Experimental and Computational Studies of the Kinetics of the Reaction of Atomic Hydrogen with Methanethiol

Katherine E. Kerr, Ionut M. Alecu, Kristopher M. Thompson, Yide Gao, and Paul Marshall*

Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203-5017, United States

Supporting Information

ABSTRACT: The overall rate constant for $H + CH_3SH$ has been studied over 296–1007 K in an Ar bath gas using the laser flash photolysis method at 193 nm. H atoms were generated from CH$_3$SH and in some cases NH$_3$. They were detected via time-resolved resonance fluorescence. The results are summarized as $k = (3.45 \pm 0.19) \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$ exp$(-6.92 \pm 0.16$ kJ mol$^{-1}$/RT) where the errors in the Arrhenius parameters are the statistical uncertainties at the 2σ level. Overall error limits of ±9% for k are proposed. In the overlapping temperature range there is very good agreement with the resonance fluorescence measurements of Wine et al. Ab initio data and transition state theory yield moderate accord with the total rate constant, but not with prior mass spectrometry measurements of the main product channels leading to CH$_3$S + H$_2$ and CH$_3$ + H$_2$S by Amano et al.

1. INTRODUCTION

Organosulfur compounds contribute to the chemistry of a number of systems, including emissions from plankton into the atmosphere,1 the Claus process for removing sulfur from hydrocarbon fuels,2 and chemical vapor deposition of diamond films.3 Here we focus on one of the simplest compounds, methanethiol, and its bimolecular reaction with atomic hydrogen

$$H + CH_3SH \rightarrow products $$ \hspace{1cm} (R1)

The total H atom removal rate constant k has been studied before, most notably by Wine et al.4 over 247–405 K at total bath gas pressures in the range 50–76 Torr (1 Torr ≈ 1.33 mbar) using the resonance fluorescence flash photolysis technique with 248 nm laser pulses, and by Amano et al.5 over 313–454 K at pressures between 250 and 290 Torr using an electron beam and mass spectrometry. The previous work has found the reaction to be second-order, with no pressure dependence observed over the narrow ranges studied. Rate constants from the two studies do not agree and, as will be seen, our experiments support those of Wine et al. The reaction has also been studied at room temperature.$^6-9$ One aim of the present work is to increase the temperature range to beyond 1000 K, which results in data now being available over a factor of 4 range in temperature. These data prove challenging to model theoretically, in part because the properties of the dominant transition state are constrained by comparison with experiment over a wide range of collision energies.

An intriguing aspect of this reaction is that there are several thermochemically plausible channels. These include H atom abstraction from the SH group (R1.1), H atom abstraction from the CH$_3$ group (R1.2), breaking the C=S bond and displacing the CH$_3$ group (R1.3), and cleavage of the C=S bond and displacing the SH group (R1.4):

$$H + CH_3SH \rightarrow H_2 + CH_3S \hspace{1cm} (R1.1)$$
$$H + CH_3SH \rightarrow H_2 + CH_2SH \hspace{1cm} (R1.2)$$
$$H + CH_3SH \rightarrow H_2S + CH_3 \hspace{1cm} (R1.3)$$
$$H + CH_3SH \rightarrow SH + CH_4 \hspace{1cm} (R1.4)$$

The thermochemistry of these pathways is summarized in Table 1. High-accuracy enthalpies of formation are available for H, CH$_3$, and CH$_4$ from the Active Thermochemical Tables10 and for H$_2$S, CH$_3$SH, and CH$_3$S from the NIST Computational

<table>
<thead>
<tr>
<th>product channel</th>
<th>experimental ΔH_f/kJ mol$^{-1}$</th>
<th>computed ΔH_f/kJ mol$^{-1}$</th>
<th>computed $E_{\text{a,1}}$/kJ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H + CH$_3$S</td>
<td>(1)</td>
<td>-74.29</td>
<td>-73.33</td>
</tr>
<tr>
<td>H + CH$_3$SH</td>
<td>(2)</td>
<td>-39.71</td>
<td>36.91</td>
</tr>
<tr>
<td>H$_2$S + CH$_3$</td>
<td>(3)</td>
<td>-71.95</td>
<td>-72.80</td>
</tr>
<tr>
<td>SH + CH$_4$</td>
<td>(4)</td>
<td>-128.12</td>
<td>-128.86</td>
</tr>
</tbody>
</table>

aSee text. bVia a modified W1 method (see text).

Special Issue: 100 Years of Combustion Kinetics at Argonne: A Festschrift for Lawrence B. Harding, Joe V. Michael, and Albert F. Wagner

Received: December 29, 2014
Revised: April 13, 2015
Published: April 14, 2015
Chemistry Comparison and Benchmark Database,11 and we have previously recommended thermochemistry for SH.12 Another aim of the work is to investigate the product branching ratios by computational methods. There has been an initial theoretical study of three of these channels by Wang et al., who employed G3(MP2) energies and deduced that channel R1.1 was the major pathway.13 Channel R1.4, which is the most exothermic pathway, has not been considered previously. Here we modify the W1U algorithm of Martin and co-workers14 to investigate the transition states and derive the rate constants \(k_1-k_4\). We also make a detailed analysis of the roles of anharmonicity in the reactants and transition states. Our theoretical data are compared to the measurements of channels R1.1 and R1.3 by Amano et al. as well as the present measurements, and the Wine et al. results for the total rate constant \(k = \Sigma k_i\). Theoretical expressions for \(k_1 - k_4\) are derived for temperatures up to 3000 K. Although CH$_3$SH will be short-lived at high temperatures, these expressions combined with the known equilibrium constants will assist in modeling of sulfur systems via the reverse of processes R1.1–R1.4, in analysis of situations where reactions of species such as SH and CH$_3$S are relevant, for example, CS$_2$ formation in the Claus process15 and the oxidation of H$_2$S/CH$_4$ mixtures in the combustion of sour gas.16,17

2. EXPERIMENTAL METHODOLOGY

We applied the flash photolysis/resonance fluorescence method. Our apparatus and its operation have been described elsewhere,18–20 including modifications for studying atomic hydrogen.21,22 Here the hydrogen atoms were generated by pulsed excimer laser photolysis of precursor molecules at a wavelength of 193 nm. Slow flows of the precursors were diluted in a large excess of inert Ar bath gas to maintain isothermal conditions, monitored with a retractable thermocouple corrected for radiation errors, and to slow diffusion of radicals to the walls of the reactor. Methanethiol itself can photolyze via two pathways, breaking either the S–H bond or the C–S bond:

\[
\text{CH}_3\text{SH} + h\nu \rightarrow \text{CH}_3\text{S} + \text{H} \quad \text{(R2.1)}
\]

\[
\text{CH}_3\text{SH} + h\nu \rightarrow \text{CH}_3 + \text{SH} \quad \text{(R2.2)}
\]

The bond dissociation energies have been measured as 385 ± 4 kJ mol$^{-1}$ for the S–H bond and 314 ± 6 kJ mol$^{-1}$ for the C–S bond.23 The branching to the second pathway was measured to be 7% by Bridges and White at 248 nm and is more significant at shorter wavelengths.24 At lower temperatures we used photolysis of a small fraction of the methanethiol reactant itself as the hydrogen source, with photolysis energies kept low to minimize the initial radical concentrations. At higher temperatures it became difficult to generate enough H atoms to observe the reaction without causing excessive secondary chemistry. Ammonia was used instead, and the reaction was checked at lower temperatures to verify agreement with the methanethiol-sourced points. Ammonia has a larger absorption cross section at 193 nm than methanethiol. Initial photolytic H atom concentrations were estimated separately from the laser pulse energy, \(E_l\), the cross-sectional area of the laser beam of 0.50 cm2 and the absorption cross-section, \(\sigma\), which is 5.0 \times 10$^{-18}$ cm2 for ammonia25 and 1.86 \times 10$^{-18}$ cm2 for CH$_3$SH.26 The quantum yield of H from ammonia is taken to be 1, and to be 0.55 for CH$_3$SH.26

Resonance fluorescence was excited by a microwave plasma in a flowing sample of diluted H$_2$ which generated Lyman \(\alpha\) radiation at 122 nm. Magnesium fluoride optics were employed, and a dry air filter helped isolate the Lyman \(\alpha\) wavelength from other atomic lines which might be present. Fluorescence signals were captured with a solar blind photomultiplier tube and processed through a pulse discriminator, and photon counts as a function of time were accumulated for typically several hundred decays (repeated at \(\sim 1\) Hz) in a multichannel scaler.

Once formed, H atoms are removed through two main pathways, reaction R1 and diffusion out of the observation zone, which is described by an effectively first-order rate constant \(k_{\text{diff}}\). The corresponding rate expression is

\[
\frac{d[H]}{dt} = -k[H][\text{CH}_3\text{SH}] - k_{\text{diff}}[H] = -k_{\text{ps1}}[H]
\]

The constant B accounts for a constant background in the signal, caused primarily by constant scattered light from the resonance lamp. An example time profile of I_t is shown as the inset in Figure 1. The exponential decays are fitted with a nonlinear least-squares fitting algorithm that yields k_{ps1} and its statistical error.27,28 Variation of $[\text{CH}_3\text{SH}]$ was obtained from each pseudo-first-order decay against $[\text{CH}_3\text{SH}]$. The inset shows the decay from the first k_{ps1} point. In this experiment, at 450 K and 67 mbar, CH$_3$SH was the only hydrogen atom source.

\[\text{Figure 1. Determination of the second-order rate constant } k \text{ by plotting } k_{\text{ps1}} \text{ with } 2\sigma \text{ error bars obtained from each pseudo-first-order decay against } [\text{CH}_3\text{SH}]. \text{ The inset shows the decay from the first } k_{\text{ps1}} \text{ point. In this experiment, at } 450 \text{ K and } 67 \text{ mbar, CH}_3\text{SH was the only hydrogen atom source.} \]

3. EXPERIMENTAL RESULTS

Table 2 summarizes 35 determinations of k_i each from five different methanethiol concentrations, with the largest value tabulated. Apart from changing the temperature T, we emphasized variation of the experimental parameters τ, the average residence time inside the heated reactor before
photolysis, and the total pressure p, which check for good mixing and the lack of thermal decomposition within the reactor. The laser fluence F and the precursor concentrations control the initial radical concentrations and were adjusted to ensure that exponential decays of $[H]$ were seen. The maximum estimated initial H atom concentration of course increases along with $[\mathrm{CH}_3\mathrm{SH}]$. In this regime no systematic variation of k with the experimental parameters was noted, so that reaction R1 appears to have been isolated from secondary chemistry involving photolysis or reaction products.

The data are plotted in Arrhenius form in Figure 2 and may be summarized over 296−1007 K as

$$ k = (3.45 \pm 0.19) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} $$

$$ \times \exp(-6.92 \pm 0.16 \text{kJ mol}^{-1}/RT) $$

(3)

where the errors in the Arrhenius parameters are the statistical uncertainties at the 2σ level. Bearing in mind possible systematic errors, we propose overall error limits of ±9% in k.

Our measurements agree very well with those of Wine et al.4 in the overlapping temperature region, as shown in Figure 2, as do their reported Arrhenius parameters of $(3.45 \pm 0.14) \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$ and 7.03 ± 0.07 kJ mol$^{-1}$. Comparison with the total rate constant from Amano et al.5 indicates agreement only to within a factor of 2−3, a larger deviation than expected from the statistical uncertainties alone. In units of 10^{-12} cm3
molecule$^{-1}$ s$^{-1}$, at room temperature Vaghjiani et al.6 and Martin et al.7 found k equal to 2.13 ± 0.31 and 2.19 ± 0.20 whereas we obtain 2.11 ± 0.18. Balla and Heicklen8,9 derived values of k_1 for channel R1.1 of around 4.07×10^{-13} and 1.79×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$ by fitting to complex mechanisms involving H + NO and H + O$_2$, respectively. The latter value appears to be more accurate. Overall, our results agree with most of the prior measurements and extend the temperature range to over 1000 K.

4. COMPUTATIONAL ANALYSIS

4.1. Potential Energy Diagram. Ab initio methods were applied to the stationary points of the H + CH$_3$SH reaction. The geometries and vibrational frequencies (the latter scaled by a standard factor of 0.95411) were obtained using QCISD/6-311G(d,p) theory.29,30 This scaling factor accounts for the typically modest anharmonicity in most vibrations, so that the computed harmonic frequencies are scaled to match observed $v = 0 \rightarrow v = 1$ fundamental transitions. A more detailed approach is outlined below for certain highly anharmonic normal modes. These QCISD geometries are used for single-point energies derived via the W1U methodology of Martin and co-workers,14 to yield coupled cluster energies CCSD(T) extrapolated to the infinite basis set limit along with corrections for core electron correlation and scalar relativistic effects. This is a modification of the original W1U method, which was based on density functional theory for the geometry and frequencies. The absolute energies obtained in this way are summarized in the Supporting Information (Table S1). These ab initio calculations were made with the GAUSSIAN 09 program suite.31 An empirical correction of -2.255 kJ mol$^{-1}$ is applied to the energy of the SH radical to account for the spin–orbit splitting of its $^2\Pi$ state.11 The corresponding reaction enthalpies are compared with
experiment in Table 1, and the accord is seen to be very good, with a root-mean-square deviation of only 0.9 kJ mol\(^{-1}\). This same level of theory was applied to the transition states (TSs) of reactions R1.1–R1.4 which are illustrated in Figure 3. The complete geometries and other details are provided in the Supporting Information (Table S2). The resulting barrier heights at 0 K, including zero-point vibrational energy, are listed in Table 1 and the four reaction pathways are sketched in the potential energy diagram of Figure 4. It may be seen that the thermochemistry of the different pathways is an incomplete guide to the ordering of the energy barriers.

![Figure 4. Potential energy diagram for H + CH₃SH based on modified W1U theory (see text).](image)

4.2. Simple Kinetic Analysis. Simply looking at the barriers suggests that channels R1.2 and R1.4 will make only small contributions to the overall rate constant \(k\), and that channels R1.1 to R1.3 will be the two dominant pathways. Amano et al.\(^5\) focused their mass spectrometric experiments on these latter two pathways and obtained \(k_1 = 4.8 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \exp(-10.9 \text{ kJ mol}^{-1}/RT)\) and \(k_2 = 1.15 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \exp(-7.0 \text{ kJ mol}^{-1}/RT)\). For a quantitative comparison we evaluate canonical variational transition state theory (usually abbreviated to CVT)\(^32\) for the four channels over 200–3000 K, using the implementation of Truhlar and co-workers in POLYRATE.\(^33\) The CVT calculations also account for the effects of multidimensional tunneling on the rate constants for channels R1.1–R1.4 via the small curvature tunneling (SCT) approximation.\(^34\) Reaction coordinates were characterized using QCISD/6-311G(d,p) theory and the resulting classical barriers (i.e., exclusive of zero-point vibrational energy) were scaled to \(\varepsilon_{\text{CF}}\) by direct summation of the Boltzmann terms, \(\varepsilon_{\text{anh}} = \sum \exp(-\varepsilon_i/k_B T)\). We defined our zero such that \(\varepsilon_0 = 0\). This procedure naturally accounts for the number of minima, whether they are equally deep or not, and whether levels are split significantly by tunneling, and it does not require an analytic form of the potential. We interpolated 240 points, with a spline fit, for the potentials shown in Figure 5, and computed the first 80 eigenvalues \(\varepsilon_i\). As may be seen, most species have a simple potential like that for methanethiol. Typical aspects are that bound levels near the bottom of the well are almost triply degenerate (they are split by a few wavenumbers because of mixing via tunneling between the minima), there is complex behavior at energies around the top of the barrier, and at high energies quasi-degenerate pairs of energy levels are found, which
correspond to positive and negative angular momentum for free rotor states. Because the lower levels have \(\epsilon \) comparable to \(k_B T \), the overall free rotor partition function is not a good approximation until very high temperatures in our system.

4.4. Kinetic Results.

Given that the underlying CVT/SCT rate constant calculations were performed with all modes treated as harmonic vibrations, we multiply the rate constant by a factor \(\tau_F(T_{S})/\tau_F(\text{reactant}) \), which allows both for anharmonicity and the reaction path degeneracy and for transition between the limiting cases noted above. \(\tau_F \) is defined as \(q_{\text{anh}}/q_{\text{harm}} \), where \(q_{\text{harm}} \) is obtained on the same basis as \(q_{\text{anh}} \) so here it is \((1 - e^{-h\omega_{\text{tor}}/k_B T})^{-1}\). For pathway R1.1, although both CH$_3$SH and TS1 showed major deviations from the harmonic oscillator model, these deviations were by similar factors and so mostly cancel when they combine in the final rate constant. Much the same occurs for pathway R1.4 and the torsional contribution to R1.3. TS2 is an example of a chiral species, whose enantiomers interconvert by internal rotation around the C–S bond. We had

Figure 5. Anharmonic potentials from relaxed scans at the QCISD/6-311G(d,p) level of theory: (a) C–S torsion in methanethiol, (b) C–S torsion in TS1; (c) C–S torsion in TS2; (d) C–S torsion in TS3; (e) H–S–C bending in TS3; (f) C–S torsion in TS4.
initially speculated whether to allow for internal rotational symmetry for each of the two enantiomers; inspection of the corresponding potential in Figure 5 shows this would be a mistake. In fact, similar transition states were encountered in cases involving radical attacks on the methyl group in methanol\(^{12-44}\) and, as discussed in those instances, in these situations one must be careful not to double-count the torsional contribution. Because a torsional treatment based on the potential for internal rotation leading to the interconversion between the two distinguishable (nonsuperposable) minima already captures the contributions of each of these, the subsequent inclusion of a chirality factor is superfluous. TS3 is also chiral. We allow for torsion around the C–S bond in the usual way, but this torsion does not transform one enantiomer to the other. Instead, this interconversion is accomplished by an H–S–C bending mode. We mapped out part of this double-well potential in Figure 5 and solved for that motion too to arrive at a second \(e^2\) factor. All the \(e^2\) results are summarized in Table 3. The CVT/SCT kinetic results are listed in Table 4, and summaries in the form of modified Arrhenius expressions (of the form \(k = A T^n \exp(-B/T)\)) are provided in Table 5. These are shown graphically on Figure 6.

This figure illustrates some of the limitations of our kinetic analysis. Perhaps the most striking aspect is that all the theoretical lines are distinctly curved, with \(n\) for the two dominant channels in the range 1–2, as would be expected on the basis of the likely temperature dependence of the partition functions.\(^{45}\) By contrast, the combined experimental data set over 250–1000 K clearly is consistent with \(n\) near 0. This must limit the possibilities for any close agreement between theory and experiment.

Considering initially the overall rate constant, we can see that the behavior of eq 3 is reproduced to within a factor of 3 or better. At first sight this might be called “good”, although systematic deviations are apparent. At temperatures above the Pauling point of around 650 K, CVT/SCT yields \(k\) that is too high and has a local activation energy (defined via the slope) that is too high. By contrast, at below around 500 K CVT/SCT is low by roughly a factor of 2. One hopes that a more sophisticated analysis could resolve some of these discrepancies. If the experimental data were available only over a small range of temperature, the strategies of further scaling the transition state frequencies (which affects the extent of looseness in the TS, i.e., the entropy and thus the pre-exponential \(A\) factor) and/or correcting the TS energy (i.e., altering the slope of the Arrheius plot) could be applied to reduce discrepancies between theory and experiment. However, with our new measurements spanning a wide range of \(1/T\), improving the fit at one end of the range worsens the accord at the other. We speculate that more complex factors, such as the extent of quantum mechanical tunneling, may need to be considered in greater depth.

There are significant disagreements concerning the product branching ratios. Along with Wang et al.,\(^{13}\) we find a major role for channel R1.1 (H abstraction from the SH group) and a small role for channel R1.3 (formation of CH₃ + H₂S). At 298 and 1000 K our CVTST yields 95% and 81%, respectively, for the contribution of channel R1.1. At 1000 K there is an 18% contribution by channel R1.3 and a 1.5% contribution from channel R1.2 (H abstraction from the CH₃ group), whereas channel R1.4 (formation of SH + CH₃) is negligible (0.5%) even at 2000 K. By contrast, the experiments by Amano et al.\(^{5}\) yielded much larger branching ratios of 52% and 40% for channel R1.3 at 313 and 454 K, respectively. Further experiments might help to resolve this disagreement. We note that if the computed barrier heights were allowed to vary by, e.g., around 1 kcal mol\(^{-1}\), then there would be a significant impact on the computed branching ratios, potentially of the order of a factor of 4 at 400 K. However, the errors in the computed reaction enthalpies shown in Table 1,
of up to 1 kJ mol$^{-1}$, are consistent with the idea of subkcal mol$^{-1}$ accuracy for the saddle points too.

ACKNOWLEDGMENTS

We thank Prof. Peter Glarborg (Denmark Technical University) for valuable discussions and the National Science Foundation (Grant CBET-0756144) and the R. A. Welch Foundation (Grant B-1174) for support. Computer facilities were purchased in part with NSF Grant CHE-0741936.

REFERENCES

