A new method for modeling and solving the protein fold recognition problem

PDF Version Also Available for Download.

Description

Computational recognition of native-like folds from a protein fold database is considered to be a promising alternative approach to the ab initio fold prediction. We present a new and effective method for protein fold recognition through optimally aligning (threading) an amino acid sequence and a protein fold (template). A protein fold, in our database, is represented as a series of core secondary structures, and the alignment quality is determined by three factors. They are (1) the fitness between each amino acid and the environment of its assigned (aligned) template position; (2) pairwise interaction preferences between amino acids that are spatially ... continued below

Physical Description

12 p.

Creation Information

Xu, Ying; Xu, Dong & Uberbacher, E.C. December 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Computational recognition of native-like folds from a protein fold database is considered to be a promising alternative approach to the ab initio fold prediction. We present a new and effective method for protein fold recognition through optimally aligning (threading) an amino acid sequence and a protein fold (template). A protein fold, in our database, is represented as a series of core secondary structures, and the alignment quality is determined by three factors. They are (1) the fitness between each amino acid and the environment of its assigned (aligned) template position; (2) pairwise interaction preferences between amino acids that are spatially close; and (3) alignment gap penalties. Our threading algorithm constructs an optimum alignment between an amino acid sequence of size n and a protein fold template of size m in 0((m + n{sup 1+0.5C}-M log(n))n{sup C+1}) time and 0(nm + n{sup C+2}) space, where M is the number of core secondary structures in the fold, and C is a (small) nonnegative integer, determined by a mathematical property of the pairwise interactions in the fold. C is less than or equal to 3 for about 90% of the 296 unique folds in our database, when pairwise interactions are restricted to amino acids < 6{angstrom} apart (measured between their beta carbon atoms). An approximation scheme is developed for fold templates with C > 3, when threading requires too much memory and time to be practical on a typical workstation.

Physical Description

12 p.

Notes

OSTI as DE98001253

Source

  • 2. annual international conference on computational molecular biology, New York, NY (United States), 22-25 Mar 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98001253
  • Report No.: ORNL/CP--95147
  • Report No.: CONF-980313--
  • Grant Number: AC05-96OR22464;AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 570187
  • Archival Resource Key: ark:/67531/metadc699041

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Dec. 3, 2015, 4:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Xu, Ying; Xu, Dong & Uberbacher, E.C. A new method for modeling and solving the protein fold recognition problem, article, December 31, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc699041/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.