PROGRESS IN EVALUATION OF RADIONUCLIDE GEOCHEMICAL INFORMATION
DEVELOPED BY DOE HIGH-LEVEL NUCLEAR WASTE REPOSITORY SITE PROJECTS:
REPORT FOR APRIL-JUNE 1985

A. D. Kelmers
Chemical Technology Division

W. D. Arnold
J. G. Blencoe
R. E. Meyer
Chemistry Division

G. K. Jacobs
Environmental Sciences Division

S. K. Whatley
Program Manager
Repository Licensing Analysis and Support
Chemical Technology Division

NOTICE This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

Manuscript Completed: October 1985
Date of Issue: February 1986

Prepared for the
Division of Waste Management
Office of Nuclear Material Safety and Safeguards
U.S. Nuclear Regulatory Commission
Washington, DC 20555
under Interagency Agreement DOE 40-549-75

NRC FIN No. B0290

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. Department of Energy
under Contract No. DE-AC05-84OR21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Previous reports in this series:

<table>
<thead>
<tr>
<th>Period</th>
<th>Report Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 1982 - September 1983</td>
<td>NUREG/CR-3730</td>
</tr>
<tr>
<td>October 1983 - September 1984</td>
<td>NUREG/CR-4136</td>
</tr>
<tr>
<td>October 1984 - December 1984</td>
<td>NUREG/CR-4236, Vol. 1</td>
</tr>
</tbody>
</table>
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ABSTRACT

Geochemical information relevant to the potential mobility of radionuclides at the Hanford Site and the Yucca Mountain site, candidate sites for high-level nuclear waste geologic repositories being developed by Department of Energy projects, is being evaluated by Oak Ridge National Laboratory (ORNL) for the U.S. Nuclear Regulatory Commission. Neptunium(V) sorption isotherms in three different basalt/synthetic groundwater systems were initiated this quarter. Uranium(VI) sorption isotherms were completed with McCoy Canyon basalt and synthetic groundwater GR-2. The control of U(VI) solutions at a level of $\sim 10^{-4}$ mol/L is apparently dominated by the precipitation of sodium boltwoodite. Different apparent concentration limits for uranium were obtained with GR-2 and GR-4 solutions. The results suggest that uranium sorption/solubility behavior could be substantially different in the various basalt units likely to be encountered by groundwater during migration from the waste package to the accessible environment. The EQ3/6 software package was implemented and tested on the ORNL computer system.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>vii</td>
</tr>
<tr>
<td>1. EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2. INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>3. MATERIALS AND METHODS</td>
<td>4</td>
</tr>
<tr>
<td>3.1 HANFORD SITE MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>3.2 YUCCA MOUNTAIN MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>3.3 BATCH CONTACT METHODOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>4. NEPTUNIUM</td>
<td>5</td>
</tr>
<tr>
<td>4.1 SORPTION ISOTHERMS</td>
<td>5</td>
</tr>
<tr>
<td>5. URANIUM</td>
<td>6</td>
</tr>
<tr>
<td>5.1 PUBLISHED SOLUBILITY AND SORPTION INFORMATION</td>
<td>6</td>
</tr>
<tr>
<td>5.2 RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>5.3 DISCUSSION</td>
<td>9</td>
</tr>
<tr>
<td>6. GEOCHEMICAL MODELING</td>
<td>11</td>
</tr>
<tr>
<td>7. ACKNOWLEDGMENTS</td>
<td>12</td>
</tr>
<tr>
<td>8. REFERENCES</td>
<td>13</td>
</tr>
</tbody>
</table>
This document is the eighth in a series of progress reports that are being issued by the U.S. Nuclear Regulatory Commission to describe the current status of an experimental program to evaluate the radionuclide geochemical information developed by the high-level nuclear waste repository site projects of the U.S. Department of Energy.
This project, supported by the U.S. Nuclear Regulatory Commission (NRC), is being conducted to evaluate the radionuclide geochemical information and data acquisition methodology that may be employed by the U.S. Department of Energy (DOE) high-level nuclear waste repository site projects in performance assessment calculations to show reasonable assurance of expected compliance with regulatory requirements. This project is focused on parameters that are important to the mobility of radionuclides in geologic media (primarily, sorption on host rock and apparent concentration limits in groundwater) under the anticipated geochemical conditions of the repositories. Initial emphasis was on information being developed by the Basalt Waste Isolation Project (BWIP) that is applicable to the Hanford Site candidate repository in the Columbia River basalts at Richland, Washington. Attention is now being shifted to evaluate information that is being developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project which is relevant to the Yucca Mountain site in tuff near the Nevada Test Site in Nevada.

Work to characterize the crystalline and amorphous materials in our samples of tuffs at Yucca Mountain has been initiated.

Determination of a series of Np(V) sorption isotherms with three basalt/synthetic groundwater systems under anoxic redox conditions at 60°C was initiated this quarter. The purpose of these tests is to investigate whether neptunium is likely to exhibit similar sorption behavior in different basalt units during migration from the waste package.

Uranium(VI) sorption isotherms were completed with McCoy Canyon basalt and synthetic groundwater GR-2 under anoxic redox conditions at 60°C for 50 d. The behavior of uranium solutions (10^-5 mol/L) is largely controlled by sodium boltwoodite precipitation. An apparent concentration limit of ~2 x 10^-5 mol/L uranium was observed. We previously reported a considerably lower apparent concentration limit (~8 x 10^-7 mol/L) with Cohassett basalt and synthetic groundwater GR-4 under parallel test parameters. It is possible that precipitation kinetics may be different in the two systems or that other factors related to groundwater composition could be involved. In any case, it appears that uranium
sorption/solubility behavior could vary significantly in different basalt units during groundwater migration from the waste package to the accessible environment.

Version 3230B of the geochemical code EQ3/6 was implemented and tested on the ORNL computer system this quarter. In addition to the EQ3/6 code and its required supplementary code EQLIB, the codes MCRT and EQTL were also brought up on the ORNL computer. The MCRT and EQTL codes provide for the compilation, documentation, and management of thermodynamic data files required to run EQ3/6. The successful conversion of the codes was confirmed by running test cases.
2. INTRODUCTION

The objective of this project is to support the NRC staff analysis of geochemical information used by the DOE to predict the performance of candidate high-level waste (HLW) geologic repository sites. Under this project, both experimental and calculational activities are undertaken to evaluate pertinent geochemical values and the methodology used in the development of these values. The results of the work conducted under this project are compared with published information reported by the DOE site projects or others, and, where appropriate, concerns are expressed relative to the accuracy, conservatism, or relevance of the information for the prediction of the potential isolation performance of the candidate repository sites.

This project is primarily a laboratory activity because it is anticipated that the DOE may rely on experimentally measured apparent concentration limits and sorption distribution coefficients for key radionuclides. The experimental procedures used by the DOE site projects, the selection and characterization of site materials used in the DOE experiments, and the DOE test results are being evaluated. The appropriateness of the materials selected and methodology employed to simulate repository geochemical conditions is being considered. The conservatism inherent in the laboratory approach is being evaluated. Attention is also directed toward geochemical modeling efforts, both to support our laboratory work and to evaluate the data bases and calculational methodologies employed in the geochemical modeling used by the DOE. For example, the DOE site projects may elect to calculate some geochemical values, such as radionuclide solubility, without supporting laboratory measurements.

The DOE site projects may also use modeling procedures to extrapolate laboratory information to conditions of temperature and chemistry that are unexplored experimentally. These and other aspects of the geochemical methodology and values used by the DOE site project will be examined in light of the reasonable assurance criteria of the NRC regulation 10 CFR Part 60.
3. MATERIALS AND METHODS

3.1 HANFORD SITE MATERIALS

The preparation and characteristics of the basalt samples and synthetic groundwaters and comparison of the synthetic groundwater formulations used in the sorption experiments have been described previously (KELMERS 1985a).

3.2 YUCCA MOUNTAIN MATERIALS

Four core samples from three different tuff units (Topopah Spring, Calico Hills, and Bullfrog) from drill hole USW-G1 and a sample of Topopah Spring outcrop from Busted Butte were previously received from the U.S. Geological Survey (see KELMERS 1985c for a description of the samples). Work completed this quarter, consisting of a preliminary petrographic examination of polished thin sections of these samples, revealed several important features of the tuffs. It was evident that all three tuffs are not only heterogeneous texturally but also are very different from one another. Particularly noteworthy is the abundance of lithic fragments in the Topopah Spring and the Calico Hills tuffs, and, to a lesser extent, in the Bullfrog tuff as well. Also, it is apparent that the phenocrysts in the three tuffs are different both minerallogically and texturally. Detailed petrographic and X-ray diffraction analysis of the samples, when completed, will be described in future reports.

3.3 BATCH CONTACT METHODOLOGY

As reported previously (KELMERS 1985c), the pH gradually increases in both synthetic and actual J-13 groundwater samples when exposed to air. This increase in pH is a result of the loss of dissolved CO₂ to the atmosphere. Therefore, in long-term batch contact tests to measure the sorption ratio (Rs) values, methods must be devised to establish a CO₂ partial pressure above the test solutions that maintains the appropriate pH. In tests reported last quarter (KELMERS 1985c), an estimate of somewhat <5 vol % CO₂ was given as an appropriate composition of an air/CO₂ mixture required to maintain the pH of J-13 at ~7.

To enable us to control CO₂ composition, a glove box was set up, and appropriate valves and flowmeters were installed so that various mixtures of air and CO₂ could be blended and put through the box in a once-through mode. A CO₂ monitor (PIR-2000 Process Gas Analyzer from Horiba Instruments) was installed to measure the CO₂ concentration necessary to maintain the pH of J-13 groundwater at 7. The results of the tests, when completed, will be described in future reports.
4. NEPTUNIUM

4.1 SORPTION ISOHERMS

During the report quarter, we began a series of Np(V) sorption isotherm determinations under anoxic conditions at 60°C for the synthetic groundwater/basalt systems: (1) GR-2/McCoy Canyon basalt, (2) GR-2/Umtanum basalt, and (3) GR-4/Cohasset basalt. We will report the results of these isotherm determinations when they are completed and when the maximum neptunium concentration that can be included in the isotherm experiments has been established.
5. URANIUM

5.1 PUBLISHED SOLUBILITY AND SORPTION INFORMATION

A summary of the published information describing uranium solubility limits and sorption distribution coefficients relevant to the candidate repository site in the Columbia River basalts was given in a previous report (KELMERS 1984a). The sorption and solubility information has also been separately reviewed and assessed (BLENOCE 1985; KELMERS 1984b).

5.2 RESULTS

During the current report period, we completed a 50-d sorption isotherm for U(VI) onto McCoy Canyon basalt from synthetic groundwater GR-2 under anoxic conditions at 60°C. For Cohassett basalt and GR-4, we had previously observed significant increases in the Rs values when the duration of the test was increased from 14 to 50 d under anoxic conditions at 60°C (KELMERS 1985a). In some cases, the Rs values increased by a factor of 10. In the 14-d experiments, Rs values ranged from 19.4 to 31.1 L/kg at the lower initial concentrations of uranium (9.8 x 10^-8 to 1.05 x 10^-5 mol/L), and an Rs value of 355 L/kg was observed at the highest initial concentration of uranium (1.03 x 10^-4 mol/L). This large Rs value was caused mainly by precipitation of an insoluble compound of uranium, sodium boltwoodite (KELMERS 1985a). In the 50-d experiments with the GR-4/Cohassett basalt system, Rs values ranged from 115 to 669 L/kg at the lower initial concentrations of uranium (9.8 x 10^-8 to 1.05 x 10^-5 mol/L), while a value of 1288 L/kg was observed for the highest concentration (1.03 x 10^-4 mol/L). The large increases in Rs values in the 50-d experiments, compared with those of the 14-d experiments, were probably a result of increased precipitation of sodium boltwoodite at all concentrations of uranium, because we observed large decreases in concentration from all of the control samples (no basalt present) in the 50-d experiments.

The Rs values for McCoy Canyon basalt in GR-2 for all conditions, anoxic and oxic, were in the range of 2 to 5 L/kg, but a value at 50 d and 60°C had not been previously determined. The Rs values for McCoy Canyon basalt are much lower than those observed for the GR-4/Cohassett system. We are now using much more refined oxygen-removal techniques in the anoxic experiments than were used in last year’s determinations with McCoy Canyon basalt. Anoxic 50-d experiments with McCoy Canyon basalt in GR-2 were, therefore, carried out to: (1) see whether adopting these more stringent oxygen-removal techniques would cause the Rs values for uranium to exceed the 2 to 5 L/kg range that had been observed in all previous experiments with this system; and (2) to see whether increasing the duration of the experiment from 14 to 50 d would cause the same large increase in Rs as was observed with the Cohassett/GR-4 system. The results of these experiments are shown in Table 5.1 and are plotted in Figs. 5.1 and 5.2.
Fig. 5.1. Sorption isotherms for uranium on McCoy Canyon basalt. Batch contact tests were conducted under anoxic conditions with synthetic groundwater GR-2 at 60°C.
Fig. 5.2. Initial and final uranium concentrations for sorption isotherm experiments with McCoy Canyon basalt in GR-2. Tests were conducted under anoxic conditions at 60°C, 50 d.
Table 5.1 Sorption of uranium on McCoy Canyon basalt from GR-2 (anoxic conditions, 60°C, 50 d)

<table>
<thead>
<tr>
<th>Initial uranium (mol/L)</th>
<th>Rs calc.a from standards (L/kg)</th>
<th>Rs calc.a from controls (L/kg)</th>
<th>Uranium loss from control (%)</th>
<th>Rs valuesb for 14-d test (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15 x 10^{-7}</td>
<td>6.3 ± 0.8</td>
<td>4.8 ± 0.7</td>
<td>9.0</td>
<td>3.9 ± 0.2</td>
</tr>
<tr>
<td>1.10 x 10^{-6}</td>
<td>5.5 ± 0.4</td>
<td>1.1 ± 0.3</td>
<td>29.5</td>
<td>2.5 ± 0.2</td>
</tr>
<tr>
<td>8.85 x 10^{-5}</td>
<td>4.9 ± 0.4</td>
<td>-3.9 ± 0.5</td>
<td>60.7</td>
<td>2.0 ± 0.4</td>
</tr>
<tr>
<td>1.00 x 10^{-4}</td>
<td>48.0 ± 1.7</td>
<td>-4.3 ± 0.3</td>
<td>90.9</td>
<td>35 ± 7</td>
</tr>
</tbody>
</table>

aIn column two, Rs values were determined by comparison of the final concentration of the uranium with the concentration of the standard solutions used initially. In column three, Rs values were calculated by comparison with the control samples (no basalt present). These controls were equilibrated under the same conditions for the same length of time as the samples with basalt. For the two higher concentrations of uranium, the loss of uranium was greater in the controls than in the samples, and the resulting Rs values are, therefore, negative (see discussion below).

bReported in Kelmers (1985a). All test conditions were the same except for the 14-d duration of the test. Initial concentrations of uranium in the 14-d test were slightly different from those in the first column, but they were always within 15%.

For the three lowest concentrations, the Rs values for the 50-d experiments are approximately twice as high as those for the 14-d experiments. At the highest concentration of uranium, the Rs value, 48 L/kg, is ~35% higher than the value from the 14-d test. The large losses of uranium from the control experiments again suggest precipitation of uranium, probably with sodium boltwoodite formation, as we have already observed with some systems. However, we did not observe the formation of a precipitate because so little would have been formed, making it difficult to be seen in the translucent polypropylene test tubes. In other experiments previously reported (KELMERS 1985b), formation of sodium boltwoodite was observed to form from solutions of uranium (10^{-4} mol/L) in GR-2. The small increases in Rs at the two lowest concentrations of uranium suggest that the more stringent oxygen-removal techniques used in these experiments did not cause a significant difference between the results obtained in the 14- and 50-d experiments.

5.3 DISCUSSION

Our experiments indicate that the behavior of U(VI) solutions at concentrations of 10^{-4} mol/L at 60°C in synthetic groundwaters GR-2 and GR-4 is largely controlled by a precipitation process. As reported previously (KELMERS 1985c), X-ray diffraction analysis of the light-yellow precipitate formed from GR-2 and GR-4 solutions, both initially containing 10^{-4} mol/L
of U(VI), indicated that the solid formed was sodium boltwoodite, \(\text{Na}_2(\text{UO}_2)_2(\text{SiO}_3)_2(\text{OH})_2\cdot5\text{H}_2\text{O} \).

Plots of sorption isotherms of uranium on basalt for the two systems, GR-2/McCoy Canyon basalt and GR-4/Cohassett basalt, indicate apparent concentration limits of uranium at the upper solution concentrations. For the GR-2/McCoy Canyon system under anoxic conditions, a limit of \(>2 \times 10^{-5} \) mol/L was indicated by the 14-d isotherm, and one of slightly \(<2 \times 10^{-5} \) mol/L was indicated after 50 d (Fig. 5.1). The 14-d isotherm was reported previously (KELMERS 1985a) and is included on Fig. 5.1 for purposes of comparison. In the absence of basalt, the control experiments with GR-2 indicate lower concentration limits, as indicated by the solution concentration of uranium at the highest initial concentration of uranium in Fig. 5.2. In this figure, a comparison is given between final solution concentrations for the control experiments and for the sorption tests with basalt. For the two highest uranium concentrations, the final control solutions contained less uranium than solutions with basalt.

For the GR-4/Cohassett system under anoxic conditions at 60°C, considerably lower concentration limits were observed. After 14 d, the limit was \(\sim3 \times 10^{-6} \) mol/L, and after 50 d, the limit was \(\sim8 \times 10^{-7} \) mol/L (KELMERS 1985a). The limits for the two systems vary by a factor of \(\sim30 \). At this time, the explanation for this variation is not available. Extensive studies of the equilibrium solubility of sodium boltwoodite and of the kinetics of the precipitation reaction would be necessary for a complete understanding of this reaction. It is possible, for example, that the equilibrium solubilities of sodium boltwoodite in GR-2 and GR-4 might be similar but that the kinetics of precipitation from solutions of GR-2 are much slower than those from GR-4. As shown in Fig. 5.2, the lower concentration limits in the GR-2 control solutions compared with the solutions with basalt could also be due to a kinetic effect (i.e., the presence of basalt might slow the precipitation reaction). Therefore, it would appear from our data that the equilibrium and kinetic properties of sodium boltwoodite formation should be investigated in more detail.

The formation of a boltwoodite has been reported by BWIP, at least tentatively, in high-temperature hydrothermal experiments with several systems. In a spent fuel/basalt/synthetic groundwater system, a potassium-uranium-silicate phase was formed that was tentatively identified as either weikspite or a potassium boltwoodite (APTED 1982). This phase formed mostly on the surface of simulated spent fuel. In 300°C experiments reported later (APTED 1983), a boltwoodite was identified as having formed from a system containing a simulated glass waste form, basalt, and synthetic groundwater. The temperature of formation of boltwoodite was considerably higher than the 60°C formation temperature in our experiments.
6. GEOCHEMICAL MODELING

Information from the three candidate repository site projects (KERRISK 1985; EARLY 1985; ONWI 1984) suggests that the DOE will utilize the geochemical computer code EQ3/6 alone, or in conjunction with other available geochemical models, to help evaluate: (1) geochemical conditions within the geologic setting, disturbed zone, and waste package; (2) sorption and solubility/speciation processes; and (3) the alteration of host rock, packing/backfill materials, and waste package components. Therefore, to improve the capability of our projects to provide the NRC with independent evaluations of geochemical information obtained by the DOE, we have brought the EQ3/6 software package (WOLERY 1979) on-line at ORNL to supplement our existing available codes (e.g., WATEQ, MINTEQ, PHREEQE, GEOCHEM, MINEQL).

Version 3230B of the EQ3/6 software package (with instructions for upgrading EQ6U21 to EQ6U23) was implemented and tested on the ORNL computer system this quarter. In addition to the EQ3/6 code and its required supplementary code EQLIB, the codes MCRT and EQTL were also brought up on the ORNL computer system. The MCRT and EQTL codes provide for the compilation, documentation, and management of thermodynamic data files required to run EQ3/6. The successful conversion of the codes was confirmed by running the test cases for each code that was included as part of the software package. However, a detailed evaluation of the codes will require running several test cases to determine the range of input options for each code.

An improved version of the EQ3/6 software package is scheduled to be released near the end of 1985 (WOLERY, personal communication). When available, this new version of EQ3/6 (as well as other versions of existing codes or new codes) will be integrated into our current suite of codes. In this way, we can maintain an up-to-date capability to support the NRC evaluation of DOE geochemical information used to support the assessment of repository performance.
7. ACKNOWLEDGMENTS

The authors wish to acknowledge the excellent laboratory technical assistance of F. I. Case and G. C. Young, the computing assistance of P. A. Lesslie, the secretarial effort of R. E. Dearien, and the editorial assistance of D. R. Reichle in the preparation of this document.
8. REFERENCES

INTERIM DISTRIBUTION

1. W. D. Arnold
2. J. T. Bell
3. J. G. Blencoe
4. R. O. Chester
5. N. H. Cutshall
6. L. M. Ferris
7. R. M. Gove
8. J. R. Hightower
9. G. K. Jacobs
10. A. D. Kelmers
11. D. C. Kocher
12. S. Y. Lee
13. A. P. Malinauskas
14. R. E. Meyer
15. D. R. Reichle
16. S. K. Whatley
17. R. G. Wymer
18-19. Technical Information Center
20. Office of Assistant Manager, Energy Research and Development,
 Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN
21. Laboratory Records - RC
Geochanical information relevant to the potential mobility of radionuclides at the Hanford Site and the Yucca Mountain site, candidate sites for high-level nuclear waste geologic repositories being developed by Department of Energy projects, is being evaluated by Oak Ridge National Laboratory (ORNL) for the U.S. Nuclear Regulatory Commission. Neptunium(V) sorption isotherms in three different basalt/synthetic groundwater systems were initiated this quarter. Uranium(VI) sorption isotherms were completed with McCoy Canyon basalt and synthetic groundwater GR-2. The control of U(VI) solutions at a level of ~10^{-4} mol/L is apparently dominated by the precipitation of sodium boltwoodite. Different apparent concentration limits for uranium were obtained with GR-2 and GR-4 solutions. The results suggest that uranium sorption/solubility behavior could be substantially different in the various basalt units likely to be encountered by groundwater during migration from the waste package to the accessible environment. The EQ3/6 software package was implemented and tested on the ORNL computer system.