Depleted Uranium in Repositories

M. Jonathan Haire and Allen G. Croff
Chemical Technology Division
P.O. Box 2008
Oak Ridge National Laboratory*
Oak Ridge, Tennessee 37831-6180

Paper for presentation at the
1998 American Nuclear Society
International High-Level Radioactive Waste Management Conference
Las Vegas, Nevada
May 11–14, 1998

*The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the U.S. Department of Energy.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DEPLETED URANIUM IN REPOSITORIES

M. Jonathan Haire and Allen G. Croff

Chemical Technology Division
P.O. Box 2008
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6180

Introduction

For uranium to be useful in most fission nuclear reactors, it must be enriched (i.e. the concentration of the fissile isotope ^{235}U must be increased). Therefore, depleted uranium (DU)—uranium which has less than naturally occurring concentrations of ^{235}U—is a co-product of the enrichment process. Four to six tons of DU exist for every ton of fresh light-water reactor fuel. There were $\sim 407,000$ MgU [$\sim 407,000$ metric tons (t)] of DU stored on U.S. Department of Energy (DOE) sites as of July 1993 (ref. 1). If this DU were to be declared surplus, converted to a stable oxide form, and emplaced in a near-surface disposal facility, the costs are estimated to be several billion dollars. However, the U.S. Nuclear Regulatory Commission has stated that near-surface disposal of large quantities of DU tails is not appropriate\(^2\). Thus, there is the possibility that disposition via disposal will be in a deep geological repository. One alternative that may significantly reduce the cost of DU disposition is to use it beneficially. In fact, DOE has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and to encourage its reuse. Several beneficial uses, many of which involve applications in the repository \textit{per se} or in managing the wastes to go into the repository, are summarized below.

Uses Away from Repository

- **Historical uses.** DOE originally undertook the long-term storage of DU because it could be used in the future as feed for further enrichment. This use has been indefinitely delayed. DU can be used as a fertile material in fast breeder reactors to create plutonium which would then be used for fuel in other nuclear reactors. However, recycle of nuclear fuel would require a change in national policy to implement this use. DU metal has been used as tank armor and armor-piercing projectiles and for other purposes, but these consume only a small fraction of the DU inventory.

\[^2\text{Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the U.S. Department of Energy.}\]
Counterweights. Because of its high density, DU has been used to make small (but heavy) counterweights for the aircraft industry and other industries. DU counterweights for forklift trucks are being developed and have the potential to consume a large portion of the DU inventory.

Heavy concrete casks. One attractive DU shielding concept involves making "heavy" concrete using a DU compound as one of the components. The most advanced DU concrete technology involves converting the DU to uranium dioxide (UO₂) particles, aggregating the particles into briquettes, and sintering the briquettes with a special sintering aid to form a dense aggregate called DUAGGTM (ref.-3). The DUAGGTM is combined with conventional concrete-forming materials (e.g. cement, sand, and water) to form an ultra-high-density concrete named DUCRETETM. Among other proposed uses, DUCRETE™ has been proposed for use in constructing dry spent-fuel storage casks for on-site storage of civilian reactor fuel. In this application, the use of DUCRETE™ results in smaller shield size and lower weight than the use of conventional concrete. Conceptual design studies⁴ have shown that the diameter of a ventilated storage container for dry spent nuclear fuel is reduced by about 1 m (40 in.)—from about 3.3 m (130 in.) to 2.3 m (90 in.). The total weight is reduced from about 135 Mg (135 t) to about 100 Mg (100 t).

Uses at a Repository

Waste package shielding. DU heavy concrete, as previously described, can be used as the primary component of shielding around spent fuel or waste packages in the repository. In one variant, the shielding is in the form of an overpack: The spent fuel or waste package is inserted into the overpack before its emplacement in the repository. Such shielding might be integrated into a new multipurpose package. Another variant uses the heavy concrete as a major component of a drip shield by emplacing an unshielded waste package in the drift and then inserting a DU-bearing, open-ended, half-cylinder over the package. Some potential advantages to the repository are allowing human entry into drifts once waste packages are emplaced, providing protection to the package from any water entering from above, providing uranium in a reduced form to beneficially alter the chemistry of groundwater that might enter the package, and providing DU to isotopically dilute any enriched uranium released from the package.

Invert. Repository drift “invert” is material placed on the bottom of the tunnel to form a flat foundation for operating equipment and waste packages. High-density concrete made with DU compounds could be part of the floor material. Potential advantages to the repository are isotopic dilution of enriched uranium that was dissolved by groundwater and has exited the package by downward flow, thereby reducing the probability of an external criticality event.

Backfill. Once all waste packages are in place in the repository and it is decided that in situ monitoring and human activities cease, the repository tunnels would be loaded with material termed “backfill,” which is crushed native rock. Repository backfill material could contain DU. The advantages are similar to those of using DU as a component of waste package shielding. The benefits of DU are expected to be enhanced the closer the DU is to the spent fuel and waste package.

Fill. Scientists have proposed a new spent fuel package “fill” technology in which depleted UO₂ is placed in the voids of spent fuel waste containers for storage, transport, or disposal⁵. In this concept, empty waste packages would be loaded with spent fuel. The void space between the fuel pins and outer void between spent fuel assemblies and the inner waste package wall would be filled with small depleted UO₂ particles. The repository waste package would then be sealed. Some benefits to the
repository are that the fill provides some shielding, reduces the potential for repository nuclear criticality events, and reduces the long-term release of radionuclides from SNF at the repository. The use of fill material (not uranium oxides) has been extensively investigated for Canadian waste packages.

These relatively new concepts for DU use in repositories have not been fully evaluated, nor have they yet been factored into repository designs, although independent reviewers have recommended that the new concepts be incorporated into new repository designs (ref. 7). Key issues are the preferred high-density concrete formulation, potential health-hazard implications to workers for repository invert and backfill applications, and the mixture of particle sizes and the insulating effect on the waste package for the fill concept.

References

