Coordinating robot motion, sensing, and control in plans. LDRD project final report

PDF Version Also Available for Download.

Description

The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The project ... continued below

Physical Description

25 p.

Creation Information

Xavier, P.G.; Brown, R.G. & Watterberg, P.A. August 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The project considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.

Physical Description

25 p.

Notes

OSTI as DE97009147

Source

  • Other Information: PBD: Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97009147
  • Report No.: SAND--97-2068
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/527563 | External Link
  • Office of Scientific & Technical Information Report Number: 527563
  • Archival Resource Key: ark:/67531/metadc698822

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 5, 2016, 8:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Xavier, P.G.; Brown, R.G. & Watterberg, P.A. Coordinating robot motion, sensing, and control in plans. LDRD project final report, report, August 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc698822/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.