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Abstract 

Deep-inelastic diffractive scaling provides fundamental insight into the QCD pomeron. 
It is argued that single gluon domination of the structure function, together with the 
well-known Regge pole property, determines that the pomeron carries color-charge par- 
ity C, = -1 and, at short distances, is in a super-critical phase of Reggeon Field Theory. 
The main purpose of the talk is to describe the relationship of the super-critical pomeron 
to QCD. 

Presented at the International Conference (VIIth Blois Workshop) O n  Elastic and 

Seoul, Korea. June 10-14,1997. 
Dfiactive Scattering - Recent Advances in Hadron Physics. 

'Work supported by the U:S. Department of Energy, Division of High Energy Physics, 

+arwOhep.anl.gov 
Contracts W-31-109-ENG-38 and DEFG05-86-EEL-40272 

http://arwOhep.anl.gov


DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, manufac- 
turer, or otherwise docs not necessarily constitute or imply its endorsement, m m -  
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 





1 Introduction 

Understanding the pomeron in QCD is equivalent to solving the theory at high-energy. In 
this talk I want to focus on two, apparently very Werent, experimental properties of the 
pomeron that I believe provide important insight into the problem. 

(i) 35 years of experiment/phenomenology/theory have shown that the pomeron is, 
approximately, a Regge pole. 

(ii) Recent DIS difhactive scaling violation results’ show that (at Q2 - 5 GeV2) the 
pomeron is, approximately, a single gluon. 

It has been known for a long time that (i) is very difficult to reconcile with perturbative 
QCD and the 2 gluon BFKL pomeron. (ii) is a relatively new result that, as I discuss further 
below, is similarly in conflict with leading-twist perturbative QCD (and even, at f ist  sight, 
with gauge invariance). In this talk I will argue that (i) and (ii) are closely related and 
reflect a subtle mixture of perturbative and non-perturbative physics in the Regge limit. 
We will see that both (i) and (ii) are satisfied if the pomeron carries color-charge parity 
C, = -1 and, at short distances, is in a super-critical phase of Reggeon Field Theory. The 
focus of the talk will be on the relationship of the super-critical pomeron to QCD. 

It was more than sixteen years ago that I first suggested2 the pomeron could appear, 
in a super-critical phase, as a single (reggeized) gluon in a soft gluon background. Subse- 
quently3t4, I laid out what I hoped might be the basis for a full d y n d c a l  understanding of 
the QCD pomeron. Although my arguments were very incomplete, they implied a funda- 
mentally Merent picture of the pomeron to what might be called the conventional BFKL 
perturbative picture. It was clear that in my picture the nature of the pomeron is intimately 
related to confinement and chiral symmetry breaking. The scaling violation results ’ from 
H1 have encouraged me to return to this work and attempt to put it on h e r  ground. 
I briefly outline below the central elements of a new paper in prepaxation. Although the 
global picture presented in3 re-emerges, the details axe Merent in important ways. 

2 Outline 

I begin, in Section 3, by reviewing the DIS *active results and the H1 analysis of the 
scaling violations. In Section 4, I go on to discuss why the large logarithmic violations can 
not be reproduced by conventional leading-twist perturbative QCD calculations. I then list, 
very briefly, in Section 5 the elements of multi-Regge theory4 that provide the underlying 
basis for my analysis. The main body of of the talk, Sections 6, 7 and 8, outlines how 
multi-regge theory can be used to simultaneously derive both the dynamical pomeron and 
hadron reggeons via super-critical RFT. Finally, in Section 9, I briefly discuss how the single 
gluon approximation appears in DIS diffraction. 
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The essential points of the talk are the following. 

0 Existing Regge limit QCD calculations , together with new calculations of further 
“helicity-flip” reggeon vertices allow multi-Regge theory to be used to construct the 
asymptotic behavior of very complicated scattering processes in terms of J-plane 
reggeon diagrams (kl integrals with reggeon propagators [J - 1 + A(L&)]-l and 
interactions). This description is unitary (and complete) in the small h l  region when 
gluons are massive. 

0 In such processes bound states and their scattering amplitudes can be simultaneously 
studied and the infra-red (massless gluon) limit taken. 

0 In helicity-flip multi-Regge kinematics, perturbative massless quark contributions to 
vertices contain the infra-red triangle anomaly and produce the chirality violation 
normally as so ciat ed with non-perturbative instant on inter actions. 

0 An effective multi-regge reggeon theory of (massless) quarks and gluons that implicitly 
includes effects of instanton interactions can be constructed. 

0 In the infra-red limit giving SU(2) gauge symmetry (recall that an instanton interac- 
tion is associated with an SU(2) subgroup), infra-red divergent multi-regge diagrams 
appear which contain “hadron” reggeon states scattering via “pomeron” exchange. 

0 The pomeron appears as a Regge pole which is, in first approximation, a reggeized 
gluon in a “regggeon condensate”. All the features4 of super-critical RFT are present. 

0 Hadron reggeons have a confinement and chiral symmetry breaking spectrum and 
(although details remain to be worked out it appears that) chiral symmetry breaking 
is essential for the self-consistency of the pomeron. 

0 When there is a h l  cut-off, “complimentarityy’ implies the full SU(3) gauge symmetry 
can be smoothly restored. Critical behavior of the Pomeron is involved. 

0 In DIS diffraction the reggeized gluon appears as a single gluon. 
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3 DIS DifFractive Scaling Violations 

The definition of the -active structure function F:(zpJ@, Q 2 )  is illustrated in Fig. 3.1 
\ We use the usual kinematic variables 

Q2 Q2 + M i  
Q2++: = Q2 + W 2  

W 2 = ( P + Q ) 2  p =  

Fig. 3.2 shows the H1 results' for the Q2 
and @ dependence of 3': ( ZR , @, Q 2 )  at small- 
~ p .  The presence of positive ln[Q2] scaling 
violations over a large range of p is clear. 

Fig. 3.2 
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Fig. 3.1 

By fitting to DGLAP evolution, 
H1 have extracted the low 
Q2 pomeron structure function 
shown in Fig. 3.3. To repro- 
duce (at medium @) the loga- 
rithmic rise at large Q2J a single 
gluon must carry nearly all the 
pomeron momentum. 
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Fig. 3.3 

As we discuss next, for perturbative two gluon exchange, a single gluon can not carry nearly 
all the momentum. This is closely related to the scale-invariance property of the BFKL 
pomeron which produces a fixed singularity in the J-plane rather than a Regge pole. 
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4 Perturbative Scaling Violations 

As illustrated in Fig. 4.1, in lowest order there are two 
diagrams for (t-channel) two-gluon exchange. The short- \ \ \ 

distance region kf N Q2 >> t gives non-leading twist 

Q \  Q \  

behavior (J k ,  - &). Consequently leading-twist nec- L + B  c “3 essarily involves k~ << Q2 for one gluon. If we consider 
<L IC: > AIR ( E  AQCD ?), the AIR dependence cancels 

between the two diagrams. This cancellation is the well- 
known infra-red finiteness property of the BFKL pomeron 
(which follows directly from gauge invariance). The absence of AIR - dependence implies 
there is no scale for any potential Zn[Q2] contributions, which indeed are absent ‘. h ef- 
fect, gauge invaxiance implies that the kl regions for the two gluons can not be separated 
sufficiently to produce a leading-twist, leading-order, ln[Q2]. 

It is straightforward to extend the above argument to any number of perturbative gluons 
coupling directly to the quark loop and to “soft Pomeron models” defined via two (or more) 
%on-perturbative” gluon propagators. Zn[Q2] dependence will arise, of course, when gluon 
exchanges between the gluons of Fig. 4.1 are taken into account, but this will be down by 
O(a,) and will be too small to describe the scaling violations of Fig. 3.2. 

t t 

Fig. 4.1 

As illustrated in Fig. 4.2, to obtain a large ln[Q2] dependence in “leading-oderyY and 
reproduce the H1 analysis, requires one hard gluon, with cut- 
off AIR, plus a color compensating interaction with (kl) << 
f\IR. The above argument implies that gauge invariance will be 
violated unless the soft interaction is distinguished from single 

Q \ 
\ 

\ ~ - - ~ ~ ~  cut-o~i A ---5 gluon exchange - via a quantum number. Even so, it is clearly ccmp9nsatlon 

non-trivial to suppose that gauge invariance can be maintained -z 
when colored exchanges at Merent scales are combined. Fig. 4.2 

5 Multi-Regge Theory - the Key Ingredients 

i) Angular Variables - For the N-point amplitude we write 

where, in the notation of Fig. 5.1, t j  = Qf and gj E the 
little group of Qj, i.e. gj E .S0(3) or gj E SO(2,l) for tjs 0. 
There are N-3 ti variables, N-3 zj (G cos O j )  variables and 
N-4 u j k  (G &j-vk))  variables. 

MN(pl,**,pN) E MN (tl,..,tN-3,91,--7gN-3) 

Fig. 5.1 
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ii) A Multi-Regge Limit is defined by zj + 03 V j .  In a Helicity-Pole Limit, some U j k  + 03 

and some zj -, 00. 
iii) Partial-wave Expansions. Using f(g) = E&-, Qnl,lntl<J D&t(g)aJnnt, for a function 

iv) Asymptotic Dispersion Relations. We can write MN = Cc Ms 4- M o  where 

and Cc is over all sets of (N-3) Regge limit asymptotic cuts. (Mo is non-leading in the 
multi-regge limit.) The resulting separation into (hexagraph) spectral components is crucial 
for the development of multiparticle complex angular theory. 

v) Sommerfeld- Watson Representations of Spectral Components e.g. 

from which the form of multi-Regge behaviour in any Limit can be extracted. 

vi) t-channel Unitarity in the J-plane 
partial-wave projected, diagonalized, and continued to complex J in the form 

Multiparticle unitarity in every t-channel can be 

Regge poles at n; = q, together with the phase-space Jdp  and the “nonsense poles” at 
J = nl + n 2  - 1, nl = n3 + n4 - 1, ... generate Regge cuts. 

vii) Reggeon Unitarity . In ANY partial-wave amplitude, the J-plane discontinuity due to 
hi Regge poles a = (al, a2, - - . a ~ )  is given by the reggeon unitarity equation 

Writing ti = k: (with J dt1dt2X-‘/~(t, t l ,  t 2 )  = 2 Jd2k1d2k2s2(k - kl - ka)),  J djj can be 
written in terms of two dimensional “ ,kl” integrations, anticipating the results of direct (s- 
channel) high-energy calculations (leading-log, next-to-leading log etc.). Because the gluon 
“reggeizes” in perturbation theory, i.e. is a Regge pole in the J-plane, reggeon unitarity is 
a powerful constraint on the higher-order contributions of multigluon exchange. 

6 Reggeon Diagrams for Multi-Regge Limits 

Reggeon unitarity is particularly powerful when applied to multiparticle ‘%&city-pole” 
limits. If the SW representation shows only one partial-wave amplitude is involved, reggeon 
unitarity implies that the Limit is fully described by two-dimensional Ll ” diagrams. (In 
fact the “physical” transverse planes actually contains lightlike momenta.) 

5 
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E.g. for an 8-point amplitude introduce angular variables as in Fig. 6.1 and consider 
the “helicity-flip” helicity-pole limit in which 
z, u1, ~ 2 , 2 1 3 ,  u4 ---t 00 . The behavior of invariants is 

\ 

p1 .P~  N ~ 1 ~ 2 ,  Pi.P3 N ~ 1 ~ ~ 1 3 ,  P2.P4 N ~ 2 ~ 4 ,  

Pi.Q3 N U ~ Z ,  Q1.Q3 N Z, P4.Qi N Z U ~  - - 
Fig. 6.1 

Since the S-W representation shows that only one partial-wave amplitude is involved, a sim- 
ple reggeon unitarity equation holds in all channels. As a result the complete multi-Regge 

behavior can be described by h l  integrals of the form illustrated in Fig. 6.2, where 

contains all elastic scattering reggeon diagrams. T ~ , T ~  
contain connected and disconnected interactions that in- 
volve both elastic scattering (s-channel “helicity non-flip”) 

Fig. 6.2 
reggeon vertices and also new “helicity-flip” vertices. 

Helicity-flip vertices play a crucial dynamical role. They do not appear in either elas- 
tic scatterkg or multi-Regge production processes. Such vertices are most simply isolated in 

. a “non-planar” triple-regge limit involving three Light-cone momenta. In 
the notation of Fig. 6.3 we can define a non-planar triple-regge limit by 

--f (Pl ,Pl ,o ,o)  Pl 001 &1 --$ ( 0 ~ 0 ~ ~ 2 1 - ~ 3 )  pz 

Fig. 6.3 

7 Reggeized Gluon Helicity-Flip Vertices Involving Massless Quarks 

Consider three quarks scattering via gluon exchange with a 
quark loop triple-gluon coupling as illustrated in Fig. 7.1. p2 Q, 7 
The non-planar triple-regge limit discussed above gives 
, f E m Z %  :l:n:J r 1+2+3+(41142,C?3) where ti = oft 7i+ = 7O+7i andrplpzp~ 

is given by the quark triangle diagram, i.e. PI 

Fig. 7.1 

It is a crucial property of the t‘O(m2)” part of 1’1+2+3+ that the limits q 1 , q 2 , 4 3  N Q + 0, 
m ---t 0 do not commute. (An "infra-red anomaly” due to the triangle Landau singularity). 

Q - 0  m+O 
&k 

r1+2+3+,rnZ N Q i m2 J [ p - m 2 ] 3  + R Q # 0 
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After adding color factors and summing diagrams, I’1+2+3+,m~ survives only in triple- 
regge vertices that couple reggeon states which all have “anomalous color parity”, i.e. 
C, = -r. (T = signature and color parity is defined via 
Aib -, --Aia for gluon color matrices.) An important example 
is shown in Fig. 7.2. In this case each three reggeon state has 
odd signature but even color parity, e.g. f;j&,,AkArA” (c-f. the 
winding-number current K i  = E w C f ; j k d j r ,  AEA; Ai ) .  In these 
circumstances, the survival of O(m2) processes as m + 0 repro- 
duces the chirality violation of instanton interactions. 

‘9 

Fig. 7.2 

Note that I’1+2+3+,m~ has [L&dimension 1 !! Normal reggeon interactions have [LI]- 
dimension - 2 . When combined with transverse momentum conservation i.e. 62(kl), the 
normal interactions naturally produce a scale-inmiant (and even conformal invariant) 
massless theory. Because of it’s anomalous dimension, I’1+2+3+,m~ can 
only appear in special multi-Regge limits where the large invariants 
contribute an an extra momentum factor. The non-planar triple-regge 

(p ”* 

limit discussed above is -an example. In the notation of Fig. 7.3 > 
Sl3 

P I P Z P ~ Q ~  H ( P I P ~ ) ~ / ~ ( P Z P ~ ) ~ / ~  (plB)1/2Qi (~31)~/’( s23)’/’( s12)”’Qi Fig. 7.3 

8 Infra-red Divergences 

The anomalous dimension I’1+2+3+,m~ also implies a “violation” of conventional reggeon 
Ward identities, i.e. when m + 0, the vertex does not vanish sufEciently fast when all 
Q; + 0. (When m # 0, other diagrams combine to produce the normal reggeon Ward 
identities.) As a consequence, when the gluon mass is zero, an infra-red divergence appears 
as m --f 0 in a large class of non-planar multi-regge diagrams where Q1 - Q 2  - Q3 N 0 is 

part of the integration region. A candidate diagram is 
shown in Fig. 8.1. Both - and - are reggeon states. 
A divergence will occur for Q,Q1,QII N 0 as m --f 0 if 
the vertex V contains I’1+2+3+,m~ . This requires that - be an anomalous color parity reggeon state. To dis- 
cuss whether the divergence is cancelled by other diagrams 
requires a systematic analysis which begins with the SU(3) 

gauge symmetry initially restored only to SU(2) (c.f. an instanton is associated with an 
SU(2) subgroup). In this case the divergence occurs when 

- is an SU(2) singlet state containing one or more massive reggeized gluons (or quarks) - is an SU(2) singlet combination of massless gluons with C, = -T = f l  G (“anomalous 
odderon” ). 

Fig. 8.1 
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Higher-order diagrams containing a divergence 
include those of the form shown in Fig. 8.2. 
There is always an overall logarithmic diver- 
gence from that part of the integration region 
where all the &; entering each V vertex vanish. 
“Physical amplitudes” are obtained by extract- 
ing the coefficient of the divergence. h this 

coefficient all anomalous odderon reggeon states carry zero h l  and so, effectively, the defini- 
tion of reggeon states includes “an anomalous odderon reggeon condensate”. There is also, 
as illustrated in Fig. 8.3, an SU(2) singlet “parton process” which carries the kinematic 
properties of the dynamical interaction. Since the condensate background results from the 
quark triangle anomaly it (qualitatively) can be thought of as originating from instanton 
interactions. 

The “pomeron” appears as an SU(2) singlet 
reggeized gluon (with C, = T = -1) in the C, = 
-r = +1 condensate, i.e. an even signature 
Regge pole with C, = -T = -1. “Hadrons” 
are similarly (constituent) quark reggeon states 
in the condensate background. (It appears that 
“stability” within the condensate requires chi- 
ral symmetry breaking, but I will not discuss 

this here. Note, however, that C, = -1 for the pomeron implies that hadrons can not be 
eigenstates of C,. This does not imply there is no charge conjugation symmetry.) All 
features of super-critical pomeron RFT are present, but I will not discuss the details. 

Fig. 8.2 

Fig. 8.3 . 

Restoration of SU(3) gauge symmetry (Le. the decoupling of a “Higgs” scalar) is 
straightforward provided there is a cut-off lk,l < hl. The most important point is that 
the pomeron is described by RFT and carries a crucial remnant of the construction i.e. odd 
SU(3) color charge parity. A n  immediate implication is that the BFKL Pomeron does not 
appear (since it has C, = +1). To remove hl the pomeron should be Critical. (This is 
related to the quark content of the theory and again we wiU not discuss it here.) A-priori, 
at a fixed value of 111, the theory may be above, or below, the critical point. 

9 Deep-Inelastic Scattering 

For this discussion we consider the SU(3) gauge symmetry to be restored and assume the 
critical cut-off Ale  is above the physical cut-off so that the full theory is sub-critical. DIS 
*active scattering will expose the simplest perturbative contribution to the pomeron. 
C, = -1 determines this t o  be four gluon exchange. A unon-perturbative” coupling I, to 
chirality-violating processes must be involved. We assume the chirality-violating scale is 
smaller than the Uperturbative” Q2 scale. 
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As illustrated in Fi. 9.1, there are two distinct 
reggeon/gluon diagram contributions, distinguished 
by whether the anomalous color parity state coupling 
via I, involves three or two reggeized gluons. In the 
Regge limit (finite Q2) the 8, two gluon state gives an 

to the quark loop. In higher-orders, the 84 single 
gluon and the 8, two gluon configurations reggeize with identical trajectories. Hence regge- 
limit infra-red divergences (due to the anomalous reggeon states) from the two contributions 
can directly cancel. 

,,Q 2 ::E 
even signature6 reggeon with a “pointlike” coupling gluon { = reggeon 

Fig. 9.1 

At large Q2 the first diagram, with the single hard gluon, dominates. The same effect 
is achieved by breaking the SU(3) gauge symmetry to SU(2). This is why we can say that 
the pomeron is “in the super-critical phase” at the deep-inelastic scale. The result is the 
hard gluon behavior seen by H1 ! 
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