Turbulence and transport in enhanced confinement regimes of tokamaks: Simulation and theory

PDF Version Also Available for Download.

Description

An integrated program of theory and computation has been developed to understand the physics responsible for the favorable confinement trends exhibited by, for example, enhanced reversed shear (ERS) plasmas in TFTR and DIII-D. This paper reports on (1) the quantitative assessment of ExB shear suppression of turbulence by comparison of the linear growth rate calculated from the gyrofluid/comprehensive kinetic codes and the experimentally measured shearing rate in TFTR ERS plasmas; (2) the first self-consistent nonlinear demonstration of ion temperature gradient turbulence reduction due to {angle}P{sub i} driven ExB shear by the global gyrokinetic simulation; (3) a revised neoclassical analysis and ... continued below

Physical Description

10 p.

Creation Information

Hahm, T.S.; Artun, M. & Beer, M.A. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An integrated program of theory and computation has been developed to understand the physics responsible for the favorable confinement trends exhibited by, for example, enhanced reversed shear (ERS) plasmas in TFTR and DIII-D. This paper reports on (1) the quantitative assessment of ExB shear suppression of turbulence by comparison of the linear growth rate calculated from the gyrofluid/comprehensive kinetic codes and the experimentally measured shearing rate in TFTR ERS plasmas; (2) the first self-consistent nonlinear demonstration of ion temperature gradient turbulence reduction due to {angle}P{sub i} driven ExB shear by the global gyrokinetic simulation; (3) a revised neoclassical analysis and gyrokinetic particle simulation results in agreement with trends in ERS plasmas; (4) Shafranov shift induced stabilization of trapped electron mode in ERS plasmas calculated by the gyrofluid code; and (5) new nonlinear gyrokinetic equations for turbulence in core transport barriers.

Physical Description

10 p.

Notes

INIS; OSTI as DE97005300

Source

  • 16. International Atomic Energy Agency (IAEA) international conference on plasma physics and controlled nuclear fusion research, Montreal (Canada), 7-11 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97005300
  • Report No.: PPPL-CFP--3644
  • Report No.: IAEA-CN--64;CONF-961005--24
  • Grant Number: AC02-76CH03073
  • Office of Scientific & Technical Information Report Number: 531073
  • Archival Resource Key: ark:/67531/metadc699197

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 15, 2016, 6:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hahm, T.S.; Artun, M. & Beer, M.A. Turbulence and transport in enhanced confinement regimes of tokamaks: Simulation and theory, article, December 31, 1996; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc699197/: accessed April 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.