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Mitigation response plans must be created to protect affected populations during 

biological emergencies resulting from the release of harmful biochemical substances. 

Medical countermeasures have been stockpiled by the federal government for such 

emergencies. However, it is the responsibility of local governments to maintain solid, 

functional plans to apply these countermeasures to the entire target population within 

short, mandated time frames. Further, vulnerabilities in the population may serve as 

barriers preventing certain individuals from participating in mitigation activities. 

Therefore, functional response plans must be capable of reaching vulnerable populations. 

Transportation vulnerability results from lack of access to transportation. 

Transportation vulnerable populations located too far from mitigation resources are at-

risk of not being able to participate in mitigation activities. Quantification of these 

populations requires the development of computational methods to integrate spatial 

demographic data and transportation resource data from disparate sources into the 

context of planned mitigation efforts. Research described in this dissertation focuses on 

quantifying transportation vulnerable populations and maximizing participation in 

response efforts. Algorithms developed as part of this research are integrated into a 

computational framework to promote a transition from research and development to 

deployment and use by biological emergency planners. 
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CHAPTER 1

INTRODUCTION

Mitigation response plans must be created to protect the population during biolog-

ical emergencies resulting from the deliberate or accidental release of harmful biochemical

substances. Although medical countermeasures (MCMs) have been stockpiled for such emer-

gencies, the rapid application of these countermeasures to large, diverse populations presents

a challenge to public health preparedness practitioners (PHPP). A computational framework

to assist PHPP in creating, analyzing, and optimizing their response plans has been created.

However, access disparities can result from vulnerabilities not considered during the planning

process. Research presented in this document quantitatively identifies vulnerability in the

population and explores new analysis and optimization techniques to minimize resulting ac-

cess disparities using computational methodologies. Specifically, lack of access to mitigation

resources arising from the unavailability of transportation resources is addressed spatially

with respect to available demographic and public transit data.

1.1. Background

Terrorist incidents such as the March 1995 Tokyo subway attack using the nerve agent

sarin prompted concerns regarding the ability of the United States to effectively respond to

the release of chemical or biological agents. These concerns led to the creation of the National

Pharmaceutical Stockpile (NPS) in 1997 [134]. In 2003, the NPS was renamed the Strategic

National Stockpile (SNS). The SNS is currently overseen by the Department of Health and

Human Services (DHHS) and the Centers for Disease Control and Prevention (CDC). It may

be used to restock local emergency medical supplies in the case of a public health emergency

[130].

A policy of rapid, aggressive treatment of the affected population in a biological

emergency is supported by computational models [71][140], and delaying this treatment can

increase the number of casualties [9] as well as the burden on hospitals [65]. For example,

if the biological emergency resulted from the release of smallpox, the infection time line
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in Figure 1.1 shows that treatment by vaccination is unlikely to be effective seven to ten

days following initial viral infection. The time line illustrates that infected individuals may

begin transmitting the disease up to four days before they become symptomatic. The last

naturally occurring case of smallpox was in 1979, and earlier symptoms of smallpox resemble

common diseases such as influenza or chickenpox [26]. This means that infected individuals

may transmit smallpox to others before the outbreak is detected, leading to an increased

number of casualties [100].

Over-the-counter drug sales have been monitored to detect public health events using

the National Retail Data Monitor tool [63]. However, patient complaints are among the

most used data sources in syndromic surveillance systems. [63]. Although many alternative

strategies of disease surveillance have been explored in an effort to to achieve earlier out-

break detection [33][36][38][53][63][64][75][109], aggressive, mass-treatment campaigns must

be implemented quickly in order to curtail the biological emergency.

The release of anthrax was identified as one of the new health threats of the 21st

century by the World Health Organization (WHO) [148]. Anthrax vaccines may not be

available in sufficiently large quantities [13] to treat entire populations immediately follow-

ing a release of anthrax. A study of the cost-effectiveness of a pre-attack anthrax vaccination

campaign found that that such a campaign is only cost-effective if the probability of attack

is sufficiently high [51]. Otherwise, post-attack prophylactic treatment using a combina-

tion of antibiotics and vaccination are currently recommended, though new, non-antibiotic,

non-vaccination treatment methods are currently being researched [93]. Even though these

antibiotics have not been adequately tested or have some probability of significantly adverse

reactions in children, pregnant women, or immuno-suppressed individuals, a working group

including medical and public health experts from academic, research, and government insti-

tutions recommend their use when balancing risk of these antibiotics against that of exposure

to an engineered, antibiotic-resistant strain of anthrax [67].

Continued federal funding to research, development, and stockpile MCMs underscores

their importance in preparedness efforts. In fiscal year 2014, the Department of Health and
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Figure 1.1. Smallpox infection time line using information from
[25][26][34][147] to represent smallpox disease progression in an individual

Human Services has allocated $415 million to support advanced research and development

of MCMs and an additional $250 million as the first installment of a multi-year commit-

ment to acquire MCMs [115]. Although these MCMs include assets for response to chemical,

biological, radiological, and nuclear (CBRN) events, the Department of Homeland Security

has identified anthrax as the agent most likely to be used in bio-terrorist acts [70]. Further,

in fiscal years 2004 - 2012, MCMs for response to the release of anthrax comprised 44%

of all MCMs procured [70]. However, having MCMs is only the first step towards a suc-

cessful mitigation campaign [43]. The Public Health Emergency Medical Countermeasures

Enterprise (PHEMCE) recognizes the existence of diverse and unique vulnerabilities in the

population and has expressed its commitment to address gaps in MCM application resulting

from such vulnerabilities [116]. Therefore, participation in campaigns to distribute MCMs

in a timely manner must be maximized to support the federal government’s public health
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security efforts.

Although the United States federal government has acquired many of the medical or

pharmacological supplies needed to facilitate treatment of the population, the responsibility

of actually dispensing medications to and treating individuals lies with local governments

[27]. While this may seem like an elementary problem for smaller localities, the goal of

reaching every individual [29] in significantly larger localities within short mandated time

frames [28] presents a significant challenge. Vulnerabilities in the population may limit the

participation of certain individuals, thus hindering the effectiveness of response plans and

increasing access disparities. Therefore, localities must prepare themselves by planning for

these contingencies.

The Cities Readiness Initiative (CRI) was instituted in 2004 by the DHHS to provide

major metropolitan statistical areas (MSAs) with technical assistance for biological emer-

gency mitigation planning [129]. These MSAs comprise over half of the entire population of

the United States [30]. CRI plans focus on reaching the entire target population within only

forty-eight hours [28][141]. The CDC sponsored a RAND Corporation evaluation of CRI

which found that it had improved mass treatment preparedness [145].

1.2. Vulnerable Populations

When Hurricane Ivan threatened New Orleans, local residents were encouraged to

evacuate the city, but, one noted, “They say evacuate, but they don’t say how I’m supposed

to do that... If I can’t walk it or get there on the bus, I don’t go. I don’t got a car.”

[123] A year later, vulnerable residents during Hurricane Katrina were impacted not only by

the storm, but also by the lack of feasible evacuation operations [42][124]. Although these

emergency events were hurricanes rather than biological emergencies, the transportation

problems observed remain relevant. If everyone in the population is instructed to visit a

clinic for treatment, but some in the population are too far from and lack transportation

to a clinic, these people will be unable to receive the mitigation resources which have been

allocated and are waiting for them.

People and the social contexts in which they live are non-uniform. Nonetheless, they
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play an important role in the success of public health interventions [87]. Individuals who fall

into at-risk populations may have additional needs for communication, transportation, and

medical care [8]. In July 2004, the Individuals with Disabilities in Emergency Preparedness

Executive Order was signed to support the safety and security of disabled individuals during

disasters [132]. The Pandemic and All-Hazards Preparedness Act of 2006 (PAHPA) specif-

ically mandates that public health and medical needs of at-risk individuals must be taken

into account during public health emergency mitigation [135]. A 2008 report by DHHS on

the implementation of PAHPA-specified provisions specifically states that “No one should

be left behind in emergency and disaster prevention (mitigation), preparedness, response,

and recovery, whether an event is natural or man-made.” [8] The report defines at-risk

individuals as being those who have special needs which may interfere with their ability

to receive mitigation resources. These needs are grouped into the following five functional

areas: maintaining independence, communication, transportation, supervision, and medical

care.

The CDC released a workbook detailing specific vulnerabilities of at-risk individuals

and how they could be identified and addressed [29]. Nonetheless, Mastroianni asserts that

“Little attention has been given to the impact of social vulnerabilities on the effectiveness

of public health preparedness strategies, a shortcoming in both policy-making and in how

we think about the ethics of public health.” [87] Although many vulnerabilities exist which

must be considered, the work presented in this document focuses primarily on vulnerabilities

arising from the unavailability of transportation which may lead to differentiated access

during biological emergency mitigation.

Quantifying vulnerability and identifying vulnerable populations in demographic data

are nontrivial [2]. However, it may be possible to quantify a specific vulnerability stemming

from a specific attribute or cause. Although the importance of vulnerability indicators to

public health preparedness programs has been recognized, such indicators are rarely incor-

porated as integral components of preparedness [5]. Further, regional differences in culture

may affect what variables are indicators of risk [72]. Local public health departments un-
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derstand their communities in ways that may be difficult to capture in demographic data

[87]. However, using only subjective perceptions of risk may lead to adverse consequences

[72]. Therefore, quantitative tools are needed to assist local public health departments in

identifying and including vulnerable populations in their mitigation plans.

There are many approaches in the literature to studying vulnerability, but vulnerabil-

ity is generally defined as being risk of being adversely impacted by some hazard. Although

a release of harmful biochemical substances is obviously hazardous, it is assumed (in the

context of the research presented in this document) that the entire study population has

already been exposed to this release. Mitigation resources to lessen or eliminate the im-

pact of exposure to this release are needed by each individual of the population. Therefore,

exposure to the release, combined with the inability to receive mitigation resources, is the

the hazard used to establish the vulnerability of individuals in the population. However,

since uniform exposure of the entire population is assumed, a barrier to receiving mitigation

resources is a vulnerability, and the hazard is the non-receipt of mitigation resources within

some emergency-specific time frame.

1.3. Problems to Be Addressed

Many disaster mitigation strategies involve the identification of points accessible to

the target population and the implementation of mitigation activities at these points. This

has given rise to two similar, yet distinct, approaches to mitigation, both known as PODs. In

the field of emergency management, PODs (referred to hereafter in this document as POD-

sEM for the sake of clarification) are points of distribution where the public may acquire life

sustaining supplies (e.g. food, water, or blankets) following a disaster [48]. Selection and

design of PODsEM must consider traffic congestion concerns and walkability of surrounding

areas [83]. In the field of public health preparedness, points of dispensing (PODs) are ad-hoc

clinics implemented as part of biological emergency mitigation plans where medical counter-

measures such as those provided by the SNS are dispensed to the public. Although PODs

have been implemented as part of H1N1 vaccination campaigns [107], the lack of mandated

time frames for treatment of entire populations make their concerns and constraints vastly
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different from PODs discussed in this document. Depending upon the specific cause of the

biological emergency, medical countermeasures could be in the form of antibiotic pills, vac-

cine injections, or courses of antivirals. The use of PODs during biological emergencies has

been recommended by the CDC to alleviate patient load on hospitals, commercial pharma-

cies, and other health care institutions which are likely to, in such a situation, already be

overwhelmed [27].

The design of mass-treatment dispensing campaign plans must rely on an analysis of

quantitative data [21] and is a function of the size of the target population and the man-

dated time frame [27]. A particular response plan is considered to be feasible if it supports

the application of mitigation resources to the entire target population within this specific,

mandated time frame. However, the demographic heterogeneity and non-uniform spatial

distribution of the target population complicate plan design by adding demographic and

spatio-temporal concerns which are likely to impact plan feasibility. For example, the CDC

has recognized that some people will be unable to travel to a POD to receive treatment [27].

In order to achieve feasibility, a plan must include these people by re-allocation mitigation

resources or by identifying alternate forms of transportation. Therefore, analysis and devel-

opment of feasible response plans are intractable without the use of computational tools for

processing the large amounts of disparate, quantitative data.

The work presented in this document focuses on the development of algorithms to

address transportation vulnerabilities in the context of biological emergency response plans.

Available data are explored in an effort to geographically identify and quantify vulnerable

populations. New computational methods are developed to determine the reach of existing

response plans to include vulnerable populations and to quantify differentiated access re-

sulting from these plans. Public transit system network and schedule data are included and

examined in the context of population vulnerabilities and response mitigation plans to fur-

ther enhance the analyses. Spatio-temporal public transit data are translated into a graph

model to facilitate the application of methods developed in the domain of graph theory.

Automatic optimization algorithms are developed to minimize differentiated access due to
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transportation vulnerabilities by modifying POD placements, public transit stop locations,

and public transit schedules. Implementations used in this work are incorporated into an

existing response plan analysis framework to provide an easy transition from research and

development to actual public health deployment and adoption.

1.4. Contributions of the Research

The RE-PLAN computational framework [101] was developed to facilitate data-

driven, quantitative response planning by PHPP without the need for computer program-

ming or GIS expertise. Other computational tools have been created to assist PHPP with

response capabilities. However, these tools either focus on problems within each facility (e.g.

POD procedures and/or interactions with the public) rather than on quantitative aspects

of the overall response plans [24][91] or they distort spatial population data by assuming

uniform population densities within the U.S. Census Bureau’s defined geographic units [78].

The RE-PLAN framework has been adopted by the public health department of Tarrant

County, Texas and has been used to create and modify the county’s response plans. Al-

though resulting plans are recognized as a significant step forward in biological emergency

response planning, they do not consider the demographic composition of target populations.

This may lead to access disparities in plans otherwise deemed feasible.

Work for this research includes the design of algorithms to identify, quantify, and

analyze vulnerabilities within target populations using demographic and geographic data.

Specifically, vulnerabilities arising from lack of access to transportation resources are ad-

dressed. Optimization algorithms to minimize access disparities resulting from specific vul-

nerabilities have been developed. These algorithms have been implemented and integrated

into the RE-PLAN framework for deployment and use at public health departments. There-

fore, contributions of this research include computational algorithms for spatial vulnerability

analysis and access disparity minimization as well as computational tools for use in public

health preparedness planning.
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1.5. Overview of the Dissertation

This dissertation has been prepared for a degree in computer science. However, the

interdisciplinary nature of the research documented herein requires, in many cases, trans-

lation of specific terminology between domains. The specific terms at-risk and vulnerable

have proved to be particularly troublesome [2], necessitating some explanation regarding

how these terms are used in this document. For clarification, in this dissertation, vulnerable

individuals have specific attributes, referred to as vulnerabilities, which place them at-risk

of not receiving mitigation resources. Therefore, the terms vulnerable individuals and at-risk

individuals are used interchangeably in this document, though specific context may make

one term preferred rather than the other.

Examples of spatial queries are included as algorithms in this dissertation due to

their complexity and to the integral role they play in the computational methodology. How-

ever, in order to avoid the complexities of geographic projections and coordinate systems

while presenting computational methodologies, spatial reprojections have been omitted from

example queries. Nonetheless, these reprojections have been implemented into the actual

tools. Specifically, spatial data is stored in the database with spatial reference identifier

(SRID) 4323 using the World Geodetic System 1984 (WGS 84) [95] with units in decimal

degrees. However, for spatial analysis, data is temporarily reprojected into the State Plane

Coordinate System of 1983 [119] with SRID 32138 and units in meters. Examples of spatial

analysis in this dissertation focus on data from the Dallas-Fort Worth Metroplex. The pro-

jection chosen for analysis is suitable since it is specifically for use with the region described

as Texas North Central.

The structure of this dissertation is as follows: Chapter 2 includes a review of work

related to that of this dissertation, as well as sources from which specific assumptions, param-

eters, and concepts used in this document were derived. Chapter 3 includes a rudimentary

case study to be used as a proof of concept/proof of need. Chapter 4 details the vulner-

ability quantification process and the data needed for analysis. Chapter 5 explores reach

maximization algorithms built on top of quantification methods from Chapter 4. Chapter 6
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includes a detailed description of how public transit data is stored and how it can be used to

created a directed graph model of the system. Chapter 7 concludes the dissertation with an

exploration of the developed tools, their limitations, and their real-world impact on domains

such as public health preparedness and emergency management.
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CHAPTER 2

LITERATURE REVIEW

Strategies for the distribution of medical countermeasures among treatment facilities

have been explored in [80], and a policy of delaying countermeasure distribution to facil-

ities until a better estimate of need distribution can be observed is advocated by Arora,

Raghu, and Vinze [7]. Routing and scheduling problems associated with the timely delivery

of countermeasures to facilities have been examined in [62]. Nonetheless, countermeasure

application to target populations remains a challenging problem [109], leading researchers

and localities to drill, develop, evaluate, and improve new response plans [74][97][106][120].

Analysis and optimization methods for inside-clinic queuing and procedures during

a biological emergency have been examined in the literature [54][78][79]. A model explor-

ing advantages of specifically targeting travelers or commuters for prophylactic treatment is

described in [84]. However, the constraints of this model were placed more on mitigation

resources than time, thus making the model inapplicable to the biological emergency miti-

gation problem explored in this document. The REsponse PLan ANalyzer tool (RE-PLAN)

for analyzing and optimizing facility placement with respect to spatially distributed target

populations and the available road network infrastructure was developed at the University

of North Texas Center for Computational Epidemiology and Response Analysis (CeCERA)

[112][113][114]. This tool was implemented as an extensible framework for creating, ana-

lyzing, and optimizing response plans using a variety of disparate quantitative data [101].

However, new analysis and optimization methods are needed to address vulnerabilities which

exist in the target population.

Lack of access to transportation capable of providing access to mitigation resources

may be caused by many different factors. The RE-PLAN framework includes modules to an-

alyze available road network infrastructure with respect to business as usual and/or response

plan-generated traffic. However, cars may be insufficient or unavailable to some individuals.

Large families or households may not have adequate seating capacity in their cars [42], and
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cars in low-income households are generally older and may be unreliable [20]. Walking to

a clinic to receive mitigation resources may be impossible due to long distances or difficult

terrain. Public transit resources may be inadequate or unavailable to be used as a trans-

portation option. Therefore, mitigation and transportation resources must be analyzed and

allocated optimally to minimize access disparities arising from transportation vulnerabilities.

Guidelines for the development of computational models to facilitate quantitative

response planning were recommended in [21]. Tools already created using the RE-PLAN

framework are consistent with these guidelines. However, as more computationally difficult

challenges are approached, approximation algorithms and heuristics must be developed to

prevent the computational complexity of new tools from hindering their real-world usability.

2.1. POD Throughput

POD throughput (also known in public health preparedness literature as POD effi-

ciency) is a rate (generally in population units per time unit) at which a POD can treat

its assigned population [27]. POD throughput requirements can be determined using pop-

ulation size, mandated time frames, and mass treatment dynamics related to the cause of

the biological emergency. These dynamics include the application method of mitigation re-

sources to the population. For example, an emergency stemming from a release of anthrax

would likely involve the dispensing of antibiotic pills [67] even though recent studies have

found the vaccine to be safe [121]. An emergency stemming from a release of smallpox would

likely involve a mass vaccination campaign [71]. In [74] a “head of household” strategy is

described for dispensing pills where only a single member of each household would travel to

the POD and would obtain enough medications for the entire household. This reduced the

number of individuals who must travel to a POD. However, this strategy will not work when

mitigation requires vaccination since each individual will have to be treated by a licensed

health care professional [40].

2.2. Computational Tools for Biological Emergency Mitigation

The effect of queuing on POD throughput at the POD facility and at the facility’s

parking lot were examined with respect to non-uniform arrival rates by [10]. The model used
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population data at the zip code level as well as different arrival rates drawn from evacuation

and POD throughput studies from the literature. Queues in the parking lot resulting from

queues at the POD were shown to lead to congestion on the streets near the parking lot.

However, an analysis of roadway traffic resulting from this congestion was not conducted.

In [66], a Monte Carlo model to study personnel resource needs resulting from non-uniform

arrival rates at ad-hoc influenza vaccination clinics led to the conclusion that unstable arrival

rates increase the quantity of personnel needed.

A model created using Visual Basic for Applications (VBA) within Microsoft Excel

simulated how delaying mass prophylaxis or failing to meet CRI mandated time limits fol-

lowing a aerosolized release of anthrax would affect hospital surge [65]. A hospital triage

model following a smallpox or anthrax bio-terrorist attack based on patient severity is de-

scribed in [105]. A mathematical model of an anthrax bio-terror event presented in [140]

examines different release levels, detection methods, and dispensing strategies in order to

quantify burden on hospitals and resulting death tolls.

2.3. Addressing Transportation Vulnerabilities Using Public Transportation

Age may be used as an indicator of vulnerability in a population. Elderly individuals

(generally over the age of 65) are regarded as being potentially vulnerable, not due to their

age, but due to the correlation between advanced age and medical conditions which may

limit their abilities to perform activities of daily living, thus causing them to be vulnerable

[49]. In addition to the elderly population, the CDC recognizes children under the age of 18

and infants to be at-risk during an emergency [29].

Nutley suggests that automobile-based paratransit be employed to address remotely

located transportation vulnerable populations [99]. A survey of eighty-nine transportation

agencies revealed that less than 60% of responding agencies have plans for coordination with

other agencies in the case of large disasters such as terrorist attacks [12]. Nonetheless, the

need for disaster preparedness plans which coordinate with transit agencies may be further

recognized through studies of how transit systems may be used in emergency scenarios.
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In order for public transit to be an option for a traveler, the Transportation Research

Board has identified the following requirements [126]:

• A transit stop must be within walking distance of the trip origin (Spatial availabil-

ity).

• A transit stop must be within walking distance of the trip destination (Spatial

availability).

• The schedule and routes of the transit system are known (Information availability).

• Service at or near the needed times are available (Temporal availability).

• Space is available on the transit vehicle at the desired time (Capacity availability).

The fixed routes and schedules of public transit systems may make certain areas

inaccessible to individuals who lack access to a working automobile [137].

2.3.1. Walking Distance Estimations

From several studies, a maximum walking time of five minutes to bus or ten minutes

to rail transit has been found. Assuming an average walking speed of 3 miles per hour,

maximum walking distances of 0.25 miles to bus or 0.5 miles to rail transit are estimated.

However, poor pedestrian environments which make walking less safe (lack of sidewalks) or

more strenuous (areas with grades greater than 5%) diminish the distance covered during

these times, thus also reducing the maximum walking distances. Further, population char-

acteristics may affect the maximum walking distance of a region. For example, the elderly

typically do not walk as far as young adults [126]. Therefore, different estimations of maxi-

mum walking distance based on regional or population characteristics should be investigated.

Estimations of maximum walking distance are separate for origin-to-transit and transit-

to-destination distances [59][126]. Acceptable walking distance estimations may vary region-

ally due to factors such as terrain [94]. A model using estimations of walking effort along with

actual walking distance was created to calculate equivalent walking distances which could

be used to compare regions having different terrains [143]. Walker notes that the walking

distance coverage area of a transit stop in a grid of streets should be computed using Man-
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hattan distance or by drawing a ring around the stop using a radius which approximates

the Manhattan distance coverage area [139]. Badland et al. [11] developed a software tool

for urban design and public health planning based on an agent-based model to study the

walkability of neighborhoods with respect to existing roadways. The tool includes param-

eters for variables such as maximum walking time, walking speed, maximum distance, and

intersection wait time. Analysis of a survey of residents of twenty-five California housing

projects within 0.5 miles of a transit stop suggests that residents seem to focus more on

a walking time of five to eight minutes than on a specific walking distance [82]. Shortest

path walking distance estimations were calculated using street and walking path data from

several sources in [150]. A comparison of the results underscore the importance of using a

complete data set and reveal possible advantages of using both freely available and commer-

cial data sources. Characteristics of bus transit networks and stop locations which minimize

pedestrian walking distance and promote safety are explored in [81].

2.4. Public Transit Models and Studies

The TRansportation ANalysis and SIMulation System (TRANSIMS) was developed

at Los Alamos National Laboratory to provide simulated goal-oriented movements of the

population across the transportation network in support of planning, traffic, and environ-

mental research [118]. It was used by a disease outbreak model to simulate diseases in cities

such as Portland, OR [14][46]. Direct ridership models of rail and bus use combine walking

distance estimates, transit service features, and geographic population and transit data to

predict the usage of transit resources [31][32]. A study presented in [82] found that the den-

sity of street lights had a greater impact than other factors such as street trees, furniture,

or retail shops on whether individuals would walk to transit stations. The company Urban

Design 4 Health developed tools for the San Diego Association of Governments using block

group level data to create maps of health indicators related to transit network characteristics

such as walkability and accessibility [127].

The access and accessibility of a public transit system are contrasted in [94] with

access being the ability to use the service determined by such factors as acceptable walking
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distances and the transit system’s proximity to target populations and target destinations,

and accessibility being a measure of how reachable a destination transit stop is from an

origin transit stop. An extensive literature review regarding the concept of accessibility of

public transit is provided in [69], which also describes a new index to quantify how public

transit makes employment destinations available to the working population.

A survey investigating how transportation access affects the frequency of health care

visits for chronic conditions found that, among rural populations, those with access to private

vehicles had on average 1.92 times as many visits per year as those without access. Having a

friend of family member who could provide transportation also increased the number of visits

per year. However, access to public transit only increased the number of visits per year by an

average of four [6]. Nonetheless, a study of cancer patients in New Mexico revealed impaired

access to transportation as being a significant factor in non-receipt of cancer therapies [56].

A survey of research quantifying a region’s transportation network with respect to

the spatial distribution of desirable destinations (in this particular context, referred to as

accessibility) is presented in [76]. Most relevant to this dissertation are the cumulative

opportunity, gravity, and behavioral methods described in this survey. The cumulative

opportunity method scores accessibility using the number of destinations within a specified

measure of distance. The gravity method is similar to the cumulative opportunity method,

but an impedance function is used to account for measured distances to each destination. In

the behavioral method, a utility function is used to predict matches between individuals in

a region and particular destinations.

An index to quantify accessibility to employment opportunities in the Los Angeles

region using estimates of maximum travel time together with geographic population and

employment site data was presented by Wachs and Kumagai in [137]. In [4],an agent-based

disease spread model incorporating public transit was presented which was used to simulate

the spread of influenza in the Greater Toronto Area. Techniques from the study of human-

computer interaction were adapted by Schmehl et al. to identify barriers to the use of public

transportation by special needs populations [110] . A new domain called Computational
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Transportation Science is described as being centered around investigating how a variety of

sensor data from different sources may be used to monitor, interpret, control, or manage

traffic systems [146]. A parallelized algorithm described in [52] minimizes travel distance

of taxi cabs by grouping individuals concurrently requesting service together to share a cab

and by constructing an optimal pick-up and drop-off sequence.

2.5. Previous Work on Similar Problems

The set of location-allocation problems are generalized in [35] as being problems which

must determine number, location, and capacity of sources given location of, requirements

of, or shipping costs to each destination. In a location-allocation article [35] written in or

before 1961, Cooper stated that, “The existence and use of digital computers barely makes

a dent into some of the combinatorial problems arising when computation is undertaken.”

In 1963, about two years after this article was published, Gordon E. Moore published his

predictions on the exponential growth (with respect to time) of components able to be

“crammed” onto integrated circuits [92]. While location-allocation problems remain large

and computationally intensive, fifty years of advances in digital computer technology have

made more problems reasonably solvable using digital computers.

Methods for determining a spatial distribution of ambulance bases in order to max-

imize the proportion of the population the ambulances may serve within specified time

constraints were explored in [1], and Harewood discusses how under-utilization of resources

increases with proportion of population covered by availability of ambulance service [60]. A

survey of location identification and analysis methods aimed at emergency medical and fire

service officials stressed the importance of analytical approaches to ambulance and firetruck

location selection to timely and safe emergency response [55]. Widener and Horner [144]

developed a methodology built on the p-median [90] and capacitated-median [138] prob-

lems to find near optimal solutions which strategically place and assign mitigation resources

near populations which need them following a natural disaster. Megiddo [88] proved the p-

median problem to be NP-hard, and Brimberg et al. [22] studied heuristics towards solving

the problem.
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CHAPTER 3

CASE STUDY

As a case study, a county was chosen and a feasible response plan was created for

it using previous methodology implemented as part of the REsponse PLan ANalyzer (RE-

PLAN) framework. Using previous methodology, the details of this response plan and its

feasibility are explored. Additional data are then integrated into the analysis which reveal

plan shortcomings due to the disregard of vulnerabilities in the analysis process. These

shortcomings serve to motivate the research presented in this dissertation.

3.1. Response Planning in Tarrant County, Texas as a Case Study

The computational response plan analysis team at the University of North Texas

(UNT) Center for Computational Epidemiology and Response Analysis (CeCERA) has been

working with Tarrant County Public Health to analyze and optimize their response plans

since 2008. The REsponse PLan ANalyzer (RE-PLAN) software developed at CeCERA has

been installed at Tarrant County Public Health and has been used to create and analyze

response plans for the county. One noteworthy modification that has been made to the

county’s plans as a result of RE-PLAN analyses is the transition from walk-in Points of

Dispensing (PODs) to drive-through PODs.

3.2. Tarrant County Response Plans Deemed Feasible by Previous Work

As a case study, a feasible response plan was created using 40 PODs with 25 drive-

through lanes each (for a total of 1,000 drive-through lanes across the entire county). This

response plan was created for the purposes of this case study. Other than the use of drive-

through booths, any similarities between it and Tarrant County’s actual response plans are

entirely coincidental. Figure 3.1 shows a map of the response plan rendered through the RE-

PLAN graphical interface as well as a legend detailing the symbols on this map. Although

traffic congestion may be expected during certain times of the day, this is due more to base
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traffic than POD traffic. Therefore, the traffic situation supports the conclusion that this

plan is feasible.

Figure 3.1. Map of a feasible response plan for Tarrant County, Texas cre-
ated using the RE-PLAN tool

Figure 3.2 shows the population distribution across the PODs for this plan. Resource

distribution decisions are influenced by population distribution estimations. Therefore, a

uniform distribution of population across the PODs simplifies otherwise complex resource

distribution decisions.

Figure 3.3 is a screen capture from the RE-PLAN tool showing that all PODs are

capable of serving their assigned populations within the forty-eight hour mandated time

frame. Assuming only a single person in each car, a car would have to simultaneously enter

and exit a POD approximately every five seconds. However, since there are twenty-five drive-

through lanes, this means that each car must be served within approximately 125 seconds.

A similar computation to compute the time under which each individual must be served

yields a service time of 118 seconds. Therefore, this plan is feasible.
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Figure 3.2. Population distribution of a feasible response plan for Tarrant
County Texas created using the RE-PLAN tool

Figure 3.3. Time requirements for each POD to serve its population in a
feasible response plan for Tarrant County, Texas created using the RE-PLAN
tool

3.3. Data Used in Case Study

Although Tarrant County Public Health has been using decennial census population

data at the census block level for their planning and analyses, the population data used in
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this case study uses data from Five-Year Estimates (2006-2010) of the American Community

Survey (ACS) from the U.S. Census Bureau at the block group level. This data source and

lower level of spatial granularity were chosen for the additional demographic detail included

in the ACS data. For vulnerability analyses below, additional ACS data at the census tract

level were used as well as General Transit Feed (GTF) Specification data from Tarrant

County’s public transit authority The T. All road network and traffic data were provided by

the North Central Texas Council of Governments (NCTCOG).

3.4. Study Regions of Tarrant County

Although plans from previous methodology were for the entire county, two study

regions were selected to underscore the importance of sub-county regional analyses. Two

approximately equal-area sections of Tarrant County were chosen for comparison and con-

trasting of vulnerability indicators. Figure 3.4 shows the population of Tarrant County,

Texas block groups per square kilometer, and Figure 3.5 shows the two study regions cho-

sen, their populations, and other data for comparisons. The northwest (NW) study region is

labeled as being Non-Urban, and the southeast (SE) study region is labeled as being Urban.

3.5. Vulnerability Analyses of Feasible Response Plans from Previous Methodology

Two different vulnerabilities are studied in this section: vulnerability arising from

language difficulties and vulnerability arising from lack of access to transportation. Although

only the latter is addressed in the methodology of this dissertation, the former was also

considered during preliminary studies and is included here to exemplify the variety of different

vulnerabilities which may ultimately lead to access disparities.

3.5.1. Language Vulnerabilities

Language vulnerabilities arise from the inability to effectively receive directions from

or communicate with public health personnel during a biological emergency. ACS data

distinguishes between two different types of households where English is not the primary

language: non-English and No-English. In non-English households, a language other than

English is spoken as the primary language. However, there is at least one individual in the
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Figure 3.4. Road and population distribution across Tarrant County, Texas

household age 14 or over who speaks English well. In no-English households, English is not

the primary language of the household, and there is no member of the household over age 14

who speaks English. For the purposes of this vulnerability analysis, no-English households

are more vulnerable than non-English households since they have no adult English speaking

members. Figure 3.6 shows a map of the NW and SE study regions and the numbers of

non-English households in each POD’s catchment area, and Figure 3.7 shows a chart of all

non- and no-English households across the entire response plan. Lack of consideration for

vulnerable populations such as those identified in these figures is likely to make response

plans infeasible.

3.5.2. Transportation Vulnerabilities

Transportation vulnerabilities arise from a lack of ability to travel to a POD to receive

mitigation resources. This travel may be by a variety of means including by foot, by car,

or by public transit. ACS data linking household size to numbers of vehicles available were
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Figure 3.5. Tarrant County, Texas northwest and southeast regions chosen
for vulnerability analyses displayed with feasible response plan for case study

used to approximate the numbers of individuals without access to a private vehicle across

the county. Further, public transit route data were included in the analysis.

Those without access to a private vehicle in their household are ones who are initially

considered vulnerable. However, many of these individuals are within walking distance of

a POD or public transit which could take them to a POD. Therefore, the most vulnerable

individuals are those who lack access to private vehicles, and are too far away from a POD

or public transit to walk. For the purpose of this preliminary study, a walking distance of

1 km is assumed. Figure 3.8 shows the two study regions, the walkable area around public

transit stops and PODs, and the population without access to private vehicles in each census

tract.
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Figure 3.6. Numbers of non-English households of catchment areas as well
as NW and SE study regions

Figure 3.7. Numbers of no- and non-English households of catchment areas

3.6. Findings and Discussion

Vulnerable populations identified in the case study are likely to make infeasible the

response plans deemed feasible by previous methodology. This motivates the development of

new analysis and optimization methods to include vulnerable populations into the response

planning process. Although both language and transportation vulnerabilities are explored

in this case study, this dissertation focuses on identifying and addressing transportation
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Figure 3.8. Transportation vulnerabilities in Tarrant County, Texas study regions

vulnerabilities.
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CHAPTER 4

MEASURING TRANSPORTATION VULNERABILITY

The Centers for Disease Control and Prevention (CDC) and Pandemic and All Haz-

ards Preparedness Act (PAHPA) recognize that vulnerabilities in the population can serve

as barriers placing certain individuals at-risk of not receiving critical medical resources

[131]. Recent advances in response plan design and analysis assume ubiquitous access to

private transportation and a population homogeneous in its ability to receive POD resources

[78][79][101][113][114]. New methodologies must be developed to assess specific vulnerabili-

ties that may lead to access disparities for otherwise feasible response plans.

This chapter focuses on the quantification of vulnerabilities arising from lack of access

to transportation resources. The topic of measuring and analyzing transportation vulnera-

bility are incrementally explored and serve as an introduction to Chapter 5 on response plan

reach maximization. The “feasible” response plan for Tarrant County, Texas described in

the case study presented in Chapter 3 and shown in Figure 3.1 is explored to demonstrate

the implementation of the methodologies described. Data sources, example queries, and

pseudocode are included to assist the reader in understanding and, if desired, reproducing

the results.

4.1. Roadway Traffic Analysis

Traffic conditions must be analyzed in the context of response plans to ensure trans-

portation resources are capable of delivering populations to their assigned PODs within time

limitations. Congestion on the road network can lead to diminished arrival and/or depar-

ture rates at POD facilities. Lower arrival rates can lead to the under-utilization of POD

resources. Lower departure rates can lead to crowds at the POD facilities which can, in turn,

lead to further lowering of arrival rates. Therefore, the planning process must include a traf-

fic analysis to assist planners in choosing suitable POD facility locations and distributing

traffic control resources.

Road network data was obtained as an Environmental Systems Research Institute
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Table 4.1. Road Network Shapefile Table Attributes

id unique identifier of the road segment in the table
street street name of the road segment
fucnl functional class of the road segment

streeta name of street on side “A” of this road segment
streetb name of street on side “B” of this road segment
pklna number of lanes in direction from street “A” to street “B”
pklnb number of lanes in direction from street “B” to street “A”

amcap ab A.M capacity of road segment in direction from street “A” to street “B”
amcap ba A.M capacity of road segment in direction from street “B” to street “A”
pmcap ab P.M capacity of road segment in direction from street “A” to street “B”
pmcap ba P.M capacity of road segment in direction from street “B” to street “A”
opcap ab off-peak capacity of road segment in direction from street “A” to street “B”
opcap ba off-peak capacity of road segment in direction from street “B” to street “A”
areatype type of area containing road segment

(ESRI) shapefile [45] from the North Central Texas Council of Governments (NCTCOG) for

the following Texas counties: Collin, Dallas, Denton, Rockwall, and Tarrant. Data included

in this shapefile are listed in Table 4.1. Maximum capacities (in numbers of vehicles per

time) were needed to facilitate traffic analysis. However, capacities included were limited to

one of three large portions of the day (A.M. period, P.M. period, and off-peak period). Addi-

tional information from the Dallas-Fort Worth Regional Transportation Model Description

Document [98] was used to determine the fifteen-minute capacities for each road segment.

These capacities were a function of the number of lanes of a road segment in each direction,

the functional class of the road segment (e.g. freeways, collector, arterial), the relationship

between opposite direction lanes of the road segment (e.g. divided or undivided), and the

type of area in which the road segment was located (e.g. central business district, suburban

residential, rural).

Traffic count data collected by the Thoroughfare Assessment Program (TAP), the

City of Allen, the Texas Department of Transportation (TxDOT), and the TxDOT Satura-

tion Count Program were obtained from the NCTCOG as a Microsoft Access database file.

In this file, a Counts table provided the date, time, total count, and location id for each

count record. Although equipment used to collect the traffic counts actually counted axles

rather than vehicles, the counts in the dataset obtained were already scaled to represent
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Figure 4.1. Example of spatially joining traffic count data points to the
nearest road segment

numbers of vehicles by using average axles per vehicle estimations. Location ids were used

to relate each traffic count record to a specific location in a Locations table also included in

the database file. Each location record had an id, longitude, latitude, and roadway field.

Traffic counts obtained include both time and date attributes. Dates were used to

obtain the day of the week each count represented, and time was represented as one of

the ninety-six fifteen-minute intervals of a twenty-four hour day. Using the ESRI ArcMap

software, each point location was spatially joined to the nearest road segment in the road

network data as depicted in Figure 4.1. To validate the results of the spatial join, for each

pair of joined records from the two tables, street names listed in the street field from the

road network data were compared with the names listed in the roadway field of the traffic

count data. Differences were investigated and were largely found to result from data entry
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(e.g. “I820” versus (“Interstate 820”) or roads which have more than one name. Therefore,

this join method was deemed to be accurate.

Although 211,566 traffic count records were obtained from the NCTCOG, only those

for which 15-minute intervals were available for the entire calendar day were extracted. From

this subset of records, only counts within Tarrant County, Texas were selected for the case

study, resulting in a set of 48,192 traffic count records at a total of 107 different locations

across the county. This represents a sparse data problem since traffic count data is only

available for 107 out of 7,417 road segments in the county. Therefore, traffic count data was

categorized as being either weekday or weekend, and it is assumed that similar road segments

experience similar traffic patterns. Specifically, for each fifteen-minute interval during either

a weekday or weekend, it is assumed that all roads of the same functional class experience

the same traffic per lane.

Traffic count data was used to estimate a business-as-usual traffic, hereafter referred to

as base traffic. Base traffic estimations indicate the number of vehicles which crossed specific

points on specific road segments at specific times. In order to represent traffic patterns over

time, a different base traffic estimate is available for each fifteen-minute interval of the day

for both weekdays and weekends, resulting in a total of 192 distinct base traffic estimations.

Both the day of week (i.e. either weekday or weekend) and the time of day are needed to

identify a specific base traffic estimate for analysis.

An algorithm to estimate the movement of individuals toward their assigned PODs

within each catchment area was developed [112]. This algorithm identified specific road

segments and calculated the number of individuals who must traverse each of them in order

to participate in mitigation activities. The resulting information can be used to estimate

traffic conditions resulting from implementation of POD plans, hereafter referred to as POD

traffic. POD traffic is estimated using the population counts for each road segment, the

number of people represented by each car, and the number of hours over which individuals

have to travel to and from their assigned PODs.

Roadway traffic is derived from at least one of the two distinct sources described
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above. Figure 4.2 summarizes the dependency of base traffic and POD on specific parameters.

Either POD or base traffic can be analyzed separately, or both POD and base traffic can be

combined to identify areas which are likely to become congested if plans are implemented

on an otherwise normal day.

Figure 4.2. Traffic Calculation Dependency Diagram

Road segments in the road network data have properties which affect their maximum

hourly throughput capacities. To this end, the number of cars per hour estimated for each

road segment must be compared with the segment’s maximum capacity. Estimated traffic

on each road segment is then classified into one of the following six classes:

• estimated traffic < 25% capacity

• 25% ≤ estimated traffic < 50%

• 50% ≤ estimated traffic < 75%

• 75% ≤ estimated traffic < 100%

• 100% ≤ estimated traffic < 150%

• estimated traffic ≥ 150%
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Colored dots referred to as crossing points are placed on the map to indicate estimated

traffic conditions on specific road segments. Colors are indicative of the classification system

specified above.

4.2. Identification and Quantification of Transportation Vulnerable Populations

Transportation vulnerability can be quantified by examining the spatial and demo-

graphic distribution of vulnerability indicators with respect to the locations of mitigation

resources. Available public transit resources must be integrated into the calculations to

examine what role they may play in connecting otherwise vulnerable populations with the

resources they need. Data sources used to identify these indicators are shown in Table 4.2.

Analysis results may be represented as risk maps [68] and used in the evaluation of existing

response plans.

Table 4.2. Data Sources for the Quantification of Transportation Vulnerability

Vulnerability Indicators Data Source
Transportation Regional governments [98]
Public Transit Local transit authority
Private car ownership per household American Community Survey 5-year estimates
Elderly (65+) American Community Survey 5-year estimates

4.2.1. Identifying Vulnerable Populations

Data concerning the availability of private vehicles in each household is available spa-

tially at the 2010 decennial census tract level through the U.S. Census Bureau’s American

Community Survey table B08201. Although the universe of this data is the set of house-

holds, data is classified by the number of people in each household using the following scheme:

1-person, 2-person, 3-person, and 4-or-more-person households. The number of individuals

without access to a private vehicle in each tract is estimated under the assumption that

households of four or more individuals consist of exactly four individuals and by summing

the number of individuals represented by each class in each tract. The tract geometry, total

population, and estimate of individuals without access to a private vehicle in their household
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is stored in database table scenario name population blocks as shown in Table 4.3. Quan-

tile classification is used to classify each tract in the region into one of five different classes

representing the distribution of transportation vulnerability. A choropleth map using these

classes is automatically generated and rendered in the RE-PLAN map interface. A screen

capture of the map generated for Tarrant County, Texas is provided in Figure 4.4 using the

color representations provided in 4.3.

Figure 4.3. Color to value mappings used for all choropleth maps of vulner-
ability. Values are in units of individuals.

4.2.2. Preparing Public Transit Data

The effect of public transportation on access disparities is analyzed using local General

Transit Feed (GTF) data, which consists of transit routes, schedules, and stop locations. The

GTF specification was originally created by developers at Google and is used by such tools

as Google Maps and Bing Maps to automatically provide public transit directions to mobile

Figure 4.4. Tarrant County, Texas Vulnerable Population Quantile Classification
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Table 4.3. Database Tables Used in PostgreSQL Queries and Columns Nec-
essary for Computational Analysis

Table Column Column Description

scenario name population blocks

the geom geometry of the tract polygon
centroid geometric centroid of the tract

polygon
logrecno unique identifier of tract within

the county
p0010001 total population of the tract
total none estimate of individuals in tract

without access to a private vehicle

tarrant gtfs stops
the geom point location geometry of transit

stop
stop name name of the transit stop

scenario name pods

id unique identifier of POD record
location geometry of POD’s point location
status whether the POD is in use in cur-

rent plans
catchment area catchment area this POD is

within

scenario name catchment
id unique identifier of catchment

area
the geom geometry of catchment area poly-

gon

and online users [57][89]. Transit data for Tarrant County was obtained from the Fort Worth

Transportation Authority The T.

The GTF specification uses comma-separated values (CSV) files to store transit net-

work data [57]. Figure 4.5 depicts the relationship between entities stored in the stops,

stop times, trips, and routes files. Each route is comprised of a set of trips. Each trip is

comprised of a set of stops and a set of stop times. Each stop has a name (e.g. “Com-

merce & 5th - North Bound”) and a geographic location (given as longitude and latitude

coordinates). Stop times connect trips to stops at specific times. Although importing of

non-spatial data to the PostgreSQL database is straightforward, conversion tools had to be

developed to import spatial vector data from the GTF CSV files into the database.

As shown in the GTF specification relationships diagram, a single stop may be used

by more than one route. The GTF specification includes several optional files which were
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Figure 4.5. General Transit Feed Specification Entity Relationships

included in data obtained from The T. One of these files is the transfers file, which associates

pairs of stop locations with a minimum transfer time estimate. In the case of data from The

T, seventy-six transfer records are included, and all of them have a minimum transfer time of

0. Figure 4.6 shows an example of five stop locations which are all listed in the transfers file

as being associated with each other. Further examination of the transfers file reveals that

twenty-four of the seventy-six records are used to create pairwise associations between these

five stops. The stop data describes all five of the stops as being part of the East Side Transfer

Center. Using the Google Earth measurement tool, it can be observed that walking distance

between pairs of stops at this location are less than 100 feet. Four routes are represented

among these five stop locations. In order to simplify the analysis without reducing accuracy

of the methodology, these five transit stops were collapsed into a single stop location record

which is associated with all four transit routes. Converting the five point locations into a

single multipoint feature was considered. However, a single point location central to the

set of points was chosen in order to maintain consistency of the geometry attribute among

records in the table.
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Figure 4.6. Five transit stops of the East Side Transfer Center, The T,
Tarrant County, TX

4.3. Evaluating Reach and Efficacy of Existing Response Plans

The spatial distribution of vulnerability resulting from lack of access to private trans-

portation must be assessed with respect to the placement of each POD p in the set of PODs

P of the existing response plans. Multiple definitions of maximum walking distance dw can

be used to represent limitations of different demographic groups [126]. In order to assess the

impact of continued public transit service during biological emergency mitigation, algorithms

must be developed to estimate plan reach with and without the availability of public transit
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resources.

4.3.1. Evaluating Reach and Coverage Area of Existing Response Plans without Public Tran-

sit

The coverage area of existing response plans [139], given specific POD locations, is

estimated using definitions of dw [94][143]. A plan’s reach of vulnerable populations can

be calculated by overlaying the coverage area and the spatial distribution of vulnerable

populations [82] as described in Figure 4.7. Although this figure specifically shows the

computation of reach following directly from the computation of the coverage area, these

two metrics were computed separately in the implementation of this particular component

to facilitate the reuse of programming code and generalization of database queries.

An example database query to calculate the reach of vulnerable populations of a

POD facility with id = 6 within its catchment area is provided in Algorithm 1. This query

starts by selecting all population blocks within a specific catchment area (in this case, the

catchment area with id = 6). From this set of population blocks, it selects only population

blocks whose geometric centroids are within dw = 1000 meters of the POD facility and sums

their vulnerable populations. This sum represents the total reach of the POD.

The coverage area is calculated and provided with and without respect for popula-

tion block boundaries. For simplicity, the coverage area which does not respect popula-

tion block boundaries is hereafter referred to as the coverage area buffer, and the cover-

age area which does respect the population block boundaries is referred to as the coverage

area blocks. The sequence of example queries in Algorithm 2 show how coverage areas

are calculated without respect for population blocks. The first query creates a table sce-

nario name coverage wo trans containing a walking distance buffer of dw = 1000 meters

around each active POD location (designated active by having status =‘true’). The second

query alters this table to add a new geometry field to hold the coverage areas of each POD

clipped by the catchment area boundaries. The third query performs this clipping operation

and updates the newly created field in the table.

36



Figure 4.7. Procedure and data requirements for calculating POD reach of
vulnerable populations

Input: An estimate of acceptable walking distance dw = 1000 meters, POD id = 6,
and tables of available facilities, catchment areas, and population blocks.

Output: The reach of POD with id = 6 given the current dw estimate.

SELECT
SUM(cen.total none) AS reach

FROM
(

SELECT
block.*

FROM
scenario name population blocks AS block,
scenario name catchment AS cat,
scenario name pods AS pod

WHERE
pod.id=6 AND
cat.id=pod.catchment area AND
ST WITHIN(block.centroid,cat.the geom)

) AS cen,
scenario name pods AS pod

WHERE
pod.id=6 AND
ST DISTANCE(cen.centroid,pod.location)<1000.0;

Algorithm 1: Example query to calculate reach of a POD facility with id = 6 within
its catchment area with dw = 1000 meters.
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Input: An estimate of acceptable walking distance dw = 1000 meters and tables of
available facilities and catchment areas.

Output: The coverage area of all active PODs clipped by their catchment areas.

SELECT
pods.catchment area AS pod,
ST BUFFER(pods.location, 1000.0) AS coverage wo respect ca

INTO
scenario name coverage wo trans

FROM
scenario name pods AS pods

WHERE
pods.status=‘true’;

ALTER TABLE
scenario name coverage wo trans

ADD COLUMN
clipped coverage geometry;

UPDATE
scenario name coverage wo trans AS cov

SET
clipped coverage = ST INTERSECTION(

cov.coverage wo respect ca,
cat.the geom)

FROM
scenario name catchment AS cat

WHERE
cat.id=cov.pod;

Algorithm 2: Example sequence of queries to calculate coverage area of active PODs
with dw = 1000 meters without respect for population block boundaries.

The coverage area created using the queries in Algorithm 2 are used to select popula-

tion blocks whose geometric centroids are within the coverage area buffer using the query in

Algorithm 3. This results in a set of population blocks which represent the coverage area of

the POD. Blocks representing the coverage area for each catchment area are dissolved into

a single polygon for each catchment area using the aggregate version of a PostGIS union

function.
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Input: A table representing the coverage area buffer and a table of population blocks.

Output: Coverage area of PODs with respect to population block boundaries.

ALTER TABLE
scenario name coverage wo trans

ADD COLUMN
cen cov geometry;

UPDATE
scenario name coverage wo trans AS cov

SET
cen cov=temp.the geom

FROM
(

SELECT
pod,
ST MULTI(ST UNION(the geom)) AS the geom

FROM
(

SELECT
cen.logrecno AS logrecno,
cov.pod AS pod,
blocks.the geom AS the geom

FROM
scenario name coverage wo trans AS cov,
scenario name census blocks AS blocks

WHERE
ST WITHIN(blocks.centroid,cov.clipped coverage)

) AS cen cov
GROUP BY

pod
) AS temp

WHERE
cov.pod=temp.pod;

Algorithm 3: Example sequence of two queries to convert the coverage area to respect
population block boundaries and save the results.

A screen capture of the RE-PLAN interface showing the coverage area buffers of the

response plan is provided in Figure 4.8, and one showing the coverage area blocks is provided

in Figure 4.9. A map showing the vulnerable population outside of the reach of the plan is

provided in the screen capture in Figure 4.10. This plan’s reach of transportation vulnerable

individuals (i.e. individuals without access to a vehicle in their households) without public
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Figure 4.8. Screen capture of RE-PLAN with coverage area buffers for dw =
1 km around forty PODs in Tarrant County, Texas

Figure 4.9. Screen capture of RE-PLAN with coverage area blocks for dw = 1
km around forty PODs in Tarrant County, Texas

transit is calculated as 4,558, representing approximately 8.5% of the county’s transportation

vulnerable population.
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Figure 4.10. Transportation vulnerable population of Tarrant County, Texas
at-risk of not being able to reach a POD in the scenario if public transit is
unavailable

Figure 4.11. How walking distance coverage may be extended using public transit

4.3.2. Evaluating Reach and Coverage Area of Existing Response Plans with Public Transit

Public transit stop locations can be used in conjunction with existing POD locations

and estimations of acceptable walking distances to increase the reach of PODs. Existing
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response plans include a set of PODs P , and the public transit system includes a set of

stops S. The distance between a POD pi and a stop sj is d(pi, sj). For all pi ∈ P and

sj ∈ S, if d(pi, sj) < dw, then all transit stops in the set S − sj may be used to extend the

walking distance coverage of POD pi. For each POD pi, the transit stop sj which has the

minimum d(pi, sj) value should be used in order to maximize the extended walking distance

coverage area. However, only transit stops within a particular POD’s catchment area should

be considered in order to maintain the populations’ assignments to catchment areas. Let x

be the distance between a POD and the closest transit stop in its catchment area. Increased

reach of vulnerable populations resulting from the extension of walking distance coverage

can then be quantified. Although the walking distance coverage area Cpi of a POD pi may

be calculated as Cpi ≤ d2wπ without use of public transit, public transit may be used to

extend it to Cpi ≤ d2wπ + (dw − x)2(|S| − 1)π as illustrated in Figure 4.11. A summary of

how a plan’s reach of vulnerable populations are calculated from input data is depicted in

Figure 4.7. Thus, deficiencies of existing response plans with respect to specific vulnerable

populations can be identified.

The example query provided in Algorithm 4 calculates the distance x from a POD

to the closest transit stop in its catchment area. This query is executed for each POD to

determine the x of each POD. These values are compared with the dw estimate to determine

if public transit can be used to extend the coverage area of each POD.
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Input: A POD id = 5, tables of PODs with their locations, catchment areas, and
public transit stops.

Output: The distance between the POD with id = 5 and the closest transit stop in
its catchment area. If not transit stops exist in the POD’s catchment area,
no records are returned.

SELECT
stop.stop id AS stop id,
cat.id AS catchment area,
ST DISTANCE(pod.location,stop.the geom) AS distance

FROM
tarrant gtfs stops AS stop,
scenario name catchment AS cat,
scenario name pods AS pod

WHERE
pod.id=5 AND
ST COVERS(cat.the geom,stop.the geom) AND
cat.id=5

ORDER BY
distance

LIMIT 1;

Algorithm 4: Example query to calculate the distance x from a POD with id = 5 to
the closest transit stop in its catchment area.

The next step is creating the walking distance coverage area buffer and blocks for each

POD. If for a particular POD dw − x ≤ 0, then the coverage area buffer, blocks, and reach

of vulnerable populations are calculated using the methodology for analysis without public

transit. Otherwise, the example query in Algorithm 5 employs the methodology depicted in

Figure 4.11 to calculate the coverage area buffer, blocks, and reach of vulnerable populations.

A screen capture of the RE-PLAN interface showing the extended coverage area

buffers of the response plan is provided in Figure 4.12, and one showing the extended cov-

erage area blocks is provided in Figure 4.13. A map showing the vulnerable population

outside of the extended reach of the plan is provided in the screen capture in Figure 4.14.

This plan’s reach of transportation vulnerable individuals extended by public transit is calcu-

lated as 15,867, representing approximately 29.7% of the county’s transportation vulnerable

population.
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4.3.3. Estimations of Maximum Walking Distances and the Inclusion of Specific Populations

Methods described in this chapter rely on estimations of dw to determine the reach of

specific populations. An inclusion property can be observed which guarantees the coverage

of specific populations under certain conditions. Increasing the maximum walking distance

Input: A POD id = 1, its dw − x = 972.1 meters, tables of PODs with their
locations, catchment areas, and public transit stops.

Output: The reach and walking distance coverage blocks of the POD.

SELECT
sum(blocks.total none) AS reach,
1 AS catchment area

FROM
scenario name population blocks AS blocks,

(
SELECT

ST INTERSECTION(buffer.single, cat.the geom) AS coverage area
FROM

scenario name catchment AS cat,
(

SELECT
ST UNION(stop buffer.single,pod buffer.pod buff) AS single,
stop buffer.catchment area AS catchment area

FROM
(

SELECT
stop buffers.id AS catchment area,
ST MULTI(ST UNION(stop buffers.the geom)) AS single

FROM
(

SELECT
cat.id AS id,
ST BUFFER(stop.the geom,972.1) AS the geom

FROM
tarrant gtfs stops AS stop,
scenario name catchment AS cat

WHERE
ST COVERS(cat.the geom,stop.the geom) AND
cat.id=1

) AS stop buffers
GROUP BY

stop buffers.id
) AS stop buffer,
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(
SELECT

ST BUFFER(pod.location,1000.0) AS pod buff
FROM

scenario name pods AS pod
WHERE pod.id= 1

) AS pod buffer
) AS buffer

WHERE
cat.id= 1

) AS clipped buffer
WHERE

ST COVERS(clipped buffer.coverage area,blocks.centroid)
GROUP BY

catchment area ;

Algorithm 5: Example query to calculate the coverage blocks and vulnerable popula-
tion reach of a POD with id = 1 given dw − x = 972.1 meters.

Figure 4.12. Screen capture of RE-PLAN with coverage area of forty PODs
in Tarrant County, Texas extended using public transit and calculated using
dw = 1 km. Public transit routes and stops are also displayed on the map as
a reference.

estimate can neither result in a decrease in the total covered population no the uncovering

of a population already covered using existing distance estimates.

Lemma 4.1. Assuming stationery populations, facilities, catchment areas, and transit stops,
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Figure 4.13. Screen capture of RE-PLAN with coverage area blocks around
forty PODs in Tarrant County, Texas extended using public transit and cal-
culated using dw = 1 km

Figure 4.14. Transportation vulnerable population of Tarrant County, Texas
at-risk of not being able to reach a POD in the scenario if public transit is
available

if a population popi is covered by a facility location pj given a maximum walking distance

dw1, this implies that popi will be covered by pj given a maximum walking distance dw2 if

dw1 ≤ dw2.
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Proof. Suppose a population popi is included in the reach of its assigned POD using a

walking distance estimate of dw1 . Also suppose there is a second walking distance estimate

dw2 ≥ dw1 .

Without the use of public transit, superimposing walking distance coverage areas

of the two estimates on the same map reveals a pair of concentric circles as depicted in

Figure 4.15. The smaller circle corresponds to dw1 and is completely covered by the larger

circle which corresponds to dw2 . Therefore, any population covered by dw1 must also be

covered by dw2 .

Figure 4.15. Diagram showing that, given two estimate of maximum walking
distance dw1 and dw2 , if dw1 < dw2 , then the walking distance coverage area or
dw2 completely covers the walking distance coverage area of dw1 .

If public transit is included, concentric circles may be observed around transit stops

as well as the facility. Concentric circles around transit stops follow the same pattern as

those around the facility. Therefore, Lemma 4.1 must also hold when considering public

transit.

�

Corollary 4.2. A facility’s reach of vulnerable populations is non-decreasing with increas-

ing estimates of dw.

A realistic estimate of acceptable walking distance must be based on population

characteristics and the walkability of pedestrian environments [126]. The methods described
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in this chapter can be used to identify areas where participation can be most greatly expanded

by increasing an area’s acceptable walking distance estimates. An increased dw can be

accomplished through the improvement of an area’s walkability.
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CHAPTER 5

MAXIMIZING REACH OF TRANSPORTATION VULNERABLE POPULATIONS

The signing into law of the Pandemic and All-Hazards Preparedness Reauthoriza-

tion Act (PAHPA) on March 13, 2013 serves as a directive to public health and emergency

planners that addressing the vulnerabilities of populations remains a priority . New method-

ologies must be developed to address specific vulnerabilities in order to minimize access dis-

parities which could hamper the efficiency of otherwise feasible response plans. To facilitate

their real-world impact, these new methodologies must be integrated into a framework which

is accessible to and usable by public health and emergency planners.

Methodology described in Chapter 4 identified and analyzed the transportation vul-

nerable population of specific regions, and data representing the existing public transit sys-

tem have been integrated into the analysis of transportation access disparities. Existing

response plans which do not consider transportation vulnerabilities in the population must

be modified to adjust and optimize POD placement and public transit infrastructure to

maximize response plan reach of transportation vulnerable populations [3][41][86][102]. The

optimization methods described in this chapter are applied incrementally to an existing re-

sponse plan in an effort to maintain the plan’s key characteristics such as the number of

PODs, the geographic boundaries of catchment areas, and the population assigned to each

catchment area.

The response plan described in the Case Study and used in Chapter 4 was deemed

feasible by previous methodology and is used as a basis for the coverage maximization ex-

amples. This response plan consists of 40 PODs, each with 25 drive-though lanes. The

RE-PLAN equal population partitioning algorithm was used to create an additional 120

POD locations in a new RE-PLAN scenario. The status of these locations were toggled to

off, exported as a Comma Separated Values (CSV) file, and imported into the scenario for

the “feasible” response plan. This resulted in three to six potential POD locations within

each catchment area. A screen capture from RE-PLAN scenario with these POD locations
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is provided in Figure 5.1.

Figure 5.1. “Feasible” response plan from case study with 120 extra POD
locations added. The red triangles represent locations of the forty original
PODs, and the grey triangles represent locations of the 120 new PODs.

5.1. Maximizing Response Plan Reach while Preserving Existing Catchment Areas

Although a large set of facilities may exist in a region which are capable of hosting

PODs during a biological emergency event, a subset of these facilities are generally chosen

by planners to become PODs. If more than one suitable facility exists in a catchment

area, tools are needed to assist planners in identifying which facility maximizes reach of

vulnerable populations in this catchment area. For the purposes of the research described

in this dissertation, optimality is defined in terms of reach of transportation vulnerable

populations. Therefore, the optimal POD facility in a catchment area is the one which has

the greatest reach of transportation vulnerable populations.
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Selecting the POD location in each catchment area which yields the greatest reach

of vulnerable populations will maximize the overall reach of the plan. Therefore, the max-

imization effort requires that the reach of vulnerable populations by each of the potential

POD locations of a catchment area be computed. Methods for maximizing reach of existing

response plans are detailed, and examples of these methods are presented.

5.1.1. Maximizing Response Plan Reach without Public Transit

Methodology to maximize response plan reach without public transit builds upon

analysis techniques described in Chapter 4. As depicted in Figure 5.5, the coverage area

of each POD location is computed, and the POD is re-assigned to the location with the

coverage area that reaches the greatest vulnerable population [16]. A detailed method for

performing these tasks computationally is provided in Algorithm 6. The facility with the

greatest reach in each catchment area is chosen to host the POD for that catchment area.

This is accomplished in the RE-PLAN Framework by setting the ‘status’ of chosen facilities

to ‘true’ and unchosen ones to ‘false’.
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Input: An estimate of acceptable walking distance dw, tables of available facilities,
catchment areas, and transportation vulnerability population blocks. Exactly
one facility in each catchment area has status = ‘true’.

Output: POD locations chosen from facility locations maximize coverage of
transportation vulnerable populations while maintaining catchment area
(CA) boundaries. Exactly one facility in each catchment area has status =
‘true’.

foreach catchment area i in the region do
max reach = 0
max facility = 0
foreach facility j in catchment area i do

if j.status == ‘true’ then
original facility = j

end
reach = results of query in Algorithm 1
if reach > max reach then

max reach = reach
max facility = j

end
end
if max reach > 0 AND original facility != max facility then

original facility.status = ‘off’
max facility.status = ‘on’

end
end

Algorithm 6: Maximizing coverage of transportation vulnerable populations without
public transit while maintaining catchment area boundaries

Once optimal facility locations are chosen, the coverage area buffers and coverage

area blocks are calculated by using the queries in Algorithms 2 and 3, respectively. A

screen capture of the RE-PLAN interface showing the coverage area buffers of the optimized

response plan is provided in Figure 5.2, and one showing the coverage area blocks is provided

in Figure 5.3. A map showing the vulnerable population outside of the reach of the plan

is provided in Figure 5.4. This optimized plan’s reach of vulnerable individuals without

public transit is calculated as 10,569, representing approximately 19.8% of the county’s

transportation vulnerable population.
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Figure 5.2. Screen capture of RE-PLAN with coverage area buffers for dw =
1 km around forty optimal PODs in Tarrant County, Texas

Figure 5.3. Screen capture of RE-PLAN with coverage area blocks for dw = 1
km around forty optimal PODs in Tarrant County, Texas

5.1.2. Unconstrained Facility Location Selection to Maximize the Reach of Transportation

Vulnerable Populations

If the choice of facility locations in a catchment area is not constrained by the avail-

ability of a set of specific facilities, a method to choose a facility location which maximizes
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Figure 5.4. Transportation vulnerable population of Tarrant County, Texas
at-risk of not being able to reach a POD in the scenario after optimization
without public transit using the color to value mappings in Figure 4.3

.

Figure 5.5. Method for maximizing reach of transportation vulnerable popu-
lations without the use of public transit by reassigning the POD to an alternate
facility.

.

the reach of transportation vulnerable populations should be employed. An estimate of ac-

ceptable walking distance dw can be used with vulnerable population locations and sizes to
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Figure 5.6. Five maps illustrating the method for maximizing reach of trans-
portation vulnerable populations using public transit by reassigning the POD
to an alternate facility.

calculate optimal locations for facility placement. To simplify the algorithm, populations are

represented spatially as point locations. Two approaches are presented: a naive approach

and a graph-based approach.

Besides simply choosing the geometric centroid of the catchment area, the naive

approach is one of the most obvious approaches to unconstrained facility location selection.
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It uses a center of gravity model [85] to minimize the average distance-to-POD over the

entire vulnerable population of the area. However, depending on the geographic distribution

of the vulnerable population, this is likely to lead to the selection of a POD location with

less than maximal reach. This concept is demonstrated in Figure 5.7. A set of vulnerable

populations and their sizes are shown in a single catchment area. A center of gravity model

is used to select the POD location shown. However, when drawing a buffer around the POD

of radius dw, it is clear that the reach of the POD is only 20 vulnerable individuals. This

POD location is clearly not maximal as there are two vulnerable populations which each

exceed this reach. Simply placing the POD at either of these two locations would yield

greater reach.

Figure 5.7. Example of naive approach to unconstrained facility location
selection for a single catchment area with eight vulnerable populations. A
buffer of radius dw illustrates the low reach of this POD despite its central
location.

The graph-based approach uses the same input data as the naive approach, but the

POD location selected provides maximal coverage for the catchment area. As illustrated in
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Figure 5.8. Example of graph approach to unconstrained facility location
selection for a single catchment area with eight vulnerable populations.

Figure 5.8, a mathematical graph G = (V,E) (consisting of a set of vertices V and a set of

edges E) is created by representing each population as a vertex v ∈ V and connecting each

pair of populations within 2dw distance of each other (shown as being the greatest distance

between two populations both covered by the same facility location in Figure 5.9) by an

edge e ∈ E. This graph can be used to determine a region in which to locate a facility with

maximal reach.

A graph clique is a complete subgraph (i.e. a graph with an edge between each pair

of vertices) [58]. A clique is defined to be a maximal clique if no additional vertices in the

graph can be added such that the resulting subgraph is still a clique [125]. Let the set of

maximum vulnerable population maximal cliques MV PMC be the set of maximal cliques

whose vertices represent the largest total vulnerable population (not to be confused with

maximum cliques). The setMV PMC can be used with dw to identify specific locations which

maximize coverage of vulnerable populations. This process involves the task of maximal
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Figure 5.9. Illustration of how the maximum distance between two popula-
tions covered by the same facility using the same dw walking distance estimate
is 2dw.

clique enumeration, for which, although known to be an NP-hard problem (i.e. with respect

to the size of the problem, a nondeterministic polynomial time problem which is verifiable

in polynomial time [37]), parallel algorithms have been developed [111]. As depicted in

Figure 5.10, a buffer of radius dw is drawn around each population in MV PMC, and the

POD must be located within the area where all of these buffers intersect as described in

Theorem 5.1. Lemma 5.2 serves as a basis upon which a theoretical framework to explore

how the graph representation of populations within 2dw of each other can be exploited to

solve the unconstrained facility location selection problem. Theorem 5.3 uses the number of

maximal cliques of a graph to determine how many facility locations are required to reach

the entire vulnerable population of a region.

Theorem 5.1. The reach of a facility placed within the intersection of dw radius buffers

around populations in a maximum vulnerable population maximal clique provides the maxi-

mum reach of vulnerable populations such that its reach cannot be dominated by the selection

of a different facility location.

Proof. Assume there exists a location l outside of the intersection of dw radius buffers

around populations in a maximum vulnerable population maximal clique such that the sum

of all vulnerable populations within its reach is greater than the reach of the facility within

the intersection. This would imply that the vulnerable populations covered by a facility

at location l are all within 2dw of each other and form a maximal clique representing a
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Figure 5.10. The intersection of the buffers drawn around the points repre-
senting the largest population clique is shaded, showing the area of maximal
reach for POD facility location.

larger vulnerable population than the one initially chosen. However, this contradicts the

method under which the graph was constructed and the criteria for selection of the original

facility. Therefore, the original facility must provide the maximum reach of vulnerable

populations. �

Lemma 5.2. The set of all maximal cliques of a graph represent a clique coverage of the

graph.

Proof. Let G = (V,E) where V is a set of vertices and E is a set of edges which connect

pairs of vertices in V . Let MCG represent the set of all maximal cliques mci of graph G.

Assume ∃vi ∈ V | ∀mci ∈ MCG, vi /∈ mci. In other words, assume there exists a vertex

vi ∈ V which is not included in any maximal clique in MCG. However, the vertex vi by itself

is a clique. This clique must either be a maximal clique by itself or be a part of a larger clique

which is a maximal clique. In either case, this vertex would be a member of a clique included
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in MCG, thus contradicting the initial assumption that ∀mci ∈ MCG, vi /∈ mci. Therefore,

the set of all maximal cliques must include all vertices in the graph, and, by definition [58],

represent the clique coverage of the graph. �

Theorem 5.3. Let F be a minimum cardinality set of facility locations required to reach all

vulnerable populations of a region. Let dw be an estimate of maximum walking distance for

transportation vulnerable individuals. Let G = (V,E) be a graph such that V represents the

set of populations, and E represents a set of edges between populations in V which are within

2dw distance of each other. Let NVV be the set of vertices in V which represent populations

containing no vulnerable individuals and NVE be the set of all edges in E incident upon any

vertex in NVV . Let G2 = (V −NVV , E−NVE). Let MCG2 be the set of all maximal cliques

in the graph G2 . Then, |F | ≤ |MCG2|.

Proof. Since consideration of reach is only explored for vulnerable populations, providing

reach to all populations in G2 is equivalent to providing reach to all vulnerable populations

of G. The set MCG2 of maximal cliques also represents the clique cover of the graph G.

This implies that all vertices in G2 are included in at least one clique in MCG2 .

Assume there exists a population in V − NV which cannot be covered through the

use of |MCG2| facility locations, resulting in the need for an additional facility location and

causing |F | > |MCG2|. Since all vulnerable populations are included in at least one clique in

MCG2 , then one of the cliques must not be coverable by a single facility location. However,

this contradicts the initial construction of the graph such that the only edges included in E

(and, by extension, E−NVE) are between populations within 2dw of each other. Therefore,

|F | ≤ |MCG2| holds.

�

Although |MCG2| serves as an upper bound for |F |, it cannot be used to guarantee

an exact value for |F |. Figure 5.11 shows an example graph representing populations within

2dw distance of each other such that |MCG2| = 3 and |F | = 2. The three maximal cliques

are {A,B}, {B,C}, and {C,D}. However, the entire vulnerable population can be covered
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with only two facility locations: one which covers populations A and B, and another which

covers populations C and D.

Figure 5.11. Example of graph such that |F | < |MCG2|.

From a GIS perspective, the same result can be achieved by creating buffers of radius

dw around each vulnerable population. These buffers represent the area each population can

walk given the assumed dw. Each buffer must include an attribute to represent the number of

vulnerable individuals it represents. Using these buffers, the reach of a particular point can

be calculated by summing the number of vulnerable individuals represented by each buffer

which covers it. A union operation should be performed on the buffers to create a single

polygon layer where each polygon represents an area of uniform reach. After calculating the

reach of each polygon, the maximal reach polygon(s) can be determined by selecting the

polygon(s) of maximum reach.

5.1.3. Examining Walking Distance Burden of Transportation Vulnerable Populations

A tool was developed to examine the walking distance burden of transportation vul-

nerable populations. The geometric centroid of each vulnerable population is used to rep-

resent the population’s location. The distance from each population to its assigned POD

facility is measured and plotted on a cumulative chart. The tool is used to examine the

effect of plan maximization on the walking distance burden of transportation vulnerable

populations.

Acceptable walking distances dw of 1, 2, 3 and 4 kilometers were used with the reach

maximization algorithm. Charts of distances of transportation vulnerable populations to

their assigned PODs for the entire region are given in Figures 5.12,5.13,5.14,5.15, and 5.16,

and for a selected catchment area in Figures 5.17, 5.18, and 5.19. Although the total reach of

transportation vulnerable individuals is nondecreasing with increasing estimates of dw, using
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Figure 5.12. Region-
wide vulnerable population
distance-to-assigned-POD
before maximization algo-
rithms are applied

Figure 5.13. Region-
wide vulnerable population
distance-to-assigned-POD
after maximization with
dw = 1 km

Figure 5.14. Region-
wide vulnerable population
distance-to-assigned-POD
after maximization with
dw = 2 km

Figure 5.15. Region-
wide vulnerable population
distance-to-assigned-POD
after maximization with
dw = 3 km

a larger estimate of dw in the maximization procedure is likely to yield a greater average

walking distance for vulnerable populations than a smaller estimate.
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Figure 5.16. Region-
wide vulnerable population
distance-to-assigned-POD
before maximization and
after maximization with
dw = 4 km

Figure 5.17. Catchment
area 9 vulnerable popula-
tion distance-to-assigned-
POD before maximization
and after maximization
with dw = 1 km

Figure 5.18. Catchment
area 9 vulnerable popula-
tion distance-to-assigned-
POD after maximization
with dw = 2 km

Figure 5.19. Catchment
area 9 vulnerable popu-
lation distance-to-assigned-
POD after maximization
with dw = 3 km and dw = 4
km

5.1.4. Maximizing Response Plan Reach Using Public Transit

Extending the walking distance coverage area of a POD location using public transit

may increase its reach of vulnerable populations. The increased reach of each facility in
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Table 5.1. Experimental Results for Regional Vulnerable Population Cover-
age Maximization

MIN MAX AVG STDDEV Num PODs
Experiment (km) (km) (km) (km) Changed

Before 0.324 12.076 3.269 1.900 0
dw = 1.0 km 0.271 13.342 3.698 2.536 28
dw = 2.0 km 0.116 16.604 3.903 2.859 34
dw = 3.0 km 0.271 16.604 4.017 3.042 34
dw = 4.0 km 0.116 16.604 4.065 3.038 35

Table 5.2. Experimental Results for Catchment Area 9 Vulnerable Popula-
tion Coverage Maximization

MIN MAX AVG STDDEV POD
Experiment (km) (km) (km) (km) Changed

Before 0.756 7.427 3.436 1.871 false
dw = 1.0 km 0.756 7.427 3.436 1.871 false
dw = 2.0 km 0.310 6.803 2.801 1.846 true
dw = 3.0 km 1.043 8.734 3.267 2.071 true
dw = 4.0 km 1.043 8.734 3.267 2.071 true

a catchment area must be calculated, and the POD must be assigned to the facility with

the greatest reach. Figure 5.6 shows an example of the methodology to choose the optimal

facility in a catchment area to host a POD. The coverage areas of facility locations explored

in maps a, b, and c do not intersect vulnerable populations. The coverage area of the

facility location in map d provides some coverage (and therefore, reach) of nearby vulnerable

populations. However, the close proximity of the facility location in map e to a public

transit stop allows the coverage area of the facility location to be extended to intersect with

vulnerable populations near three different transit stops, thus greatly increasing the facility’s

reach of vulnerable populations. For simplicity, in this example the vulnerable population is

assumed to be uniformly distributed across the areas of vulnerability. The facility location

closest to the transit stop has the maximal coverage area (and in this case reach) and is

selected to host the POD. Nonetheless, the methodology presented considers non-uniform

population densities of vulnerable populations by focusing on plan reach calculated using

the spatial distribution of vulnerability and the estimated walking distance coverage area

described in Chapter 4.
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Algorithm 7 details the methodology employed to maximize a plan’s reach of vulnera-

ble populations using public transit. It builds upon methodology from Chapter 4 to analyze

reach of vulnerable populations in the context of public transit. Facilities chosen to host

PODs in plans following execution of Algorithm 7 maximize reach of vulnerable populations

using available public transit infrastructure while maintaining existing catchment areas.

Input: An estimate of acceptable walking distance dw, tables of available facilities,
transit stops, catchment areas, and transportation vulnerability population
blocks. Exactly one facility in each catchment area has status = ‘true’.

Output: POD locations chosen from facility locations maximize coverage of
transportation vulnerable populations using public transit while
maintaining catchment area (CA) boundaries. Exactly one facility in each
catchment area has status = ‘true’.

foreach catchment area i in the region do
max reach = 0
max facility = 0
foreach facility j in catchment area i do

if j.status == ‘true’ then
original facility = j

end
x = results of query in Algorithm 4
dw minus x = dw − x
reach = results of query in Algorithm 5 using dw minus x and dw
if reach > max reach then

max reach = reach
max facility = j

end
end
if max reach > 0 AND original facility != max facility then

original facility.status = ‘off’
max facility.status = ‘on’

end
end

Algorithm 7: Maximizing coverage of transportation vulnerable populations with pub-
lic transit while maintaining catchment area boundaries

Figure 5.21 shows the coverage area buffers around the forty PODs chosen to maximize

the response plan in Tarrant County, Texas with dw = 1 km. The coverage area blocks are

shown in Figure 5.21, illustrating where vulnerable populations are within reach of the

optimized response plan. The transportation vulnerable population at-risk of not being able

to reach a POD by either walking or using public transit is depicted in Figure 5.22. Following

65



Figure 5.20. Screen capture of RE-PLAN with coverage area buffers for
dw = 1 km using public transit around forty optimal PODs in Tarrant County,
Texas. Public transit stops and routes are also displayed on the map as a
reference.

maximization using public transit with dw = 1 km, the plan has a reach of vulnerable

populations of 27,493, representing approximately 51.5% of the transportation vulnerable

population of the county.

5.1.5. Maximizing Response Plan Reach by Adding Public Transit Stops Near PODs

Benefits of the algorithm to maximize plan reach using public transit rely not only

on the existence of public transit stops in a region, but also on transit stops being located

close to POD locations. This can lead to situations where public transit infrastructure is

too far from PODs in a catchment area to be used to extend the walking distance coverage

area. To overcome this problem, a new stop can be added to the public transit network.

For example, Figure 5.24 shows a view of Netwon Rayzor Elementary School in Denton, TX

using Google Earth. The closest large road to this school is Highway 380 (shown near the

top of the map). A bus stop added to Highway 380 near the school would be about 150 m

from the school.

Let y be the distance from the new stop to a POD location. If y > x, the only
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Figure 5.21. Screen capture of RE-PLAN with coverage area blocks for dw =
1 km around forty optimal PODs in Tarrant County, Texas

Figure 5.22. Transportation vulnerable population of Tarrant County, Texas
at-risk of not being able to reach a POD in the scenario after optimization with
public transit using the color to value mappings in Figure 4.3

.

increase in reach will be of populations within dw − x of the new transit stop. However, as

depicted in Figure 5.23, if y < x, the radius of coverage around each transit stop in the set

of transit stops in this catchment area S will be increased from dw−x to dw−y: a difference
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of x− y. This results in an increase of walking distance coverage area Cpi for each POD pi

of ∆Cpi ≤ π(|S| − 1)(y2 − x2).

Figure 5.23. Effects of adding a transit stop within a distance y of a POD facility.
.

Figure 5.24. Example of adding a public transit stop 150 m from a facility
which may be used as a POD.

.

Algorithm 8 details the procedure used to explore plan maximization resulting from

increases in reach from the addition of transit stops near each POD facility. It chooses the
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Figure 5.25. Screen capture of RE-PLAN with coverage area buffers for
dw = 1 km after adding a transit stop within 150 m of each of the original 40
PODs in Tarrant County, Texas.

.

facility location in each catchment area which maximizes plan reach using the public transit

network and added transit stops such that y < x. Since calculations of reach are only affected

by the addition of the transit stop if y < x, the precise location of the transit stop does not

need to be determined. Rather, any location on a circle of radius y from the facility location

can be chosen. If for all PODs in a CA, y ≥ x, Algorithm 8 would choose the same POD

locations and calculate the same reach as Algorithm 7.

The increased coverage area buffers resulting from adding a transit stop within 150

m of each of the original 40 PODs such that y = 150 is shown in Figure 5.25, and the

corresponding coverage area blocks are shown in Figure 5.26. A map showing the remaining

vulnerable population still at-risk of not being able to participate in mitigation activities

is shown in Figure 5.27. The total reach of vulnerable populations resulting from adding

transit stops 150 m from each POD is 27,328.

If the maximization algorithm is used to select the POD with greatest reach for each

catchment area, a map showing the resulting coverage area buffers is provided in Figure 5.28,

and a map showing the corresponding coverage area blocks is provided in Figure 5.29. A
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Figure 5.26. Screen capture of RE-PLAN with coverage area blocks for dw =
1 km after adding a transit stop within 150 m of each of the original 40 PODs
in Tarrant County, Texas.

.

Figure 5.27. Screen capture of RE-PLAN showing vulnerable population
still at risk of not receiving mitigation resources after adding a transit stop
within 150 m of each of the original 40 PODs in Tarrant County, Texas using
dw = 1 km.

.
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Figure 5.28. Screen capture of RE-PLAN showing the best 40 of 160 PODs
with coverage area buffers for dw = 1 km after adding a transit stop within
150 m of each POD in Tarrant County, Texas.

.

map showing the remaining vulnerable population still at-risk of not receiving mitigation

resources is shown in Figure 5.29. The total reach of vulnerable populations resulting from

choosing the best 40 POD locations considering an additional transit stop added at 150 m

from each location is 30,597.

If a new transit stop is added at each POD such that y = 0, Figure 5.31 shows

a map of the coverage area buffers of the original 40 PODs, and Figure 5.32 shows the

corresponding coverage area blocks. Figure 5.33 shows the remaining vulnerable population

still at-risk of not receiving mitigation resources. The total reach of vulnerable populations

using the original 40 POD locations with transit stops added to each POD is 28,848.

Choosing the POD location with the greatest reach in each catchment area assuming a

transit stop is added at each POD location results in the coverage area buffers map provided

in Figure 5.34. The corresponding coverage area blocks map is provided in Figure 5.35,

and a map showing the remaining vulnerable populations still at risk of not being able to

participate in mitigation activities is provided in Figure 5.36. This method results in a

total reach of 31,771 vulnerable individuals, representing a reach of nearly 59.5% of the
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Figure 5.29. Screen capture of RE-PLAN showing the best 40 of 160 PODs
with coverage area blocks for dw = 1 km after adding a transit stop within 150
m of each POD in Tarrant County, Texas.

.

Figure 5.30. Screen capture of RE-PLAN showing the vulnerable population
still at risk of not receiving mitigation resources after choosing the best 40 of
160 PODs and adding a transit stop within 150 m of each POD in Tarrant
County, Texas using dw = 1 km.

.
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Figure 5.31. Screen capture of RE-PLAN with coverage area buffers for
dw = 1 km after adding a transit stop at each of the original 40 PODs in
Tarrant County, Texas.

.

Figure 5.32. Screen capture of RE-PLAN with coverage area blocks for dw =
1 km after adding a transit at each of the original 40 PODs in Tarrant County,
Texas.

.

transportation vulnerable population.
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Figure 5.33. Screen capture of RE-PLAN showing vulnerable population
still at risk of not receiving mitigation resources after adding a transit stop at
each of the original 40 PODs in Tarrant County, Texas using dw = 1 km.

.

Figure 5.34. Screen capture of RE-PLAN showing the best 40 of 160 PODs
with coverage area buffers for dw = 1 km after adding a transit stop at each
POD in Tarrant County, Texas.

.
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Figure 5.35. Screen capture of RE-PLAN showing the best 40 of 160 PODs
with coverage area blocks for dw = 1 km after adding a transit stop at each
POD in Tarrant County, Texas.

.

Figure 5.36. Screen capture of RE-PLAN showing the vulnerable population
still at risk of not receiving mitigation resources after choosing the best 40 of
160 PODs and adding a transit stop at each POD in Tarrant County, Texas
using dw = 1 km.

.
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Input: An estimate of acceptable walking distance dw, a distance y to specify how far
the added transit stops will be from each POD, tables of available facilities,
transit stops, catchment areas, and transportation vulnerability population
blocks. Exactly one facility in each catchment area has status = ‘true’.

Output: POD locations chosen from facility locations maximize coverage of
transportation vulnerable populations using public transit (including the
added transit stop) while maintaining catchment area (CA) boundaries.
Exactly one facility in each catchment area has status = ‘true’.

foreach catchment area i in the region do
max reach = 0
max facility = 0
foreach facility j in catchment area i do

if j.status == ‘true’ then
original facility = j

end
x = results of query in Algorithm 4
if y < x then

dw minus x = dw − y
end
else

dw minus x = dw − x
end
reach = results of query in Algorithm 5 using facility j, dw minus x, and dw
if reach > max reach then

max reach = reach
max facility = j

end
end
if max reach > 0 AND original facility != max facility then

original facility.status = ‘off’
max facility.status = ‘on’

end
end

Algorithm 8: Maximizing coverage of transportation vulnerable populations by adding
a transit stop within a distance of y of each POD while maintaining catchment area
boundaries and choosing the POD which maximizes reach of vulnerable populations
within each catchment area.

76



5.1.6. Re-assigning Populations to Different Catchment Areas to Maximize Response Plan

Reach

Re-assigning populations to different catchment areas may increase the reach of vul-

nerable populations estimated using methodology detailed in Chapter 4. A situation in

which several vulnerable populations are beyond walking distance of their assigned PODs

is depicted in Figure 5.38. However, POD 3’s close proximity to a transit stop facilitates

the use of public transit to extend its walking distance coverage area beyond its normal

catchment area. Transportation vulnerable populations covered by POD 3, but not covered

by their assigned PODs, can be reassigned to POD 3. This action changes the number of

individuals assigned to each POD. Therefore, proportional reallocation of resources based

on this reassignment must be conducted and/or catchment areas must be recalculated.

Populations outside of the reach of their assigned PODs in the case study were ex-

amined to determine if they could be reassigned to a different POD. Figure 5.37 shows three

reassignment options for the population of a specific, out-of-reach census tract. Additional

POD locations which can serve as candidates for reassignment of this population are listed

in Table 5.3.

Population reassignment options are dependent upon the distance from each POD to

its closest transit stop and the distance from each out-of-reach population to its closest transit

stop. If, for a particular population and a particular POD, the sum of these two distances

is less than dw, then the population may be reassigned to this POD. Specifically, let popi

represent a specific out-of-reach population. Let stoppopi be the transit stop of minimum

distance from popi. Let P be the set of all POD locations pj, and stoppj be the transit

stop of minimum distance from pj. Then, popi may be reassigned to any POD location

pj ∈ P | dist(pj, stoppj) ≤ dw − dist(popi, stoppopi). Therefore, if for a particular POD pj,

dist(pj, stoppj) > dw, out-of-reach populations cannot be reassigned to this POD. Further,

if for an out-of-reach population dist(popi, stoppopi) > dw, then this population cannot be

reassigned to another POD.

In practice, limitations on transit capacities will influence the movement of popula-
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Table 5.3. Alternate POD Facilities to which Planners May Choose to Re-
Assign the Vulnerable Population of Tract 439100300 While Respecting the
Maximum Walking Distance Estimate dw = 2000 Meters.

POD id Distance from POD to closes
transit stop

Total distance vulnerable popula-
tion would have to traverse

116 17 m 996 m
88 21 m 999 m
153 47 m 1,026 m
90 48 m 1,027 m
150 68 m 1,046 m
136 96 m 1,074 m
10 141 m 1,119 m
100 183 m 1,162 m
95 218 m 1,196 m
15 288 m 1,266 m
13 290 m 1,268 m
113 344 m 1,322 m
157 350 m 1,329 m
19 423 m 1,401 m
99 737 m 1,716 m
98 833 m 1,811 m

tions. Graph theoretical methodologies must be employed to fully assess these limitations.

However, reassignment decisions must also consider that the POD location in a plan with

min(dist(pj, stoppj)) will minimize the total walking distance for all populations eligible for

POD reassignment. If the sum of reassigned populations is too large, this POD facility (and

the transit network leading to it) may be overwhelmed. Therefore, a strategy which starts by

reassigning populations to candidate POD locations which maximize total walking distance

should be explored to take advantage of as many candidate POD locations as possible.

Populations which are neither within walking distance of a POD nor a public transit

stop must be addressed by either adding additional POD(s) or strategically modifying the

public transit system to reach these populations (i.e. paratransit). The demand-capacity

ratio resulting from implementation of response plans must be analyzed for each link in

the public transit system to ensure sufficient transit infrastructure is provided. Effectively

eliminating the distance between PODs and transit stops by implementing shuttles between

them would maximize the coverage areas of PODs via the public transit system.
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Figure 5.37. Census tract 439100300 and the three PODs to which this
tract’s population could be reassigning while minimizing total walking distance

5.2. Examining Sensitivity of Efforts towards Reach Maximization

The inclusion property described in Lemma 4.1 is not guaranteed by maximization

methods described in this chapter. Increasing estimates of dw can result in the selection

of a different facility location by reach maximization algorithms. This different facility

location is likely to cover a different set of populations, thus violating the inclusion property.

Nonetheless, specific properties exist regarding the sensitivity of maximization algorithms

described in this chapter.

Lemma 5.4 states that, given the maximization methods described in Algorithms 6

and 7, the reach of a vulnerable populations is nondecreasing with increasing estimates

of dw. Lemma 5.5 states that using Algorithm 8, the reach of vulnerable populations is

nondecreasing with decreasing values of y. Corollary 5.6 follows from the proof of Lemma 5.5
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Figure 5.38. Method for maximizing reach of transportation vulnerable pop-
ulations by reassigning populations to PODs in different catchment areas.

and defines an inclusion property for Algorithm 8 which exists only for populations within

dw − y of transit stops when the value of y is less than the minimum distance between all

transit stops and candidate facility locations in a particular catchment area.

Lemma 5.4. Assuming stationery populations, facilities, catchment areas, and transit stops,

let reach(fi, dw) be the reach (in numbers of individuals) of a facility fi with maximum

walking distance dw. Then, using Algorithms 6 or 7, dw1 < dw2 =⇒ reach(fi, dw1) ≤

reach(fi, dw2) for catchment area i.

Proof. Let dw1 and dw2 be estimates of maximum walking distance such that dw1 < dw2 .

If the facility chosen by Algorithms 6 or 7 remains the same for both dw1 and dw2 , then

Corollary 4.2 applies, and the inclusion property presented in Lemma 4.1 holds as a more

rigorous form of Lemma 5.4. Otherwise, if the facility chosen by Algorithms 6 or 7 changes

from f1 to f2 with the change from dw1 to dw2 , further exploration is needed.

Let facility f1 be chosen for dw1 and f2 be chosen for dw2 . This implies that reach(f1, dw1) ≤

reach(f2, dw2) since, by Lemma 4.1, for a particular facility fi, reach(fi, dw1) ≤ reach(fi, dw2).

Therefore, reach(f2, dw1) ≤ reach(f1, dw1) ≤ reach(f1, dw2) ≤ reach(f2, dw2), and the Lemma

holds. �
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Lemma 5.5. Assuming stationery populations, facilities, catchment areas, and transit stops,

let min(xi) be the minimum distance among all candidate facilities in a catchment area i

to their closest transit stops. Let y be a distance which a new transit stop will be added to

the chosen facility location. Let reach(ci, y) be the reach (in numbers of individuals) of the

facility location selected by Algorithm 8. Let y1 and y2 be two different distances at which

a transit stop may be added near the chosen facility location. Then, for catchment area i,

min(xi) ≥ y1 ≥ y2 =⇒ reach(ci, y1) ≤ reach(ci, y2).

Proof. Adding a new transit stop at a distance y closer to the facility location than the

closest existing transit stop will have no effect on the walking distance coverage area drawn

around the facility itself. However, if y < dw, the walking distance coverage area drawn

around the transit stops will increase through the addition of the new transit stop.

Assume that min(xi) ≥ y1 ≥ y2 and that reach(ci, y1) > reach(ci, y2). By decreasing

the distance from the facility to the new transit stop from y1 to y2, the radius of the coverage

area around each transit stop is increased by (y1 − y2) as depicted in Figure 5.39. The

choice of particular facility location has no effect on coverage areas around transit stops

since a new transit stop must be added at the specified distance of the chosen facility. The

only difference between the coverage areas of different facility locations within a catchment

area are the areas within dw of the facility itself. Therefore, since the coverage area (and

associated reach) around the facility itself does not change with changes in y, and the coverage

area (and associated reach) around transit stops is nondecreasing as y is increased, then

reach(ci, y1) ≯ reach(ci, y2). Therefore, Lemma 5.5 holds since decreasing y leads to an

increase in coverage area and nondecreasing reach.

�

Corollary 5.6. Assuming stationery populations, facilities, catchment areas, and transit

stops, let min(xi) be minimum distance among all candidate facilities in a catchment area i

to their closest transit stops. Let y1 and y2 be distances at which a new transit stop will be

added to the chosen facility location such that min(xi) ≥ y1 ≥ y2. Using Algorithm 8, if a
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Figure 5.39. Diagram showing that, given two distances y1 and y2 at which a
new transit stop is added near the facility such that the new transit stop is the
closest transit stop to the facility and y1 > y2, the walking distance coverage
area increases with the decrease in distance from the new transit stop to the
facility.

population popi is covered by the chosen facility location fi given a specific maximum walking

distance dw with a transit stop added y1 distance from fi, popi will also be covered by fi given

the same maximum walking distance dw if the transit stop is added y2 distance from fi.
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CHAPTER 6

EXPLORING THE APPLICATION OF GRAPH ALGORITHMS TO PUBLIC TRANSIT

DATA TO ANALYZE AND MAXIMIZE PLAN REACH

Although public transit network data has been used in the methodology of Chapters 4

and 5 to estimate coverage areas of facility locations, a more detailed computational repre-

sentation which respects the network’s spatio-temporal nature is needed [108]. Many public

transit authorities currently make their complete schedule and route information available

online using a General Transit Feed (GTF). A computational model which represents the

movement of transit vehicles in both time and space (i.e. geographic location) is needed to

facilitate further analysis and optimization of public transit resources.

A description of GTF data is provided in 4.2.2, and the entity relationships within

the GTF specification are depicted in Figure 4.5 [57]. Although each trip corresponds to a

single route, an individual stop location can be used by many different trips of many different

routes. This property allows passengers to transfer from one route to another. However, it

also complicates the data structure required to build an accurate computational model of

the transit system.

One approach to modeling GTF data is through the use of graphs. Data from a

system’s GTF can be translated into a directed graph which represents both spatial and

temporal aspects of the transit system’s routes and schedule. Once the directed graph model

of a GTF has been constructed, it may be analyzed and modified using graph theoretical

algorithms.

6.1. Constructing the Graph Data Structure from GTF Data

A graph vertex must be created for each unique [location, time] pair represented in

the GTF. Three types of edges must be created in the directed graph in order to accurately

model the actual transit system:

• Moving edges
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• Waiting-with-transit-vehicle edges

• Waiting-without-transit-vehicle edges

Moving edges represent the movement of transit vehicles in geographic space (i.e. from one

stop to another). Waiting-with-transit-vehicle edges represent the transit vehicle remaining

at a particular stop location for a specified duration of time. Waiting-without-transit-vehicle

edges represent the ability of transit riders to simply wait for a transit vehicle at a transit

stop for some duration of time. The set of vertices and all three types of edges can be

identified using spatio-temporal transit schedule data located in the stop times.txt file of a

transit authority’s GTF.

Each record in the stop times.txt file has fields for trip id, arrival time, departure time,

stop id, and stop sequence. The stop id field relates each record in this file to a specific record

in the stops.txt file which specifies a geographic location. For each record in stop times.txt

for which departure time is different than arrival time, two vertices must be created in the

directed graph with an edge leading from the arrival time vertex to the departure time vertex.

This directed edge is a waiting-with-transit-vehicle edge which represents a duration of time

the transit vehicle is waiting at the stop. Otherwise, if arrival and departure times are equal,

only a single vertex is required to represent both arrival and departure. The stop sequence

field represents the order in which stop locations are visited on each trip and must be used to

define the moving edges in the graph. Finally, subsequent stop times at each stop location

must be examined to create the set of waiting-without-transit-vehicle edges. Figure 6.1a

depicts a series of vertices at the same location with edges between them. Figure 6.1b

depicts an example graph with all three types of edges representing a GTF.

Formally, let graph G = (V,E) be a directed graph such that V is a set of vertices

and E is a set of directed edges between vertices in V . The set V represents a set of times

at specific geographic locations drawn from the stop times.txt file of a GTF. Each vertex in

V is labeled using a string built from the concatenation of the stop id, the underscore ( ),

and the time of day (either arrival time or departure time) represented by the vertex.
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Figure 6.1. Example directed graph representation of GTF data

Input: A table stop times representing the stop times.txt GTF file and a specific
trip id in the table: 377214.

Output: All records in table stop times with trip id=377214, ordered by ascending
stop sequence.

SELECT
*

FROM
stop times

WHERE
trip id=377214

ORDER BY
stop sequence ASC;

Algorithm 9: Example query to return records from stop times for a specific trip id
ordered by stop sequence.
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Input: A table stop times representing the stop times.txt GTF file and a specific
stop id in the table: 1468.

Output: All times represented in table stop times with trip id=1468, ordered by
ascending time.

SELECT
time

FROM
(

SELECT
departure time AS time,
stop id,
‘departure’ AS type

FROM
stop times

UNION ALL
SELECT

arrival time AS time,
stop id,
‘arrival’ AS type

FROM
stop times

) AS unioned
WHERE

stop id=1468
ORDER BY

time ASC
Algorithm 10: Example query to return all times (both arrival and depar-
ture)represented in records from stop times for a specific stop id ordered by time of
day.

The database query provided in Algorithm 9 selects all records in the database table

stop times (representing the stop times.txt GTF file) which have a specific trip id, returning

results ordered by the stop sequence field. The query provided in Algorithm 10 returns an

ordered list of all times (whether arrival or departure) specified in the stop times table for a

specific stop id. These queries are used in the pseudocode provided in Algorithm 11 to build

the sets V and E of the directed graph.
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Input: A database table stop times representing the stop times.txt GTF file

Output: Graph object representing transit network specified in GTF file
stop times.txt

Graph graph = new Graph()
List distinct trip ids = list of trip ids
foreach trip in distinct trip ids do

List stop times = Object representing results of query in Algorithm 9
previous departure vertex = null
foreach s in stop times do

graph.createVertex(s.stop id + “ ” + s.arrival time)
if stop time.arrival time < stop time.departure time then

graph.createVertex(s.stop id + “ ” + s.departure time)
graph.createEdge(s.stop id + “ ” + s.arrival time, s.stop id + “ ” +
s.departure time)

end
if previous departure vertex 6= null then

graph.createEdge(previous departure vertex, s.stop id + “ ” +
s.arrival time)

end
previous departure vertex = s.stop id + “ ” + s.departure time

end
end
foreach stop id in stops do

List times=Object representing results of query in Algorithm 10
Time last time = times[0]
for int i=1; i<times.size; i++ do

graph.createEdge(stop id + “ ” + last time, stop id + “ ” + times[i])
last time = times[i]

end
end

Algorithm 11: Pseudocode to create a graph model of a public transit network using
GTF data

The sizes of |V | and |E| for a graph are bounded by specific properties of the GTF

it was created to represent. In the largest-case scenario, the arrival and departure times for

each record in the stop times.txt file are different. Let T be the set of all records in the

stop times.txt file. Then, |V | ≤ 2 ∗ |T | since, for each record in T , at most two new vertices

must be added to G. Further, if two records in T specify the same location and time, a new

vertex does not need to be created.

To determine a bound for |E|, each of the three types of edges must be examined

separately. Let Em represent the set of moving edges in G and Υ represent the set of all trips
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in the trips.txt file. Then, |Em| = |T | − |Υ| since, for each trip, the number of vertices is one

more than the number of edges. Let Ew represent the set of all waiting-with-transit-vehicle

edges. Then, in the largest case, each record in T requires the creation of an edge in Ew,

and |Ew| ≤ |T |. Let Ewo represent the set of all waiting-without-transit-vehicle edges. Let L

represent the set of records in the stops.txt file. Then, assuming the stop location in each

record of L corresponds to at least one record in T , |Ewo| ≤ |T | − (|L| + 1) since, for each

additional stop used, one more record in T must represent an edge in Em. As an example, in

the GTF data obtained for Tarrant County, Texas, |T | = 115, 276, |L| = 1, 996, |Υ| = 2, 959,

and |V | = 86, 364.

For each edge in G, there must be a corresponding duration of time. This time either

represents a waiting time at a transit stop or the time it takes for a transit vehicle to move

from one stop to another. A cycle in the graph would imply that it is possible to move

backwards in time. Therefore, the graph is acyclic [117] and falls into the class of directed

acyclic graphs (DAGs). DAGs consist of a set of vertices with directed edges placed be-

tween them such that, when traversing the graph along the links, it is impossible to visit the

same vertex twice [37]. They have been well-studied in mathematics and computer science

[39][58][77][103][122][125][136]. Existing DAG algorithms from the literature can be adapted

and applied to the biological emergency public transit problem [17][19][23].

6.2. Analyzing Transit Resources Using the GTF Graph

Feasible response plans must allow populations to make a round trip to their assigned

POD facility location. Public transit schedules which are limited to certain times of the

day may create situations where travel to the POD is possible, but where a return trip is

unavailable. Further, the first trips of the day originating at transit stops near each POD

location do not contribute to the transit system’s capability of providing round-trips to the

POD. Using the DAG, these can be approached through the application of graph theoretical

algorithms [15][47][50][61][142][149].

Whether a specific POD is reachable by a population assigned to it using the public
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transit network must be considered. Formally stated, let lm ∈ L be the location of a

population and ln ∈ L be the location of the POD to which it is assigned. Let Vlm ⊂ V be

a set of vertices representing different times at location lm and Vln ⊂ V be a set of vertices

representing different times at location ln such that Vlm
⋂
Vln = ∅. The reachability of a

POD by the population can be determined using G by calculating the reachability of each

vertex in Vlm from each vertex in Vln . The reachability of G can be studied using techniques

described by King in [73] which employ Las-Vegas type randomized algorithms to construct

and maintain a tree representing the transitive closure of the graph. These algorithms are

dynamic and will thus support modifications of the graph which are likely to result from

plan participation maximization efforts.

An all-pairs shortest paths algorithm for directed graphs is also presented by King

[73]. Given two vertices vi, vj ∈ V , this algorithm will determine the shortest path in G from

vi to vj. When modeling the flow of populations through the transit network, this algorithm

will facilitate the choice of specific paths populations can take through the graph.

Feasible time intervals for travel from specific locations to and from each POD may

be limited. In order to examine these intervals, POD service time estimates (observed

during real-life POD drills [74][120] recommended by the Centers for Disease Control and

Prevention [27]) must be considered. For the population at location lm to participate in

the mitigation plans, it must be able to make a round trip to its assigned POD at location

ln. Participation of this population requires the existence of paths in G from some vertex

vp ∈ Vlm to some vertex vq ∈ Vln and from some vertex vr ∈ Vln to some vertex vs ∈ Vlm such

that time(vq) < time(vr). Further, let τ represent the time an individual must spend at a

POD in order to be served. As illustrated in Figure 6.2, this service time limits the number

of different paths an individual may take to return home from the POD by requiring that(
time(vq) + τ

)
< time(vr). Both reachability and all-pairs shortest paths algorithms must

be employed to calculate feasible time intervals for travel with respect to POD service time

estimates.

89



Figure 6.2. How POD service time affects transit network reachability and
capacity. Solid arrows represent directed edges in the graph of the GTF.
Dotted arrows indicate earliest possible departure time from POD for each
arrival time given a POD service time (τ) of one hour.

90



CHAPTER 7

CONCLUSION

Response plans must be created to protect the population during biological emergen-

cies resulting from the deliberate or accidental release of harmful biochemical substances.

The Centers for Disease Control and Prevention (CDC) has recommended that mitigation

plans include the creation of a set of ad-hoc clinics known as Points of Dispensing (PODs)

designed to quickly provide medical countermeasures (MCMs) to the entire population of a

region [27].

The importance of MCMs in emergency response efforts is evidenced by continued

federal funding to develop and procure them. The Department of Health and Human Services

has allocated $415 million in fiscal year 2014 to support advanced research and development

of MCMs. Further, an additional $250 million has been allocated in fiscal year 2014 as the

first installment of a multi-year commitment to acquire MCMs through Project BioShield

[115]. Although these MCMs include assets for response to chemical, biological, radiological,

and nuclear (CBRN) events, the Department of Homeland Security has identified anthrax as

the agent most likely to be used in bio-terrorist acts [70]. Further, in fiscal years 2004 - 2012,

MCMs for response to the release of anthrax comprised 44% of all MCMs procured [70].

However, having MCMs is only the first step towards a successful mitigation campaign [43].

The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) recognizes

the existence of diverse and unique vulnerabilities in the population and has expressed its

commitment to address gaps in MCM application resulting from such vulnerabilities [116].

Therefore, research described in this dissertation on maximizing participation in efforts to

distribute MCMs in a timely manner is of utmost importance to the federal government’s

public health security efforts.

Individuals in the population must travel to their assigned PODs in order to par-

ticipate in mitigation activities. However, certain spatial and/or demographic attributes

can preclude travel to a POD by portions of the population [131]. In this context, these
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attributes represent transportation vulnerabilities which must be addressed in order to maxi-

mize participation in response efforts. To this end, methods to identify and quantify specific

vulnerabilities were described, and a variety of strategies to maximize participation in re-

sponse efforts were explored. These methods and strategies have been incorporated into an

existing computational framework in order to facilitate their adoption by real-world practi-

tioners and policymakers.

Algorithms to quantify and analyze the reach of transportation vulnerable populations

resulting from specific response plans were described in Chapter 4. Given a set of POD

facility locations with corresponding service areas and an estimate of maximum walking

distance (dw), these algorithms determine whether each vulnerable population in a region

is capable of participating in response efforts. Separate algorithms were presented for plans

including operational and non-operational public transit systems. An inclusion property was

formally defined in Lemma 4.1 to guarantee inclusion of specific populations under increasing

estimates of dw.

The analysis and quantification algorithms presented in Chapter 4 serve as a foun-

dation upon which reach maximization algorithms described in Chapter 5 were constructed.

The following three types of reach maximization strategies were explored:

• Unconstrained facility location selection

• Constrained population-to-POD assignment preserving

• Constrained population-to-POD reassignment

Although the inclusion property described in Lemma 4.1 does not hold for algorithms based

on these maximization strategies, each of these algorithms are shown to have non-decreasing

total reach with increasing estimates of dw.

The unconstrained facility location selection strategy described in Section 5.1.2 uses

the location and sizes of vulnerable populations in each service area together with the dw

estimate to identify an optimal set of POD locations to maximize plan reach within each

service area. This same strategy was described in two ways: once using methods com-

mon in the field of geographic information systems (GIS), and once using graph theoretical
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methodologies. The maximum number of facility locations needed to reach 100% coverage of

vulnerable populations was defined using clique enumeration and coverage techniques from

graph theory. The number of facility locations required to achieve complete coverage can

be further reduced by busing individuals from identified locations directly to and from their

assigned PODs.

The constrained strategies described in Algorithms 6 and 7 preserve population-to-

POD assignments. These assignments were calculated to maintain uniform population ser-

vice areas created using previously developed methodologies [112]. One approach uses a set

of candidate facilities in each service area and an estimate of dw to choose the facility location

in the service area which maximizes reach of vulnerable individuals. A second approach adds

a new public transit stop within a specific distance of the POD facility in order to increase

the number of vulnerable populations who can use public transit to travel to and from their

assigned PODs. A third approach combines these two methods by selecting the location

with the greatest reach assuming a single transit stop is added to each service area within a

specific distance of the chosen POD location.

The constrained population-to-POD reassignment strategy identifies vulnerable pop-

ulations which are outside of the reach of their assigned POD and determines reassignment

options to send them to different POD locations using public transit. This method can be

used to reach otherwise excluded vulnerable populations which are within dw distance of

their closest transit stop. However, the strategy which adds transit stops within a distance

y of each POD facility can be employed to include these same populations.

The addition of transit stops can be implemented by busing individuals between a

POD and a transit stop. Further, let the endpoint of this new bus route closest to the

POD be yPOD distance from the POD, and the endpoint closest the transit stop be ystop

distance from the closest transit stop. If busing individuals all the way to the POD or to the

transit stop is not feasible, Algorithm 8 still applies as long as y = yPOD + ystop. Lemma 5.4

states that reach of vulnerable populations is nondecreasing with increasing estimates of dw.

Lemma 5.5 states that reach is nondecreasing with decreasing values of y, and Corollary 5.6
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defines a special version of the inclusion property for populations surrounding public transit

stops.

Maximization algorithms described in this dissertation choose the optimal facility

location out of a set of locations on a per catchment area basis. In order to preserve benefits

of previous work on uniform population partitioning, catchment area boundaries are not

modified during reach maximization algorithms. Although the maximization algorithms

presented in this dissertation do calculate the best possible solution, they are not greedy.

A comparison of results from the different reach and analysis methods developed

which respect catchment area boundaries is provided in Figure 7.1. The maximization

method which added a transit stop at each POD location is calculated to reach over 59% of

Tarrant County’s 53,411 vulnerable individuals. This represents a significant improvement

over the approximately 8.5% reach of the original plan without the use of public transit.

Figure 7.1. Comparison of vulnerable population reach of different analysis
and maximization methods using plans and algorithms described in Chapters
3, 4, and 5 chapters.

If additional facility locations are available, reach maximization algorithms can dra-
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matically improve a plan’s reach of transportation vulnerable populations. However, the

availability of public transit is the single factor which most greatly increase a plan’s reach.

In the examples provided, without adding transit stops, optimization approximately doubles

a plan’s reach of vulnerable populations while the availability of public transit approximately

triples it. In the analysis presented, a combination of optimization and public transit avail-

ability increase the plan’s reach sixfold.

An approach using a directed graph to more accurately model the spatio-temporal

aspects of a transit system is described in Chapter 6. Algorithm 10 specifies the steps

needed to construct the mathematical directed graph model. Vertices of the resulting graph

represent geographic locations at specific points in times. Therefore, barring the invention

of backward time travel technology, this graph falls into the class of directed acyclic graphs.

The graph model of the public transit data will facilitate the application of algorithms from

graph theory in order to further explore the properties of the transit network with respect

to given response plans.

Analysis and maximization algorithms implemented during research described in this

dissertation were built on top of the RE-PLAN Framework [101]. The RE-PLAN Frame-

work manages database tables used in parameterized queries, making newly implemented

algorithms region-independent. It also provides a graphical interface for constructing plans,

executing analysis and optimization algorithms, and exploring resulting on an interactive

map. Traffic analysis methodology described in Chapter 4.1 represents early work on the

RE-PLAN Framework. Implementing these algorithms using the RE-PLAN Framework pro-

vides a direct path from research and development in academia to deployment and use by

public health preparedness practitioners, thus enhancing the real-world impact of algorithms

described in this dissertation.

Early methodologies which led to the RE-PLAN Framework grew out of a collabora-

tion which began in 2008 between Tarrant County Public Health (TCPH) and the University

of North Texas (UNT) Center for Computational Epidemiology and Response Analysis (Ce-

CERA). Since 2010, software based on the these methodologies has been an integral part
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of the biological emergency response planning process at TCPH. Software user training ses-

sions have been conducted for TCPH planners, and county stakeholders have been trained

regarding plans created using the software.

Methodologies developed for response plan design and analysis led to the implemen-

tation of the RE-PLAN Framework during the project “A Computational Framework for

Assessing the Feasibility of Bio-emergency Response” (funded by NIH 1R15LM010804-01).

The region independence and extensibility of this framework were designed to facilitate

the real-world impact of newly developed analysis and design methods. Methodology de-

scribed in this dissertation to identify and address vulnerabilities was performed during the

project “Minimizing Access Disparities in Bio Emergency Response Planning” (funded by

NIH 1R01LM011647-01).

7.1. Limitations

Limitations of methods described in this dissertation largely stem from the availabil-

ity, accuracy, and granularity of data they require. Low granularity estimations of otherwise

unavailable data can lead to inaccuracies. For example, traffic count observation records

obtained and used for traffic analysis do not accurately reflect the situation on the road

network. As depicted in Figure 7.2, a particular traffic count could result from few cars

on the road (i.e. low density) or from many cars on the road (i.e. high density) moving

slowly. A speed component is needed to distinguish between these two situations. Although

equipment exists to collect traffic speed data in addition to traffic counts, only traffic count

data was available when methods described in this dissertation were implemented. There-

fore, low traffic density is assumed for all traffic count records in the business as usual traffic

estimation method described in Chapter 4.1. This assumption can lead to underestimation

of roadway congestion for periods of high density during which the counts were initially

observed and collected.

Further, population data used by methods described in this dissertation cause prob-

lems related to availability, accuracy, and granularity. Spatial data linking specific popu-

lations to specific geographic locations are limited by the accuracy and currency of data
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Figure 7.2. Given only an observation of a specific flow of traffic fi, it is
impossible to know whether this flow is the result of high speed and low vehicle
density, or of low speed and high vehicle density [133].

collection methods. Examples presented in this dissertation utilized data from the U.S. Cen-

sus Bureau at the spatial granularity of counties, tracts, block groups, and blocks depicted

in the hierarchy in Figure 7.3. These data include trade-offs between spatial granularity,

currency, and accuracy. For example, decennial census population data represent actual

counts of the entire population at geographic units as fine as the census block. However,

counts are only updated every ten years. Population data from the American Community

Survey are derived from samples collected using a survey rather than a complete count of

the population, and these counts are only available for geographic units as fine as block

groups or census tracts. Nevertheless, these counts represent more current estimates of the

population. Further, many different demographic attributes (e.g. private vehicle ownership

by household size) are available in the American Community Survey which are not available

in the decennial census. After considering trade-offs between the availability, accuracy, and

granularity of population data, the American Community Survey was selected as the source

of data for examples presented in this dissertation. Nonetheless, the methods described were
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designed to use more accurate, higher granularity data if it becomes available.

Figure 7.3. Geographic Hierarchy of Census Entities [128]

In analysis and optimization methods described in Chapters 4 and 5, public transit is

assumed to be unlimited in capacity, and temporal aspects of the system are not considered.

If POD operations are assumed to continue around the clock during the emergency mitigation

period, schedule constraints are of less concern than capacity constraints. Therefore, these

methods focus on the Transportation Research Board’s spatial availability [126] requirements

of public transit listed in Chapter 2.3.

The joining of data using spatial attributes can be achieved using a variety of methods.

For examples presented in this dissertation, joins between polygons from different tables

were implemented by using the polygon attributes from one table and calculated geometric

centroids of the polygon attributes from the second table. Specifically, when spatially joining

walking distance coverage area buffers to population block polygons, a population block was

assumed to be completely within a buffer if its geometric centroid was within this buffer. This

can lead to over- or under- estimations of the vulnerable population actually within walking

distance coverage areas. An alternate method for performing spatial joins involves joining
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walking distance coverage areas to all population blocks they overlap. This would guarantee

an over-estimate of the vulnerable population within the walking distance coverage area.

Alternatively, the proportion of each population block covered could be used to estimate the

proportion of each block’s vulnerable population which is covered. Nonetheless, due to the

non-uniform population distribution within each population block, this method can also lead

to over- or under-estimations of the vulnerable population actually within walking distance

coverage areas.

7.2. Future Work

Many opportunities remain for further development, exploration, and expansion of

concepts described in this dissertation. The use of Global Positioning System (GPS) di-

rections by individuals traveling to their assigned PODs could be modeled using routing

algorithms on a graph representation of the road network. Results from this graph routing

method should be compared with results from the method currently implemented as part

of the RE-PLAN Framework [112]. This may lead to a better estimate of business as usual

traffic.

The public transit graph model described in Chapter 6 should be implemented and ex-

plored. This model would consider all public transit requirements (listed in Chapter 2.3) from

the Transportation Research Board except for information availability. Walking distances

between populations’ home locations and beginning transit stops, as well as the walking

distance from the ending transit stops to the PODs, can be integrated using methodology

similar to that described in Chapter 4 to consider spatial availability requirements. The tem-

poral availability will be considered as a result of the spatio-temporal nature of the directed

graph. If capacity data is available, capacity availability analyses can be performed since the

model will allow specific populations to be routed across specific edges in the directed graph

which represent trips (specific transit vehicles) at specific times and locations.

Many different graph libraries can be used to implement the road network and public

transit graph models. However, the RE-PLAN Framework is currently implemented us-

ing a Java client and a database running PostgreSQL. Therefore, the Java graph library
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JGraphT [96] and the PostgreSQL database routing library pgRouting [104] should be ex-

plored. Nonetheless, custom written graph methods may also represent desirable options.

Once the public transit graph model has been implemented, it is important to distin-

guish between what is theoretically possible and what is realistic. Maximum flow algorithms

may be used to calculate the maximum performance of the transit network with respect to

vulnerable populations and their assigned PODs. However, if individuals prefer taking the

shortest path through the network, this maximum performance estimate may be unrealistic.

Therefore, theoretical maximum capacity estimates may be calculated using shortest path

algorithms on each vulnerable population and its assigned POD. Further, if ridership data

is available for a transit feed, it can be used to validate the calculated maximum capacity

estimates for this feed.

Methods described in this dissertation utilize population data linked to spatial poly-

gon (vector) data. New population data sources such as the LandScan project under develop-

ment at Oak Ridge National Laboratory (ORNL) utilize raster data formats. LandScan uses

a variety of data including census data and satellite imagery to estimate population counts

during different times of day at 3 arc-seconds resolution (equivalent to a grid cell on the

Earth’s surface 1
1200

degrees longitude by 1
1200

degrees latitude in size [44]) [18]. Methods de-

scribed in this dissertation may be modified to use raster data in analysis and maximization

algorithms as an alternative to vector data.

Many algorithms presented in this dissertation can be considered embarrassingly par-

allel. Specifically, those algorithms (e.g. Algorithms 7 or 8) which perform tasks on a

per-catchment-area basis can be separated into a number of parallel tasks with very little

effort. For purposes of scalability, these algorithms may be parallelized to enhance their

performance on larger data sets and over increasingly large numbers of catchment areas.

7.3. Broader Impacts

Research described in this dissertation focuses specifically on the development and

analysis of methods to maximize participation in biological emergency response plans. Spa-

tial population and demographic data are used with general transit feed data to identify
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transportation vulnerable populations, and methods to maximize a plan’s reach of these

vulnerable populations are presented. Methodologies employed to address these problems

were built upon previous work in topics including transportation science, location allocation

modeling, graph theory, and public health preparedness. Nonetheless, methods described

are applicable to many different domains.

Acceptable walking distances to and from transit stops are important in the fields of

transit research and planning [126]. In the transit research literature, these two distances are

estimated separately. For example, Guerra, Cervero, and Tischler [59] note that evidence

supports a 0.25 mile distance around places of employment and 0.5 mile distance around

places of residence. These distance estimates are used to calculate transit catchment areas,

plan land use, and model expected ridership [59]. The methods described in this dissertation

contribute to the fields of transit research and planning by providing catchment areas for

specific locations using public transit, thus linking the to and from distances into a single

distance estimate.

The ability to estimate catchment areas for specific points using public transit also

provides a contribution to the fields of retail geography and public health. Specific popu-

lations may be targeted by calculating their catchment areas. These catchment areas may

be used to determine optimal retail or health services locations (respectively) for the target

populations.

Transportation vulnerability analysis methods described in this dissertation also con-

tribute to the field of emergency planning. During large scale evacuations prior to foreseeable

hazardous events (e.g. hurricanes or floods), these methods can be used to identify locations

of populations who lack transportation resources. Once identified, walking distance catch-

ment areas can be calculated for these populations. The placement of emergency transit

resources may be planned according to intersections of populations’ catchment areas. This

would facilitate the use of emergency transit resources to evacuate transportation vulnerable

populations.
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