar studies.

1.1. Wire Harnessing Process

The process of interest in this thesis is wire harnessing, assembling of wires that are

bound together to transmit signals or electric power. The wires are typically bound by straps,

cable lacing, sleeves, electrical tape, or a weave of extruded string. Wire harnesses provide

several benefits over loose wires. Many aircraft, automobiles and spacecraft contain huge

bundles of wires that would stretch over several kilometers if fully extended. By putting this

multitude of wires into a wire harness shape, they can be better secured against the adverse

effects of vibrations, abrasions, and moisture. Moreover, usage of space will be optimized, and

the risk of an electrical short will be decreased. Since the installer has only one harness to

install, installation time is decreased and the process can be easily standardized [1].

The wire harnessing process consists of several steps needed to produce wire harnesses.

The process involves engineering design and development efforts, labor work, and machinery

operation. Wire harnesses are usually designed according to geometric and electrical

1

http://en.wikipedia.org/wiki/Electrical_tape
http://en.wikipedia.org/wiki/Electrical_short

requirements so the process sequences and its specifications are determined to suit a particular

application.

1.2. Heat Shrink Tubing in Wire Harnessing Process

A heat shrink tube is ordinarily made of nylon or polyolefin, which has the capability of

shrinking about its diameter axis when heated. This feature helps the tube to be utilized in a

wide range of applications, from near microscopically-thin-wall tubing to rigid, heavy-wall

tubing. Among all existing applications, heat shrink tubes could be used to insulate wire

conductors in wire harnessing processes. Heat shrink tubes can also be used to repair the

insulation on wires or to bundle them together, to protect wires, and to create cable entry

seals. Besides serving as an electrical insulator, the heat shrink tube provides environmental

protection against dust, solvents, and other foreign materials, and is mechanically held in place

by its tight fit [2].

1.3. Motivations

To perform heat shrinking of the tubes in a wire harness process, the unshrunk tube is

fitted on the wire before making the connection. The tubing is then shrunk to wrap tightly

around the joint by heating with a hot air gun or other heating sources. Uncontrolled heating

can cause uneven shrinkage, physical damage, and insulation failure. If overheated, heat shrink

tubing can melt, scorch, or catch fire like any other plastic [3]. Thus, the heating process should

be controlled precisely to result in the desired tube profile.

2

http://en.wikipedia.org/wiki/Nylon
http://en.wikipedia.org/wiki/Polyolefin
http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Solvent
http://en.wikipedia.org/wiki/Hot_air_gun

All the above mentioned reasons make the heat shrink tubing process very tricky and

sensitive. That’s why very skillful operators are needed to do the job, but performing this kind

of sensitive process manually is time consuming and risky. The production performance is

strongly dependent on the operators' expertise, and as operators interact with the process

directly, this procedure is insufficiently safe. Therefore, figuring out a way to control the

process automatically will minimize the operators' direct interaction, decline the production

cost over the long term, and improve quantitative and qualitative production indexes

dramatically.

Automatic control or automation is the use of various control systems for operating

equipment such as machinery, processes in factories, and other applications with minimal

human intervention. Some processes could be completely automated while the others might be

semi-automated. The most important benefit of automation is that it saves labor; however, it is

also used to save energy and used materials and to improve quality, accuracy and precision.

Automation is achieved by various means including mechanical, hydraulic, pneumatic,

electrical, electronic, and computers, usually in combination [19].

1.4. Existing Solutions in the Market

Although the heat shrink tubing process is done manually in many industries, there are

some manufacturers in the market that provide automated solutions for this application. For

some products, the work pieces are loaded into the machine manually, and passed through a

heating tunnel automatically. In Figure 1.1, for instance, the machine developed by SLE

3

http://en.wikipedia.org/wiki/Control_system

Electronics USA Inc.1 has a belt conveyor that carries the wires with the sleeves inside an

infrared oven for the shrinking process. Next, the work pieces are passed to a cooling zone and

are deposited in a collection bin. This feature makes this solution ideal for large production

requirements, because the throughput is determined by the feeding rate at which the operator

loads the assemblies. These kinds of machines also can address the precise shrinkage

specifications due to automatic movement of work pieces, but they could not process long wire

harnesses as the heating tunnel dimensions are limited.

Figure 1.2 exhibits another heating tool named Triple Element Bench Glo-Ring®

developed by Eraser2 and could be used for tubing purposes. This product incorporates quartz

encapsulated heating elements to radiate heat at temperatures up to 1500°F (815°C). The Glo-

Ring could serve as an alternative to heat guns; however, this equipment does not solve the

problem associated with heat guns in manual processes. In other words, if a long wire harness

needs to be heated, the operator has to move the work piece manually. This results in the same

problem experienced when using a heat gun manually and the only change is the heating

source and of course moving the work piece instead of the heating source.

1 www.sle-usa.com
2 www.eraser.com

4

Figure 1.2: Triple Element Bench Glo-Ring® Heating Tool
(Picture captured from www.eraser.com)

Figure 1.1: Shrinking Tube Conveyor System
(Picture captured from www.sle-usa.com)

5

1.5. Planned Objectives and Scope Definition

Based on the discussion presented above, a gap exists between the wire harnessing

industry’s needs concerning the heat shrink tubing process, and existing solutions in the

market. So, design and development of an automatic heat shrink tubing machine that benefits

the wire harnessing industry is the ultimate purpose of a parent project, which breaks down

into sub-projects including the current work. Similar to any new product development project,

identifying user needs, interpreting them to the tangible engineering parameters, and

performing a conceptual design based on cost and manufacturing constraints are the step-by-

step phases that need to be carried out.

A small-scale prototype is developed first for preliminary testing and to direct us to the

final product (Fig. 1.3). This prototype consists of an instrumented heat chamber (Fig. 1.4) on a

linear positioning system, and fitted with one/two heat gun(s). The chamber design allows for

the directing of hot air from the heat gun onto the wire harness uniformly through radially-

distributed channels. Figure 1.5 illustrates the heat chamber parts in detail.

The current research proposes a practical controller unit for the mentioned heat shrink

tubing machine. Taking advantage of recent achievements in the area of industrial automation,

along with fundamental control theory, will be the bases of this study. As stated earlier, this

research could be generalized to formulate and solve a wide range of any other control and

automation problems. The aim of this study specifically is to design, simulate, and develop a

control unit for the named heat shrink tubing machine to manage the heat exposure

automatically. The control part of the work will collaborate with other sub-projects within the

parent project. Therefore, all mechanical and manufacturing engineering parts are excluded

6

from this work and this study will only look at the control and automation aspects of the

machine.

Figure 1.3: Prototype Heat Shrink Tubing Machine (Single Gun)

7

Figure 1.4: Heat Chamber Design (Double Gun)

Figure 1.5: Heat Chamber Exploded View (Double Gun)

8

1.6. Proposed Solution

Heat exposure time is a major factor that can affect the shrinking process. Thus, with

regulating that, one can control the shrinking process. In the new heat shrink tubing machine,

when the heat guns (installed on the heat chamber) move over the cable's tube, with

controlling the linear speed of the chamber, the heat exposure time can be adjusted and

consequently the desired tube shrinking could be achieved.

For the above mentioned goal, a linear positioning system is designed to move the heat

chamber along the wire harness as the proper shrinkage temperature level is reached. The

other requisite is a controller unit to manage the actuator position and speed; nowadays,

building control units with the help of embedded controller devices is common. To develop

such a control unit, alongside the selection and configuration of an appropriate hardware, the

needed control algorithm should be developed and implemented in a software environment.

Then the produced software will be deployed into the hardware platform.

Based on the controlled process, plant environment characteristics, and used control

philosophy, different platforms might be used for different applications. Programmable logic

controller (PLC) is selected to be used for this application (versus other kinds of embedded

controllers such as ASIC, FPGA, DSP). The main reason for this selection is that a heat shrink

tubing machine will work in an industrial rough environment, and in these kinds of situations,

PLCs are the best choices. The other reason is that since a PLC is an integrated control system

(not a solitary chip), it will provide isolation, signal conditioning, and current/voltage

amplification needed for interfacing with sensor and actuator layers. Eventually, PLCs will

9

communicate easily with other devices like HMI panels and personal computers via predefined

standard protocols.

1.7. Methodology: Model-Based Control Design

Because the current work is developing concurrently with the bigger parent project

(development of a new heat shrink tubing machine), many parameters and factors are

subjected to change which might delay development of the control unit. In contrary, with the

traditional method of product development (all immediate preceding activities must be

complete before the next phase) the following activities can begin sooner and not delay the

work (laddering approach). So, modeling the system could be started considerably before

completion of the machine development. The undefined parameters of the system will be

estimated and as the project progresses, these approximations will be tuned progressively. In

this way it would be needless to design the whole controller unit, by first waiting for the

fulfillment of the machine development phase. This approach will save the development time

significantly.

Model-based design is a generic method to address a defined problem associated with

designing control systems. Model-based design is a methodology that provides an efficient

approach for establishing a common framework for communication throughout the design

process. In model-based design approach, development of a control system includes the

following steps: modeling the plant (system to be controlled), designing a controller for the

plant, simulating the plant and the controller and evaluating the controller performance, and

finally, implementing the controller and integrating it with the real plant. The model-based

10

http://en.wikipedia.org/wiki/Plant_(control_theory)

design paradigm is different from traditional design methodology. Here, instead of using

complex structures, designers can define models with advanced functional characteristics using

prefabricated building blocks. These models along with simulation engines can lead to rapid

prototyping, software-in-the-loop testing, and model and controller verification. In some cases,

hardware-in-the-loop test also can be used to check the performance of the real controller with

simulated plant [4].

As discussed earlier, the PLC is selected for controller implementation purposes. These

days, when controller implementation transpires at the industry level, PLC programming is

performed by expert programmers using one of the IEC-61131-3 standard languages. These

programmers rarely come equipped with knowledge about modern software design methods.

In other words, PLC logic is still implemented by conventional trial-and-error practices. On the

other side, modern software design concepts have been considerably developed in recent

years, thanks to the object-oriented methods, and this may lead to novel approaches in logic

code design and generation for PLCs [8]. Moreover, fast changes in customer requirements

during control and automation projects demand high levels of flexibility in control systems. To

address these rapid changes in control philosophy, it is required that control logic code be

generated automatically from the design stage outputs [9]. During the PLC code generation

phase in the current work, the goal is to automatically generate some portion of the controller

code using the provided utility in MATLAB®/Simulink®1.

1 MathWorks Inc., www.mathworks.com

11

1.8. Contents of the Following Chapters

After a short review on different types of system modeling, in Chapter 2, a physical

model based on MATLAB/Simulink is presented for the heat shrink tubing machine. Simulation

models mostly are developed for a specific range of applications because it is costly and time

consuming to develop a valid model for a wide range of applications. That is why the developed

model only looks at the electro-mechanical sections of the whole system and thermal behavior

has not been modeled. Next, in the same chapter, the control challenges are introduced and an

appropriate control system is proposed. A series of simulations are performed to ensure the

proposed controller performance follows desired specifications. Chapter 3 includes the step-by-

step phases for implementation of the designed controller, and covers both hardware and

software aspects of the work. Finally, a test bench is suggested and the implemented controller

performance is examined. A summary of the complete work is reviewed in the conclusion

section in Chapter 4. Additionally, some potential ideas as follow-up works are presented in the

future work section.

12

CHAPTER 2

SYSTEM MODELING AND CONTROL DESIGN

With regard to the model-based design approach, the development of a controller

includes modeling the system to be controlled, designing an appropriate controller, simulating

and evaluating the controller performance, and finally, implementing the controller and

integrating it with the real plant. This chapter covers the first three steps, and the last step,

controller implementation, will be covered in the next chapter.

2.1. Different Types of System Modeling

Modeling is the process to come up with a model to reproduce the system behavior,

based on some knowledge of the original system [11]. Modeling methods are divided into two

major groups: data-driven models and analytical models. Data-driven modeling uses techniques

like system identification whereas analytical modeling creates a block diagram model that

realizes mathematical equations (differential or algebraic equations) governing system

dynamics. A type of analytical modeling is physical modeling, where a model is created by

connecting blocks that represent the physical elements that the actual plant consists of. This

project takes the benefit from this kind of modeling. In other words, the heat shrink tubing

machine (plant) is broken down to its physical building blocks and each block will be modeled

separately. Next, all modeled building blocks connect together to model the whole system.

13

http://en.wikipedia.org/wiki/System_identification

2.2. Model Development, Assumptions, and Parameters Estimation

MATLAB®/Simulink®1 has been selected as the simulation environment. It is a multi-

domain package that enables this software to be a perfect choice for developing control

systems and testing system-level performance. Simscape™ library in MATLAB/Simulink provides

building blocks from mechanical, electrical, thermal, and other physical domains that make it

possible to model a complete physical system without dealing with mathematical equations

directly.

The designer needs to set up some attributes for each building block. The created model

in Simscape automatically generates the differential equations that represent the system’s

behavior. These equations are integrated with the rest of the system model, and are solved

directly. Simscape elements connect together with physically modeled connections and that is

why each parameter and variable has its own physical unit, with all unit conversions handled

automatically [13].

The heat chamber in the developed prototype machine is attached onto a linear stage

that is driven manually by rotating the screw rod with a hand wheel (Fig. 1.3) but now a DC

motor is selected to perform the job automatically. In the developed system model which is

shown in Figure 2.1, the DC motor block represents the equivalent electric circuit of the

selected DC motor. It includes the electrical and torque characteristics of the motor. This model

is based on the assumption of no electromagnetic energy being lost, and that is why the back-

emf and torque constants will have the same values. The friction block next to the DC motor

shows rotational friction between rotating parts that come into physical contact with each

1 MathWorks Inc., www.mathworks.com

14

other. The friction value is calculated as a function of relative velocity. The worm gear and lead

screw blocks represent the needed mechanisms for converting the rotational movement to

linear displacement. The load force block model is an ideal source of force that is controlled

based on the input signal. The word ideal means it is powerful enough to maintain constant

force regardless of the velocity at the source terminals. The total 7.49 pound (3.4 Kg) load

weight of the chamber (including clamps, shell, and base) and two heat guns will give us a 33.32

N load force for simulation purposes. Eventually, the position sensor block simulates a

translational motion sensor, and its outputs are linear speed and position.

Fig. 2.1: Linear Positioning System MATLAB/Simulink Model

15

2.3. Model Validation

Model validation guarantees that the simulation results match with the observation

from the physical system [11]. Mostly, simulation models are developed for a specific

application and their validity measured for that purpose because it would be too costly and

time consuming to develop a valid model for a wide range of applications. Because of that, the

model developed for the heat shrink tubing machine only looks at the electro-mechanical parts

while the thermal behavior has not been considered. Tests are performed until acceptable

confidence is achieved concerning model validity in its intended application [12].

2.4. Controller Design

The plant model resulting from the former step is used to design the control unit. In this

phase, simulating the developed controller in conjunction with the system under control

behavior will help us monitor the results, detect the modeling errors, and modify the controller

parameters.

2.4.1. System Level Logic Control

The automatic heat shrink tubing machine will work while interacting with no other

manufacturing facility except for the human operators. Observing the current process that is

being performed manually by the operators, it has been understood that the proposed machine

should work in different modes. The operator will start up the machine, place the wire

harnesses into the machine, and control and supervise its operation mode.

16

The operation modes will be changed by event signals. Events are supposed to be

triggered by devices, such as push buttons, sensors, and internal signals, which are defined in

the control logic and rely on internal variables. Such control scheme could be perfectly modeled

with a discrete event system (DES) that has discrete state space and an event-driven dynamic,

i.e., the state can only change as a result of instantaneous events occurring asynchronously

over a time interval [8]. In this context, state-charts have been traditionally used to describe

these kinds of systems (although, there are also other methods such as Petri-Net models).

MATLAB/Simulink possesses the capability to develop and simulate a controller in a state-chart

diagram. Figure 2.2 illustrates the corresponding idea for supervisory control purposes.

According to this diagram, after the operator powers on the machine (PWR=1), the system

status is transferred from its initial off state to the stand-by state. In stand-by mode the heat

chamber is pre-heated and placed in the park position to be ready for the shrinking process.

Once the operator issues the appropriate command via the user interface (RUN=1), the system

state will be changed to the operation state and it means the shrinking process starts. It is

always possible that the machine’s status moves to the designed emergency state and there is a

bunch of reasons for that. Emergency situation could be raised up by the operators or the

internal signals. Ultimately, after observing the alarms list and appropriate reaction, the

operator can restart the system from the initial off status.

17

2.4.2. Chamber Position Controller

As described in Chapter 1, the heating process will be managed by controlling the

position and velocity of the heat chamber. Because the chamber will be driven by a nut on a

screw rod that is fixed to a DC motor shaft, the chamber linear speed is proportional to the DC

motor angular speed; hence, our efforts are focused on controlling the motor’s speed.

Among all existing approaches, one of the most commonly used control methods in

industry is the PID control. Wide availability and simplicity of use are the major advantages of

the PID control method. Even complex control systems may use controller units whose main

control building blocks are PID control modules. The PID controller has a long history and the

change of control technology from the analog systems to the digital computers has not retired

it [18].

PID control is an abbreviation commonly given to a three-term controller where P

stands for the proportional term, I for the integral term, and D for the derivative term. It can be

Fig. 2.2: State-Chart Diagram to Manage the Operation Mode

18

seen in a typical feedback control system, Figure 2.3, that the PID block-set is placed right after

the calculation of the error signal, in order to feed in the control signal to the actuator. An

ordinary parallel structure PID control can be given the following equivalent mathematical

representations in time and Laplace domain [18]:

Time domain: uc(t) = KP e(t) + KI ∫ e(τ)dτ + KD de
dt�t

Laplace domain: Uc(s) = �KP + KI s� + KDs� E(s)

The proportional term is used when the controller action is to be proportional to the

amount of the error signal by a factor of KP. Increasing KP speeds up the response and reduces

(but usually does not eliminate) the steady state offset. The integral term is used when it is

required that the controller correct any steady offset from a constant reference signal value.

The integral term decreases the steady state error without the use of excessively large

controller gain. Finally, the derivative term uses the rate of change of the error signal by the KD

factor, and it introduces an element of prediction into the control action. Using the derivative

control demands more care than using proportional or integral control due to possible noise

Fig. 2.3: Typical Feedback Control System with Parallel Structure PID Controller

19

amplification. This reason along with simplicity incentive and satisfactory performance

motivates using the PI, not the PID, for the current specific application of motion control. As

described earlier, the integral term in the PI controller still has the capability of making the

steady state error negligible for a step change in the reference signal which is why engineers

often tend to use this type of controller in motion control applications.

One beneficial characteristic of the PID controller is that two blocks can be used in a

series structure to result in a better closed-loop dynamic behavior. This architecture is called

cascaded PID control [15]. Similarly, in a typical cascade PI controller, there are two PI blocks

arranged in a way that one controller provides the set point for the other. One block acts as the

outer loop controller (master), which controls the primary physical parameter, here the angular

speed of the motor. The other block acts as the inner loop controller (slave), which reads the

output of the outer loop controller as a set point, usually controlling a more rapid changing

parameter, here the motor’s current. The idea of the second loop is to secure the armature

current and so on govern the target angular speed.

It can be mathematically proven that the working frequency of the controller in cascade

style is increased and the time constant of the whole system is reduced [16]. The other benefit

of the cascade control approach is that it provides limits on the secondary variable which is the

armature current. However, cascade control might result in a more complex system, increasing

the control cost due to more instruments, and requiring more difficult tuning.

To design the controller structure and tune its parameters, the performance objectives

of the system must be defined first. Tuning of a PI controller involves choosing the KP and KI

parameters that provide the required system dynamics, including response speed, settling time,

20

and proper overshoot rate, all of which guarantee the system stability and acceptable steady

state error. The most common method for tuning is based on trial and error. There are also

other analytical and practical methods to tune up a typical PI controller: classical control

methods in the frequency domain, and Ziegler-Nichols, to name but two. These methods all

provide a first approximation and the result usually needs further manual adjustment by the

designer [14].

In the current project, the tuner utility in the PID controller building block is used to

tune up the controller parameters. In the case of the cascade control scenario, the inner loop

controller must be tuned first while the outer loop is not applied. Then, the inner loop needs to

be in tracking mode when the outer loop is being tuned. The following values result for both

master and slave controllers in the simulated system with reference tracking as the main

objective:

Slave Controller (Motor Current): KP = 1 KI = 30

Master Controller (Motor Speed): KP = 0.3 KI = 0.3

Figure 2.4.A and Figure 2.4.B show the schematic block diagrams of the designed

controller in MATLAB/Simulink. The angular speed set point in the master controller will be

selected after running a series of experiments to find what motor speed most appropriately

corresponds to the chamber linear speed, in order to have a desirable heat exposure

performance. Because of the temperature disturbance, the required exposure time and,

21

consequently, the desired motor speed are subject to change. Therefore, the motor speed set

point should be compensated with respect to the chamber temperature variations.

In order to achieve this goal, the actual chamber temperature could be measured and

after calculation of its deviation from the nominal shrinkage temperature, the motor speed set

point could be regulated accordingly. A linear lookup table is used to translate the temperature

fluctuations to the reference speed variations. Figure 2.5 depicts how the linear position and

speed are regulated in response to variations in the chamber temperature that are in vicinity of

its nominal value.

In Figure 2.6, the armature current and chamber speed are measured when there is a

pulse in the chamber temperature. Needless to say due to the thermal transfer function of the

double-gun heat chamber, it is almost impossible for the temperature to have an abrupt

change and this case only could be useful for controller performance evaluation in simulation

world. The graphs illustrate how the chamber linear speed follows the changes in the chamber

temperature or outer loop reference signal, while there is not any specific change in the

armature current or inner loop output signal.

According to the wire harness characteristics, the total travel length of the heat

chamber should be almost 26 inches (or approximately 660 mm). The experiments performed

on the manual prototype determined that the needed linear speed for the chamber with two

heat guns is 0.15 inches/second (3.8 mm/sec) and, as Figure 2.5 reveals, the designed control

system could address this specification very well.

22

Fig. 2.4.A: System Model Along with the Designed Controller Block Diagram

Fig. 2.4.B: Controller Block Diagram in Detail

23

Fig. 2.5: Chamber Position and Speed Respect to the Temperature Variations

24

Fig. 2.6: Armature Current and Chamber Speed in Response to the Rapid Changes in Temperature

25

CHAPTER 3

CONTROLLER IMPLEMENTATION

The next phase, after designing the controller and testing it in the simulation

environment, is the implementation of the control system based on the results of the

simulation. This phase includes implementation of the hardware and software, and the

examination of the control unit performance according to the model-based design guidelines.

3.1. Hardware Implementation

With respect to the reasoning presented in Chapter 1, PLCs stand to be a good choice

for implementing the controller in the current application. They sufficiently meet the

computation needs, either arithmetically or logically. Their effectively shielded packaging lets

them work well in industrial environments having electromagnetic noises and dust. Because

power consumption is not as much of a concern in typical industrial controller design as it is a

concern in portable devices design, this factor does not play a determinant role in hardware

selection process. Other benefits of PLCs are ease of upgrade to higher performance versions,

availability of technical support by third-parties, possibility of performing minor logic

modifications by trained technicians, and existing standard communication protocols for HMI

systems.

Another justification in using PLCs as compared to using other kinds of embedded

controllers is that a PLC is designed to work in a real- time manner. The inputs are read at one

time and saved. The logic then is processed sequentially and, at the end, the outputs are

updated. This allows precise timing of execution and minimizes endless loops. This is an

26

important concept in industrial automation systems where an undesired delay could result in a

costly consequence. Always, the cycle time that it takes to execute the logic is measured and if

it exceeds a predefined value, the developer knows that there is a real problem and the PLC

needs to execute the timeout sequence. Although, most of the mentioned features are feasible

in many other kinds of embedded controllers, because PLCs come as pre-configured structures,

any allocated time and cost could be spent on control algorithm instead of implementation

techniques.

Among existing PLCs, the CompactLogix®1 controller family is a good candidate for the

intended application. The process capability, speed, and supported I/O size are always

important factors in the selection of the right hardware. CompactLogix family controllers are

designed for medium range control applications. The 1769-L3X series offers a modular

configuration which is suited for flexible architectures. Table 3.1 lists the modules provided and

the equipment for building an integrated CompactLogix controller in the current project [20, 21,

22, and 23], while Figure 3.1 shows the controller used in the experiments.

1 Rockwell Automation Inc., www.rockwellautomation.com

27

Table 3.1: Modules and Equipment Used in the Controller Hardware

Catalog

Number
Description

1769-L32E CompactLogix EtherNet/IP Controller

1769-PA2 Compact Expansion Power Supply 120/240V AC Input 2 A @ 5V DC Output Module

1769-IQ16 Compact 16 Point 24V DC Sinking/Sourcing Input Module

1769-OW8 Compact 8 Point AC/DC Relay Output Module

1769-

IF4FXOF2F
Compact Combination Fast 4 In/2 Out Analog Module

1769-ECR Compact I/O end cap

1747-CP3 RS-232 Cable

 4-Port Ethernet Switch and Standard Ethernet Cable with RJ-45 Connector

Figure 3.1: Modular Based CompactLogix Controller

28

3.2. Software Implementation

After selecting the appropriate hardware platform, software implementation is carried

out according to the existing programming standards. As far as PLCs are concerned, a variety of

programming languages are based on the IEC-61131-3 standard, with each one fit for a specific

application. For example, Structure Text is known as a high level PLC programming language

which is used for complicated algorithms while graphical languages like Ladder Diagram or

Function Block are more suitable for simple logics. The latter group is not as flexible as the

Structure Text but it is easier to be traced and debugged, and that is why engineers tend to use

this kind of language most often. In the existing project, Structure Text programming language

is selected to implement the part of the controller software that corresponds to the system

level logic (supervisory control), while Ladder Diagram is used for the chamber position

controller.

The Structure Text code for system level logic is created by automatic code generation

from the controller developed in MATLAB®/Simulink®1. This automatic code generation will

dramatically decrease the possible errors and development time. Using the automatic coder

utilities, control system designers can spend more time to fine tune the algorithm through rapid

prototyping and experimentation, and less time on coding effort. The design and test processes

are completely iterative, meaning that at any phase, the designer can return to the original

model, modify the parameters, and regenerate the code. The MATLAB/Simulink simulation

environment provides the following automatic code generation capabilities:

1 MathWorks Inc., www.mathworks.com

29

RS Logix 5000 MATLAB/Simulink CompactLogix

• Simulink Embedded Coder™: C/C++

• Simulink HDL Coder™: Verilog/VHDL

• Simulink PLC Coder™: Standard Structure Text

Among the above utilities, Simulink PLC Coder makes it possible to convert a designed

MATLAB/Simulink control model into a Structure Text language program. The code generated is

imported into the relevant IDE (Integrated Development Environment). As a result, the

application code will be compiled and deployed to the PLC (Fig. 3.2).

Although Simulink PLC Coder module can generate hardware-independent Structured

Text code from Simulink models, developers need to identify the ultimate hardware model for

implementation because of the existing differences in data types and instructions syntax among

PLCs coming from different vendors. IDEs supported by PLC coder include B&R Automation

Studio®, PLCopen, Rockwell Automation® RSLogix™ 5000, Siemens® SIMATIC® STEP® 7, and

Smart Software Solutions CoDeSys [17]. Rockwell Automation RSLogix 5000 is used as the IDE

for numerous types of Allen-Bradley controllers including CompactLogix. Appendix A contains

the PLC code generated with PLC Coder utility pertinent to the system level logic control

designed in Chapter 2.

Figure 3.2: PLC Code Generation and Deployment Sequence for System Level Logic

30

Figure 3.3 represents the Ladder Diagram program developed for the chamber position

controller. In this figure, the second rung performs the operations needed to calculate the

motor speed set point with respect to the chamber temperature variations, as described earlier

in Chapter 2. Then, two PID blocks are placed in the third rung to create the cascade loops. The

internal operation of the two PID blocks connected in master and slave manner in RSLogix 5000

is represented in Appendix B in the form of a block diagram [24].

3.3. Position Controller Test

Before integrating the controller implemented with the real heat shrink tubing machine,

a round of tests should be performed to check the implemented controller performance. These

tests will help to detect any possible problem and fix it in the right time and before driving the

real instruments.

Figure 3.3: Chamber Position Control Ladder Diagram

31

Due to the computational and graphical capabilities of MATLAB/Simulink, it makes sense

to keep this software package in the controller test process, even after the preliminary design

and simulation phase. In Chapter 2, both controller and system under control (heat shrink

tubing machine) were modeled and examined in the MATLAB/Simulink environment, but now

what is subject to test here is the real control unit. So, in the next test step, the real controller

(PLC) is connected to the simulated machine model in MATLAB/Simulink, and the implemented

controller performance is examined. Generally, this approach is addressed as Hardware-In-the-

Loop (HIL) test; however, in a typical HIL test the simulated object under control should be run

on a hardware platform and an operating system, with a real-time kernel. It is clear that

MATLAB/Simulink cannot present a real-time behavior while running on an ordinary operating

system like Microsoft Windows®1, but this test still could be helpful. Figure 3.4 pictures the

developed experimental setup.

In the experimental setup, the first step is to provide a solution for data exchange

between the controller and the heat shrink tubing machine model in MATLAB/Simulink. The

next paragraphs detail this step.

3.3.1 Data Exchange between MATLAB and the Controller

One solution for feeding the data needed from MATLAB to the controller unit and vice

versa is the use of special I/O modules that are installed on personal computers and supported

by MATLAB, for example, those by National Instruments2 or Quanser3. Such systems may be

1 Microsoft Corporation, www.microsoft.com
2 www.ni.com
3 www.quanser.com

32

suitable for usual laboratory tests but are rarely used in industrial applications because not only

they increase the test cost considerably, but also create many integration problems [5].

Another solution could be the construction of an API (Application Programming

Interface) in MATLAB which listens to the traffic on the PLC network and, if necessary, returns

some data. In comparison with the former solution, the main advantage of this approach is that

MATLAB does not have to be integrated with the peripheral cards and its main disadvantages

are that the building up of such an interface is time consuming and the result is not standard

[5].

Eventually, a common solution would be to use the OPC (OLE for process control)

standard, a solid and efficient method to establish a communication between

MATLAB/Simulink and the PLC unit. In addition to the HIL test, this feature can also be used to

perform a real-time parallel optimization procedure. In this case, the process under control

would continue running independently and MATLAB/Simulink would be executing all the

necessary mathematical operations in parallel and adjusting the controller parameters

accordingly [5]. OPC technology utilizes a software interface with a client and server mode

based on COM/DCOM (Component Object Model/Distributed Component Object Model).

COM/DCOM offers a general standard mechanism for client’s and server’s communication. OPC

technology makes it possible for software and hardware from different brands to integrate, and

presents an easy and effective solution for communication between PC based applications such

as MATLAB/Simulink on one side, and process devices such as PLCs on the other side [6].

Figure 3.5 demonstrates the data communication architecture schematic in the test

system developed. In MATLAB, the OPC Toolbox provides blocks in the Simulink environment

33

Simulation
Workstation Controller

for interacting with a typical OPC server. Figure 3.6 shows how OPC Read and OPC Write blocks

are placed in a simple example in MATLAB/Simulink. This example is used to establish and test

the communication link between the controller and MATLAB/Simulink in preliminary steps. The

sourced signal is written to the OPC Server through the OPC Write block. Then, the controller

passes this signal to another memory address and the OPC Read block gets it back, and sends to

Figure 3.4: Experimental Setup

Figure 3.5: Data Communication Architecture in the Experimental Setup

Programming Workstation

34

the Scope. Figure 3.7 illustrates the original source and received signals in the same plot. As

shown, the data samples that are read from the server are delayed by 0.1 seconds from the

original signal that equals two sample time intervals (0.05 seconds): one sample time to write

and another sample time to read the data.

Figure 3.6: A Simple OPC Read/Write Example in MATLAB/Simulink (Block Diagram)

Figure 3.7: OPC Read/Write Example in MATLAB/Simulink (Plots)

35

3.3.2 Test Results

The test system hardware consists of a process simulation workstation, network switch,

PLC, and PLC programming workstation (Fig. 3.4). The process simulation workstation has two

features: MATLAB/Simulink that simulates the process, and the OPC server which is installed in

the same computer so that the communication between the OPC server and the PLC is achieved

via this computer’s network interface. Although in the final system, the controller signal

transfer is done via I/O modules, in the test system based on OPC server, signal transfer is

achieved temporarily by the PLC’s memory area. Table 3.2 lists the signals exchanged in the test

system. The communication between the process simulation workstation and the controller is

Ethernet based, and the network switch is utilized for this purpose.

The original MATLAB/Simulink model described in Chapter 2 is modified to delegate the

control functions to the PLC (Fig. 3.8). Three process signals that are measured and sent to the

PLC via the OPC Write block include chamber temperature (to determine the motor speed set

point), motor speed (as the master PID loop variable), and motor current (as the slave PID loop

variable). The process model receives the control signal (armature driving voltage) from the PLC

side via the OPC Read block.

36

Table 3.2: Exchanged Data between MATLAB/Simulink and PLC

Signal Name Description From To

TAG_SP
Set point Manipulator (Chamber

Temperature)
MATLAB PLC

TAG_PV1 Process Value 1 (Motor Speed) MATLAB PLC

TAG_PV2 Process Value 2 (Motor Current) MATLAB PLC

TAG_CV Control Value PLC MATLAB

Figure 3.9 includes motor reference and actual speed (which are not in scale due to a

sensor calibration factor) and also the motor actual current in the case that both controller and

process are modeled in MATLAB/Simulink. Figure 3.10 exhibits the same signals when the real

controller (with the same KP and KI parameters) is connected to the process model in

MATLAB/Simulink. A comparison of the two figures shows that the real controller performance

is sufficiently close to the modeled controller, although they are not completely identical.

Figure 3.11 and Figure 3.12 also provide chamber position and chamber speed plots in response

to the abrupt variation in chamber temperature for the modeled and real controller,

respectively.

37

Figure 3.8: Modeled Process in MATLAB/Simulink Connected to the Real Controller (PLC)

38

 Figure 3.9: Motor Speed and Current (in MATLAB/Simulink) for the Modeled Controller

39

Figure 3.10: Motor Speed and Current (in MATLAB/Simulink) for the Real Controller

40

 Figure 3.11: Chamber Position and Speed (in MATLAB/Simulink) for the Modeled Controller

41

 Figure 3.12: Chamber Position and Speed (in MATLAB/Simulink) for the Real Controller

42

CHAPTER 4

CONCLUSION AND FUTURE WORKS

This chapter summarizes the work described in the thesis body, discusses the attained

results, and presents potential ideas to be developed in the future as follow-up works.

4.1. Conclusion

This thesis introduced a problem in the wire harnessing industry and proposed a

practical solution based on the current technology in the field of industrial control and

automation. Although the wire harnessing industry is the focus, as an application-specific

example, the used method could be expanded for a wide range of control engineering

problems in different industries.

In a typical wire harnessing process, the specific kinds of tubes are fitted on the wire

before making the needed connection. The tubes then are heated by hot air blowers (or other

kinds of heat sources) to be shrunk and tightened on the wire harnesses. The heating process

demands an intensive control to result in the desired tube profile. Typically, skilled operators

accomplish the job manually, which is time consuming and insufficiently safe. The main effort in

this thesis was concentrated on developing a control system to perform the process

automatically. An automated heat shrink tubing process minimizes the operators' direct

interaction, lowers the production cost over the long term, and improves quantitative and

qualitative production indexes. For experiment purposes, a small-scale prototype machine was

used and the idea could be generalized on a full-scale machine as well. The prototype machine

consists of a radial heat chamber with one or two heat guns that moves horizontally by a linear

43

positioning system. The chamber is designed in a way to slide along the wire harness and direct

the hot air from the heat gun(s) onto the fitted tube uniformly via distributed channels. So, the

positioning system moves the heat chamber as the proper shrinkage temperature level is

reached. Among all existing positioning systems, an electromechanical device is selected

because of its accuracy, needed power, and cost. The heat chamber is driven by a nut on a

screw rod which is coupled to a servo motor’s shaft. This screw-driven positioning system is

well-known for its accuracy and repeatability and these characteristics make this kind of

actuator a good selection for sliding the heat chamber in the heat shrink tubing machine.

Heat exposure time as a major factor in the heat shrinking process can be managed by

controlling the linear speed of the heat chamber. Thus, the main duty of the control unit is to

adjust the chamber speed, which is done by measuring the actual speed and temperature

continuously. Among all existing motion control methods, the PID control was selected. Its wide

availability and simplicity of use are the major advantages of the PID control method but the PI

controller was used in this specific motion control application due to the possible noise

amplification in PIDs. To secure the armature current while governing the angular speed in the

motor, the cascade PI controller was introduced. It includes two PI blocks arranged in a way

that one controller feeds the reference value for another one. In a cascade PI controller, one

block acts as the master controller and controls the primary physical parameter (the motor’s

speed in this case). The other block behaves as the slave controller, which reads the output of

the master controller as the set point signal and usually controls a more rapid changing

parameter (the motor’s current in this case).

44

The other control challenge is the variable temperature inside the heat chamber due to

heat losses and imperfect heat gun operation. This variation causes the required exposure time

and, consequently, the desired motor speed to change continuously. In other words, the motor

speed set point should be adjusted with respect to the chamber’s actual temperature. So, the

actual temperature is measured and, after calculation of its deviation from the nominal

shrinkage temperature, the motor speed set point is regulated accordingly. Finally, the

proposed control unit should manage the operation mode of the machine. This supervisory

control function was designed and modeled with a discrete event system in the

MATLAB®/Simulink®1 software.

The specifications of the controlled process, plant environment, and used control

method make the PLCs perfect choices for implementing the control unit in this application.

The heat shrink tubing machine works in a harsh industrial environment, and that is why PLCs

are the best candidate. Additionally, because a PLC is an integrated control system as a unit

package, it provides the needed isolation circuits, signal conditioning, and current/voltage

amplification for interfacing with sensors and actuators stage.

PLC programming languages like ladder diagram or function block are more suitable for

simple logics and they are easy to be traced and debugged. Ladder diagram was used for the

chamber position control. In contrast, structure text language is known as a high level PLC

programming method which is used for complicated algorithms. This language was selected to

implement the part of the controller software that corresponds to the system level logic

(supervisory control). The structure text code for system level logic is created by automatic

1 MathWorks Inc., www.mathworks.com

45

code generation from the developed control model in MATLAB/Simulink. This automatic code

generation decreases the possible errors and development time dramatically.

For test purposes, both controller and system under control (heat shrink tubing

machine) were modeled and examined in the MATLAB/Simulink environment. Then, the

implemented controller (PLC) was connected to the simulated machine model in

MATLAB/Simulink, and the developed controller performance was examined. This approach is

similar to the hardware-in-the-loop test; however, the simulated object under control was not

running on a system with a real-time kernel. OPC technology was introduced as an easy and

effective way for communication between PC-based applications such as MATLAB/Simulink,

and process devices such as PLCs. Ultimately, the control unit performance was examined and

the implemented controller responses followed the simulated results with adequate accuracy.

A characteristic that distinguishes this thesis from many other similar works is

development of a PLC-based control system according to the model-based design guidelines.

Although model-based control design is a known method, its standards and procedures have

not been utilized enough in the PLC-based control projects. It does not necessarily mean that

no effort has been done but traditional approach in developing PLC control systems is more

common. The model-based approach used is an elegant way to generate the PLC code

automatically, to simulate the system, and to save time and reduce the error contingency. In

the mentioned approach, even after implementation of the controller, it is possible to switch

back to the simulation phase, modifying the controller parameters, and after observing the

simulated outputs, transferring the needed changes into the real controller. In other words,

instead of traditional sequential-phases project accomplishment, the modern project execution

46

methodology with iterative cycles was used. The following lines are the achievements of the

current work in brief:

1. A real industrial need is addressed.

2. A solid framework for any similar control design project is developed.

3. MATLAB/Simulink automatic code generation is examined.

4. MATLAB OPC toolbox is examined.

5. Cascade PI speed control method in PLC is examined.

6. An experimental test bench is developed to be used for design and implementation

of any other PLC based controller.

4.2. Future Works

While this thesis addressed the potential improvements in the heat shrink tubing

process in the wire harnessing industry, still opportunities for extending the scope of the work

exist. This section presents some of these potential topics.

4.2.1 Shrinkage Measurement

In the proposed control approach, the heat shrink process is controlled by governing the

linear speed of the heat chamber and consequently by managing the heat exposure time. This

approach may be translated to an indirect control method as we regulate the chamber speed

for heat exposure time control. Another control approach may be to incorporate a feedback

based on actual tube shrinking performance, which is the ultimate goal of the process. In other

words, this is the tube shrinkage that is subject to control, not the heat exposure time. To

47

measure the shrinkage performance, the control system should directly sense the tube

thickness before and after heating (like the thing that the human operator does visually in a

manual operation case). Any appropriate thickness measurement method can address this

need. Laser-based diameter measuring could be one option [25, 26]. Another idea is to add a

flexible strain-gauge instrument around the exit side of the chamber to detect the cable

diameter. Figure 4.1 represents a typical conceptual design of this instrument. All these ideas

may be considered as follow-up studies after the current project.

Figure 4.1: Cable Thickness Measurement Instrument (A Typical Conceptual Design)

48

4.2.2 Controller Emulation

To evaluate the implemented controller performance in the current work, it was

connected to the process model in MATLAB/Simulink; however, sometimes it is also useful to

emulate the controller operation in the simulation environment and check the control program

alongside the modeled plant. It is totally clear that an emulated PLC block behaves more

similarly to a real controller in comparison with the developed controller based on the

MATLAB/Simulink building blocks described in Chapter 2. The benefit of this testing method,

and having both emulated controller and simulated process in a single environment, causes the

test bench to be simpler and eliminates possible integration errors. The drawback of this test

bench is that the emulated controller will be limited to the host computer hardware and

operating system performance. For instance, we may not expect hard real time features in an

emulated PLC running on Microsoft Windows®1.

There are some developed translation packages which automatically translate the PLC

control program into MATLAB/Simulink software language. Most of these packages apply a set

of translation rules that convert the PLC code program into m-files. The m-files then could be

integrated with the MATLAB/Simulink process model [7].

4.2.3 Supervisory Control and User Interface

In this thesis, the main concern was managing the heat exposure time via chamber

motion control. Although system level logic is developed and implemented by introducing PLC

Coder™ utility in MATLAB/Simulink, the generated code is not tested effectively. This part of

1 Microsoft Corporation, www.microsoft.com

49

the work could be the subject of another project in detail. Additionally, a user interface is

needed in the final machine to handle operator communication with the control system.

Thanks to the existing standard hardware and software packages in the market, it is easy to

develop such a user interface system.

50

APPENDIX A

SYSTEM LEVEL LOGIC CONTROL: STRUCTURE TEXT CODE

51

<?xml version="1.0" encoding="utf-8"?>
<RSLogix5000Content ContainsContext="true" SchemaRevision="1.0" TargetName="Operation"
TargetType="AddOnInstructionDefinition">
<Controller Name="CCU_R2_0" Use="Context">
<AddOnInstructionDefinitions>
<AddOnInstructionDefinition Name="Operation" Use="Target">
<Parameters>
<Parameter DataType="SINT" Name="ssMethodType" Required="true" Usage="Input" Visible="true"/>
<Parameter DataType="BOOL" Name="PWR" Required="true" Usage="Input" Visible="true"/>
<Parameter DataType="BOOL" Name="RUN" Required="true" Usage="Input" Visible="true"/>
<Parameter DataType="BOOL" Name="EMG" Required="true" Usage="Input" Visible="true"/>
<Parameter DataType="BOOL" Name="ACK" Required="true" Usage="Input" Visible="true"/>
<Parameter DataType="BOOL" Name="STD_BY" Required="true" Usage="Output" Visible="true"/>
<Parameter DataType="BOOL" Name="b_OPR" Required="true" Usage="Output" Visible="true"/>
<Parameter DataType="BOOL" Name="b_STD_BY" Usage="Local" Visible="true"/>
<Parameter DataType="BOOL" Name="b_b_OPR" Usage="Local" Visible="true"/>
<Parameter DataType="SINT" Name="is_active_c2_Operation" Usage="Local" Visible="true"/>
<Parameter DataType="SINT" Name="is_c2_Operation" Usage="Local" Visible="true"/>
<Parameter DataType="DINT" Name="temp1" Usage="Local" Visible="true"/>
<Parameter DataType="DINT" Name="temp2" Usage="Local" Visible="true"/>
<Parameter DataType="DINT" Name="temp3" Usage="Local" Visible="true"/>
<Parameter DataType="DINT" Name="temp4" Usage="Local" Visible="true"/>
<Parameter DataType="DINT" Name="temp5" Usage="Local" Visible="true"/>
<Parameter DataType="DINT" Name="temp6" Usage="Local" Visible="true"/>
<Parameter DataType="DINT" Name="temp7" Usage="Local" Visible="true"/>
</Parameters>
<Routines>
<Routine Name="Logic" Type="ST">
<STContent>
<Line Number="1"><![CDATA[]]></Line>
<Line Number="2"><![CDATA[CASE ssMethodType OF]]></Line>
<Line Number="3"><![CDATA[2:]]></Line>
<Line Number="4"><![CDATA[]]></Line>
<Line Number="5"><![CDATA[(* InitializeConditions for Stateflow: '<Root>/Operation Mode
Manager' *)]]></Line>
<Line Number="6"><![CDATA[is_active_c2_Operation := 0;]]></Line>
<Line Number="7"><![CDATA[is_c2_Operation := 0;]]></Line>
<Line Number="8"><![CDATA[b_STD_BY := 0;]]></Line>
<Line Number="9"><![CDATA[b_b_OPR := 0;]]></Line>
<Line Number="10"><![CDATA[]]></Line>
<Line Number="11"><![CDATA[]]></Line>
<Line Number="12"><![CDATA[3:]]></Line>
<Line Number="13"><![CDATA[]]></Line>
<Line Number="14"><![CDATA[(* Stateflow: '<Root>/Operation Mode Manager'
incorporates:]]></Line>
<Line Number="15"><![CDATA[* Inport: '<Root>/ACK']]></Line>
<Line Number="16"><![CDATA[* Inport: '<Root>/EMG']]></Line>
<Line Number="17"><![CDATA[* Inport: '<Root>/PWR']]></Line>
<Line Number="18"><![CDATA[* Inport: '<Root>/RUN']]></Line>
<Line Number="19"><![CDATA[*)]]></Line>
<Line Number="20"><![CDATA[(* Gateway: Operation Mode Manager *)]]></Line>
<Line Number="21"><![CDATA[(* During: Operation Mode Manager *)]]></Line>
<Line Number="22"><![CDATA[IF is_active_c2_Operation = 0 THEN]]></Line>
<Line Number="23"><![CDATA[(* Entry: Operation Mode Manager *)]]></Line>
<Line Number="24"><![CDATA[is_active_c2_Operation := 1;]]></Line>
<Line Number="25"><![CDATA[(* Transition: '<S1>:12' *)]]></Line>
<Line Number="26"><![CDATA[(* Entry 'Off': '<S1>:4' *)]]></Line>
<Line Number="27"><![CDATA[is_c2_Operation := 2;]]></Line>
<Line Number="28"><![CDATA[ELSE]]></Line>
<Line Number="29"><![CDATA[CASE is_c2_Operation OF]]></Line>
<Line Number="30"><![CDATA[1:]]></Line>
<Line Number="31"><![CDATA[(* During 'Emergency': '<S1>:3' *)]]></Line>
<Line Number="32"><![CDATA[IF ACK THEN]]></Line>
<Line Number="33"><![CDATA[temp1 := 1;]]></Line>
<Line Number="34"><![CDATA[ELSE]]></Line>
<Line Number="35"><![CDATA[temp1 := 0;]]></Line>
<Line Number="36"><![CDATA[END_IF;]]></Line>
<Line Number="37"><![CDATA[IF temp1 = 1 THEN]]></Line>
<Line Number="38"><![CDATA[(* Transition: '<S1>:10' *)]]></Line>
<Line Number="39"><![CDATA[(* Exit 'Emergency': '<S1>:3' *)]]></Line>

52

<Line Number="40"><![CDATA[(* Entry 'Off': '<S1>:4' *)]]></Line>
<Line Number="41"><![CDATA[is_c2_Operation := 2;]]></Line>
<Line Number="42"><![CDATA[ELSE]]></Line>
<Line Number="43"><![CDATA[(* Chamber stops immediately.]]></Line>
<Line Number="44"><![CDATA[Heat Gun is turned off immediately.]]></Line>
<Line Number="45"><![CDATA[Alarm appeares.]]></Line>
<Line Number="46"><![CDATA[Operator should inspect the system]]></Line>
<Line Number="47"><![CDATA[and acknowledge the alarm. *)]]></Line>
<Line Number="48"><![CDATA[b_STD_BY := 0;]]></Line>
<Line Number="49"><![CDATA[b_b_OPR := 0;]]></Line>
<Line Number="50"><![CDATA[END_IF;]]></Line>
<Line Number="51"><![CDATA[2:]]></Line>
<Line Number="52"><![CDATA[(* During 'Off': '<S1>:4' *)]]></Line>
<Line Number="53"><![CDATA[IF PWR THEN]]></Line>
<Line Number="54"><![CDATA[temp2 := 1;]]></Line>
<Line Number="55"><![CDATA[ELSE]]></Line>
<Line Number="56"><![CDATA[temp2 := 0;]]></Line>
<Line Number="57"><![CDATA[END_IF;]]></Line>
<Line Number="58"><![CDATA[IF temp2 = 1 THEN]]></Line>
<Line Number="59"><![CDATA[(* Transition: '<S1>:8' *)]]></Line>
<Line Number="60"><![CDATA[(* Exit 'Off': '<S1>:4' *)]]></Line>
<Line Number="61"><![CDATA[(* Entry 'Stand_By': '<S1>:1' *)]]></Line>
<Line Number="62"><![CDATA[is_c2_Operation := 4;]]></Line>
<Line Number="63"><![CDATA[ELSE]]></Line>
<Line Number="64"><![CDATA[(* All electrical/mechanical]]></Line>
<Line Number="65"><![CDATA[sub-systems are turned off. *)]]></Line>
<Line Number="66"><![CDATA[b_STD_BY := 0;]]></Line>
<Line Number="67"><![CDATA[b_b_OPR := 0;]]></Line>
<Line Number="68"><![CDATA[END_IF;]]></Line>
<Line Number="69"><![CDATA[3:]]></Line>
<Line Number="70"><![CDATA[(* During 'Operation': '<S1>:2' *)]]></Line>
<Line Number="71"><![CDATA[IF RUN THEN]]></Line>
<Line Number="72"><![CDATA[temp3 := 1;]]></Line>
<Line Number="73"><![CDATA[ELSE]]></Line>
<Line Number="74"><![CDATA[temp3 := 0;]]></Line>
<Line Number="75"><![CDATA[END_IF;]]></Line>
<Line Number="76"><![CDATA[IF temp3 = 0 THEN]]></Line>
<Line Number="77"><![CDATA[(* Transition: '<S1>:7' *)]]></Line>
<Line Number="78"><![CDATA[(* Exit 'Operation': '<S1>:2' *)]]></Line>
<Line Number="79"><![CDATA[(* Entry 'Stand_By': '<S1>:1' *)]]></Line>
<Line Number="80"><![CDATA[is_c2_Operation := 4;]]></Line>
<Line Number="81"><![CDATA[ELSE]]></Line>
<Line Number="82"><![CDATA[IF EMG THEN]]></Line>
<Line Number="83"><![CDATA[temp4 := 1;]]></Line>
<Line Number="84"><![CDATA[ELSE]]></Line>
<Line Number="85"><![CDATA[temp4 := 0;]]></Line>
<Line Number="86"><![CDATA[END_IF;]]></Line>
<Line Number="87"><![CDATA[IF temp4 = 1 THEN]]></Line>
<Line Number="88"><![CDATA[(* Transition: '<S1>:11' *)]]></Line>
<Line Number="89"><![CDATA[(* Exit 'Operation': '<S1>:2' *)]]></Line>
<Line Number="90"><![CDATA[(* Entry 'Emergency': '<S1>:3'
*)]]></Line>
<Line Number="91"><![CDATA[is_c2_Operation := 1;]]></Line>
<Line Number="92"><![CDATA[ELSE]]></Line>
<Line Number="93"><![CDATA[(* Chamber starts to move in the]]></Line>
<Line Number="94"><![CDATA[shrinking direction until the
end]]></Line>
<Line Number="95"><![CDATA[of the path. *)]]></Line>
<Line Number="96"><![CDATA[b_STD_BY := 0;]]></Line>
<Line Number="97"><![CDATA[b_b_OPR := 1;]]></Line>
<Line Number="98"><![CDATA[END_IF;]]></Line>
<Line Number="99"><![CDATA[END_IF;]]></Line>
<Line Number="100"><![CDATA[4:]]></Line>
<Line Number="101"><![CDATA[(* During 'Stand_By': '<S1>:1' *)]]></Line>
<Line Number="102"><![CDATA[IF RUN THEN]]></Line>
<Line Number="103"><![CDATA[temp5 := 1;]]></Line>
<Line Number="104"><![CDATA[ELSE]]></Line>
<Line Number="105"><![CDATA[temp5 := 0;]]></Line>
<Line Number="106"><![CDATA[END_IF;]]></Line>
<Line Number="107"><![CDATA[IF temp5 = 1 THEN]]></Line>
<Line Number="108"><![CDATA[(* Transition: '<S1>:6' *)]]></Line>

53

<Line Number="109"><![CDATA[(* Exit 'Stand_By': '<S1>:1' *)]]></Line>
<Line Number="110"><![CDATA[(* Entry 'Operation': '<S1>:2' *)]]></Line>
<Line Number="111"><![CDATA[is_c2_Operation := 3;]]></Line>
<Line Number="112"><![CDATA[ELSE]]></Line>
<Line Number="113"><![CDATA[IF EMG THEN]]></Line>
<Line Number="114"><![CDATA[temp6 := 1;]]></Line>
<Line Number="115"><![CDATA[ELSE]]></Line>
<Line Number="116"><![CDATA[temp6 := 0;]]></Line>
<Line Number="117"><![CDATA[END_IF;]]></Line>
<Line Number="118"><![CDATA[IF temp6 = 1 THEN]]></Line>
<Line Number="119"><![CDATA[(* Transition: '<S1>:9' *)]]></Line>
<Line Number="120"><![CDATA[(* Exit 'Stand_By': '<S1>:1' *)]]></Line>
<Line Number="121"><![CDATA[(* Entry 'Emergency': '<S1>:3'
*)]]></Line>
<Line Number="122"><![CDATA[is_c2_Operation := 1;]]></Line>
<Line Number="123"><![CDATA[ELSE]]></Line>
<Line Number="124"><![CDATA[IF PWR THEN]]></Line>
<Line Number="125"><![CDATA[temp7 := 1;]]></Line>
<Line Number="126"><![CDATA[ELSE]]></Line>
<Line Number="127"><![CDATA[temp7 := 0;]]></Line>
<Line Number="128"><![CDATA[END_IF;]]></Line>
<Line Number="129"><![CDATA[IF temp7 = 0 THEN]]></Line>
<Line Number="130"><![CDATA[(* Transition: '<S1>:5' *)]]></Line>
<Line Number="131"><![CDATA[(* Exit 'Stand_By': '<S1>:1'
*)]]></Line>
<Line Number="132"><![CDATA[(* Entry 'Off': '<S1>:4' *)]]></Line>
<Line Number="133"><![CDATA[is_c2_Operation := 2;]]></Line>
<Line Number="134"><![CDATA[ELSE]]></Line>
<Line Number="135"><![CDATA[(* Chamber waits in the park
position]]></Line>
<Line Number="136"><![CDATA[and ready to move. If it is not in
the]]></Line>
<Line Number="137"><![CDATA[park position, it moves back
there.]]></Line>
<Line Number="138"><![CDATA[Heat Gun is turned on to preheat the
chamber.]]></Line>
<Line Number="139"><![CDATA[System user-interface starts to
work]]></Line>
<Line Number="140"><![CDATA[and displays the status of the
machine. *)]]></Line>
<Line Number="141"><![CDATA[b_STD_BY := 1;]]></Line>
<Line Number="142"><![CDATA[b_b_OPR := 0;]]></Line>
<Line Number="143"><![CDATA[END_IF;]]></Line>
<Line Number="144"><![CDATA[END_IF;]]></Line>
<Line Number="145"><![CDATA[END_IF;]]></Line>
<Line Number="146"><![CDATA[ELSE]]></Line>
<Line Number="147"><![CDATA[(* Transition: '<S1>:12' *)]]></Line>
<Line Number="148"><![CDATA[(* Entry 'Off': '<S1>:4' *)]]></Line>
<Line Number="149"><![CDATA[is_c2_Operation := 2;]]></Line>
<Line Number="150"><![CDATA[END_CASE;]]></Line>
<Line Number="151"><![CDATA[END_IF;]]></Line>
<Line Number="152"><![CDATA[]]></Line>
<Line Number="153"><![CDATA[]]></Line>
<Line Number="154"><![CDATA[(* Outport: '<Root>/STD_BY' *)]]></Line>
<Line Number="155"><![CDATA[STD_BY := b_STD_BY;]]></Line>
<Line Number="156"><![CDATA[]]></Line>
<Line Number="157"><![CDATA[(* Outport: '<Root>/OPR' *)]]></Line>
<Line Number="158"><![CDATA[b_OPR := b_b_OPR;]]></Line>
<Line Number="159"><![CDATA[]]></Line>
<Line Number="160"><![CDATA[END_CASE;]]></Line>
</STContent>
</Routine>
</Routines>
</AddOnInstructionDefinition>
</AddOnInstructionDefinitions>
</Controller>
</RSLogix5000Content>

54

APPENDIX B

MASTER/SLAVE PID LOOPS: RSLOGIX 5000 INSTRUCTION BLOCK DIAGRAM

(Captured from “Logix5000 Controllers General Instructions”, Rockwell Automation)

55

56

REFERENCES

[1] Wikipedia contributors. "Cable harness." Wikipedia, The Free Encyclopedia. Wikipedia,
The Free Encyclopedia, 23 Nov. 2013. Web. 1 Dec. 2013.

[2] Wikipedia contributors. "Heat-shrink tubing." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 27 Nov. 2013. Web. 1 Dec. 2013.

[3] "CableOrganizer.com's Learning Center - A Source of More
Information." CableOrganizer.com - The Best Prices on Wire Management
Solutions. Cableorganizer, 2002. Web. 1 Dec 2013.
<http://www.cableorganizer.com/learning-center>.

[4] Wikipedia contributors. "Model-based design." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 15 Nov. 2013. Web. 1 Dec. 2013.

[5] Persin, Stojan, Tovornik, Boris, Muskinja, Nenad. "OPC-driven Data Exchange between
MATLAB and PLC-controlled System." Int. J. Engng Ed. Vol. 19, No. 4 (2003): 586–592.
PDF.

[6] Lieping, Zhang, Aiqun, Zeng, Yunsheng, Zhang. "On Remote Real-time Communication
between MATLAB and PLC Based on OPC Technology." Proceedings of the 26th Chinese
Control Conference, July 26-31, 2007:545-548. PDF.

[7] Martins, João, Lima, Celson, Martínez, Herminio, Grau, Antoni. "PLC Control and
Matlab/Simulink Simulations – A Translation Approach, Matlab - Modelling,
Programming and Simulations." Emilson Pereira Leite (Ed.), ISBN: 978-953-307-125-1,
InTech, 2010. Web. <http://www.intechopen.com/books/matlab-modelling-
programming-and-simulations/plc-control-and-matlab-simulink-simulations-a-
translation-approach>

[8] Moura, Raimundo, Affonso Guedes, Luiz. "Control and Plant Modeling for
Manufacturing Systems using Basic Statecharts, Programmable Logic Controller." Luiz
Affonso Guedes (Ed.), ISBN: 978-953-7619-63-3, InTech, 2010. Web.
<http://www.intechopen.com/books/programmable-logic-controller/control-and-plant-
modeling-for-manufacturing-systems-using-basic-statecharts>

[9] Han, Kwan Hee. "Object-Oriented Modeling, Simulation and Automatic Generation of
PLC Ladder Logic, Programmable Logic Controller." Luiz Affonso Guedes (Ed.), ISBN: 978-
953-7619-63-3, InTech, 2010. Web.
<http://www.intechopen.com/books/programmable-logic-controller/object-oriented-
modeling-simulation-and-automatic-generation-of-plc-ladder-logic>

[10] Piedrafita, Ramón, Villarroel, José Luis. "The Java Based Programmable Logic Controller.
New Techniques in Control and Supervision of a Flexible Manufacturing Cell,
Programmable Logic Controller." Luiz Affonso Guedes (Ed.), ISBN: 978-953-7619-63-3,

57

InTech, 2010. Web. <http://www.intechopen.com/books/programmable-logic-
controller/the-java-based-programmable-logic-controller-new-techniques-in-control-
and-supervision-of-a-flexible>

[11] Wan, Yan. "Systems Modeling and Simulation-Lecture Notes." Department of Electrical
Engineering, University of North Texas, Fall 2013. PDF.

[12] Sargent, Robert. "Validation and Verification of Simulation Models." Proceedings of the
2004 Winter Simulation Conference (2004): 17-28. PDF.

[13] "Products & Services\Simscape." MathWorks. MathWorks, Web. 8 Feb. 2014.
<http://www.mathworks.com/products/simscape/>.

[14] Abd Elhamid, Ahmed S. "Cascade Control System of Direct Current Motor." World
Applied Sciences Journal 18-12 (2012): 1680-1688. PDF.

[15] Bhavina, Rathod, Jamliya, Nitesh, Vashishtha, Keerti. "Cascade Control of DC Motor with
Advance Controller." Proceedings of SARC-IRAJ International Conference, 14th July
(2013): 36-38. PDF.

[16] Wikipedia contributors. "PID controller." Wikipedia, The Free Encyclopedia. Wikipedia,
The Free Encyclopedia, 7 Feb. 2014. Web. 16 Feb. 2014.

[17] “Simulink® PLC Coder™ User’s Guide.” R2013b. MathWorks® Inc., Sep. 2013. Ebook.

[18] Johnson, Michael A., Moradi, Mohammad H. “PID Control New Identification and Design
Methods”, Springer, ISBN-10:1-85233-702-8, 2005. Ebook.

[19] Wikipedia contributors. "Automation." Wikipedia, The Free Encyclopedia. Wikipedia,
The Free Encyclopedia, 17 Mar. 2014. Web. 24 Mar. 2014.

[20] “1769-L32E, -L35E CompactLogix™ Controller”, Rockwell Automation (March 2004),
Publication 1769-IN020B-EN-P-March 2004.

[21] “Compact™ 24V dc Sink/Source Input Module”, Rockwell Automation (June 2000),
Publication 1769-IN007B-EN-P.

[22] “Compact™ 1769-OW8 AC/DC Relay Output Module”, Rockwell Automation (January
1999), Publication 1769-5.2.

[23] “Compact I/O Combination Fast Analog I/O Module”, Rockwell Automation (October
2008), Publication 1769-UM019A-EN-P-October 2008.

[24] “Logix5000 Controllers General Instructions”, Rockwell Automation (October 2009),
Publication 1756-RM003L-EN-P - October 2009.

58

http://www.mathworks.com/products/index.html?s_tid=brdcrb
http://www.mathworks.com/products/simscape/

[25] Groot, Peter de. "Optical thickness measurement of substrates using a transmitted
wavefront test at two wavelengths to average out multiple reflection errors."
Proceedings of SPIE Vol. 4777 (2002): 177–183. PDF.

[26] Sastikumar, D., Mohamad Jaffer, M.Jamal. "Measurement of Diameters of Wires Using
Laser and Optical Fiber." IEEE Instrumentation and Measurement Technology
Conference, St. Paul, Minnesota, May 18-20 (1998): 961–965. PDF.

59

