A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

PDF Version Also Available for Download.

Description

Mitigation response plans must be created to protect affected populations during biological emergencies resulting from the release of harmful biochemical substances. Medical countermeasures have been stockpiled by the federal government for such emergencies. However, it is the responsibility of local governments to maintain solid, functional plans to apply these countermeasures to the entire target population within short, mandated time frames. Further, vulnerabilities in the population may serve as barriers preventing certain individuals from participating in mitigation activities. Therefore, functional response plans must be capable of reaching vulnerable populations.Transportation vulnerability results from lack of access to transportation. Transportation vulnerable populations located ... continued below

Physical Description

xi, 115 pages : illustrations (chiefly color), color maps

Creation Information

O’Neill II, Martin Joseph August 2014.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 113 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • O’Neill II, Martin Joseph

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Mitigation response plans must be created to protect affected populations during biological emergencies resulting from the release of harmful biochemical substances. Medical countermeasures have been stockpiled by the federal government for such emergencies. However, it is the responsibility of local governments to maintain solid, functional plans to apply these countermeasures to the entire target population within short, mandated time frames. Further, vulnerabilities in the population may serve as barriers preventing certain individuals from participating in mitigation activities. Therefore, functional response plans must be capable of reaching vulnerable populations.Transportation vulnerability results from lack of access to transportation. Transportation vulnerable populations located too far from mitigation resources are at-risk of not being able to participate in mitigation activities. Quantification of these populations requires the development of computational methods to integrate spatial demographic data and transportation resource data from disparate sources into the context of planned mitigation efforts. Research described in this dissertation focuses on quantifying transportation vulnerable populations and maximizing participation in response efforts. Algorithms developed as part of this research are integrated into a computational framework to promote a transition from research and development to deployment and use by biological emergency planners.

Physical Description

xi, 115 pages : illustrations (chiefly color), color maps

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2014

Added to The UNT Digital Library

  • Aug. 21, 2015, 5:42 a.m.

Description Last Updated

  • Jan. 19, 2017, 6:25 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 113

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

O’Neill II, Martin Joseph. A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies, dissertation, August 2014; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc699851/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .