Kinetics of Mn-based sorbents for hot coal gas desulfurization: Quarterly progress report, December 15, 1994--March 15, 1995. Task 2 -- Exploratory experimental studies: Single pellet tests; Rate mechanism analysis

PDF Version Also Available for Download.

Description

In earlier studies, zinc ferrite and zinc titanate were developed as regenerable sorbents capable of removing hydrogen sulfide from hot fuel gases originating from coal gasification. Manganese ore as well as manganese carbonate, precipitated from aqueous solutions, combined with alumina to form indurated pellets hold promise of being a highly-effective, inexpensive, regenerable sorbent for hot fuel gases. Although the thermodynamics for sulfur removal by manganese predicts somewhat higher hydrogen sulfide over-pressures (i.e. poorer degree of desulfurization) than can be accomplished with zinc-based sorbents, zinc tends to be reduced to the metallic state under coal gasification conditions resulting in loss of ... continued below

Physical Description

30 p.

Creation Information

Hepworth, M.T. March 15, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In earlier studies, zinc ferrite and zinc titanate were developed as regenerable sorbents capable of removing hydrogen sulfide from hot fuel gases originating from coal gasification. Manganese ore as well as manganese carbonate, precipitated from aqueous solutions, combined with alumina to form indurated pellets hold promise of being a highly-effective, inexpensive, regenerable sorbent for hot fuel gases. Although the thermodynamics for sulfur removal by manganese predicts somewhat higher hydrogen sulfide over-pressures (i.e. poorer degree of desulfurization) than can be accomplished with zinc-based sorbents, zinc tends to be reduced to the metallic state under coal gasification conditions resulting in loss of capacity and reactivity by volatilization of reactive surfaces. This volatilization phenomenon limits the temperatures for which desulfurization can be effectively accomplished to less than 500 C for zinc ferrite and 700 C for zinc titanate; whereas, manganese-based sorbents can be utilized at temperatures well in temperatures exceeding 700 C. Also the regeneration of manganese-based pellets under oxidizing conditions may be superior to that of zinc titanate since they can be loaded from a simulated reducing coal-derived gas and then be regenerated at higher temperatures (up to 1,300 C). The topics that will be addressed by this study include: preparation of an effective manganese-based sorbent, thermodynamics and kinetics of sulfur removal from hot fuel gases by this sorbent, analysis of kinetics and mechanisms by which sulfur is absorbed by the sorbent (i.e., whether by gaseous diffusion, surface-controlled reaction, ore pore diffusion), and cyclic sulfidation and regeneration of the sorbent and recovery of the sulfur.

Physical Description

30 p.

Notes

OSTI as DE95011393

Source

  • Other Information: PBD: 15 Mar 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95011393
  • Report No.: DOE/PC/94212--T2
  • Grant Number: FG22-94PC94212
  • DOI: 10.2172/61095 | External Link
  • Office of Scientific & Technical Information Report Number: 61095
  • Archival Resource Key: ark:/67531/metadc699235

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 15, 1995

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Dec. 1, 2015, 4:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hepworth, M.T. Kinetics of Mn-based sorbents for hot coal gas desulfurization: Quarterly progress report, December 15, 1994--March 15, 1995. Task 2 -- Exploratory experimental studies: Single pellet tests; Rate mechanism analysis, report, March 15, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc699235/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.