Thermal-hydraulic design of the target/blanket for the accelerator production of tritium conceptual design

PDF Version Also Available for Download.

Description

A conceptual design was developed for the target/blanket system of an accelerator-based system to produce tritium. The target/blanket system uses clad tungsten rods for a spallation target and clad lead rods as a neutron multiplier in a blanket surrounding the target. The neutrons produce tritium in {sup 3}He, which is contained in aluminum tubes located in the decoupler and blanket regions. This paper presents the thermal-hydraulic design of the target, decoupler, and blanket developed for the conceptual design of the Accelerator Production of Tritium Project, and demonstrates there is adequate margin in the design at full power operation.

Physical Description

12 p.

Creation Information

Willcutt, G.J.E. Jr. & Kapernick, R.J. November 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A conceptual design was developed for the target/blanket system of an accelerator-based system to produce tritium. The target/blanket system uses clad tungsten rods for a spallation target and clad lead rods as a neutron multiplier in a blanket surrounding the target. The neutrons produce tritium in {sup 3}He, which is contained in aluminum tubes located in the decoupler and blanket regions. This paper presents the thermal-hydraulic design of the target, decoupler, and blanket developed for the conceptual design of the Accelerator Production of Tritium Project, and demonstrates there is adequate margin in the design at full power operation.

Physical Description

12 p.

Notes

INIS; OSTI as DE97009131

Source

  • 1997 American Nuclear Society (ANS) winter meeting, Albuquerque, NM (United States), 16-20 Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97009131
  • Report No.: LA-UR--97-2106
  • Report No.: CONF-971125--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 629332
  • Archival Resource Key: ark:/67531/metadc698795

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 29, 2016, 7:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Willcutt, G.J.E. Jr. & Kapernick, R.J. Thermal-hydraulic design of the target/blanket for the accelerator production of tritium conceptual design, article, November 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc698795/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.