Ultrasonic and numerical modeling of reflections from simulated fractured reservoirs

PDF Version Also Available for Download.

Description

In order to develop modeling techniques for the characterization of fracture properties in tight gas sands from surface seismic reflection data we examine seismic waves scattered from anisotropic heterogeneity with laboratory data and numerical modeling. Laboratory models representing features of a fractured reservoir were constructed using Phenolite embedded in a Lucite background, and seismic surveys were gathered over these models. In parallel with laboratory measurement, finite-difference modeling of reflections from a fractured medium were carried out. Fracture zone properties were calculated using an effective medium theory, the variation of fracture density produced a heterogeneous medium. The heterogeneity was modeled with ... continued below

Physical Description

13 p.

Creation Information

Stephen, T. & Zhu, Xiang, October 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Stephen, T. Science Research Lab., Somerville, MA (United States)
  • Zhu, Xiang, Masachusetts Institute of Technology, Cambridge, MA (United States) Earth Resources Lab.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In order to develop modeling techniques for the characterization of fracture properties in tight gas sands from surface seismic reflection data we examine seismic waves scattered from anisotropic heterogeneity with laboratory data and numerical modeling. Laboratory models representing features of a fractured reservoir were constructed using Phenolite embedded in a Lucite background, and seismic surveys were gathered over these models. In parallel with laboratory measurement, finite-difference modeling of reflections from a fractured medium were carried out. Fracture zone properties were calculated using an effective medium theory, the variation of fracture density produced a heterogeneous medium. The heterogeneity was modeled with a stochastic process, characterized by a probability density function and an auto-correlation function. Results from both modeling efforts show that prestacked AVO data can contain important information describing reservoir heterogeneity.

Physical Description

13 p.

Notes

OSTI as DE97054233

Source

  • Natural gas conference, Houston, TX (United States), 24-27 Mar 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97054233
  • Report No.: DOE/ER/82066--97/C0882
  • Report No.: CONF-970367--
  • Grant Number: FG02-95ER82066
  • Office of Scientific & Technical Information Report Number: 568268
  • Archival Resource Key: ark:/67531/metadc699127

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Nov. 10, 2015, 9:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stephen, T. & Zhu, Xiang,. Ultrasonic and numerical modeling of reflections from simulated fractured reservoirs, article, October 1, 1997; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc699127/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.