Shock Transmission and Reflection from a Material Interface and Subsequent Reflection from a Hard Boundary

O. A. Hurricane
P. L. Miller

November 20, 1998
Shock Transmission and Reflection from a Material Interface and Subsequent Reflection from a Hard Boundary

O. A. Hurricane and P. L. Miller
Lawrence Livermore National Laboratory, University of California
P.O. Box 808, Livermore, CA 94550

As a shock wave passes through a material interface into a region of higher density (the receiver material), a transmitted and reflected shock wave are both generated and the interface is set into motion. The speeds of the transmitted shock, reflected shock, and interface are related to the initial shock speed and material properties via a set of coupled nonlinear equations that, in general, cannot be easily solved analytically. In this report, we derive the equations which describe this process and we document a numerical routine which solves the nonlinear equations. We then go on to solve the problem of finding the position where the interface collide with the transmitted shock wave once the transmitted shock wave is reflected from an impenetrable boundary located somewhere away from the initial material interface. Finally, we compare the analytical predictions with the CALE simulation running in 1-D.

I. INTRODUCTION

The problem of how a shock wave is transmitted through a material interface, subsequently reflects from a hard boundary, and then collides with the original material interface, sounds like a classic textbook problem. Given the age of the theory of one dimensional (1-D) shocks (e.g., Ref [1] and references therein) it comes as something of a surprise that the analytical solution of this problem is not readily available in the classic literature on the subject. In spite of the fact that the solution of this problem is only of textbook difficulty, it is nevertheless useful to provide a reference on the analytic/numerical solution of such a problem. This problem is particularly relevant for those involved in studying Richtmoyer-Meshkov instabilities [2,3] in shock tubes (e.g Ref [4]) or high power laser driven experiments.

In this report our problem is solved in two distinct parts. Section II describes the solution for the problem of how a shock incident on a material interface is transmitted, and partially reflected, from the interface and how this process sets the interface into motion. The equations that describe the transmission/reflection problem form a coupled nonlinear set which, in general, have no simple explicit solution but can instead be solved by numerical techniques. Section III deals with the problem of finding the position where the transmitted shock, upon later reflection from a impenetrable wall, collides with the moving material interface. In Section IV, predictions of the analytical formulation are compared with results from running the CALE simulation in 1-D. Section V has some closing remarks. In Appendix A, we provide a fortran computer code which solves all of the equations presented in the body of this report. Throughout, we make the perfect gas assumption.

II. ANALYSIS OF THE SHOCK TRANSMISSION/REFLECTION PROBLEM

Our problem begins by supposing that we have two materials at rest in contact across a 1-D interface. We call the region to the left of the interface Region 0 and the region to the right of the interface Region 2. We assume that both Regions 0 and 2 are perfect gases with known macroscopic properties such as the density (ρ), pressure (p), sound speed (c), and polytropic index (γ). Figure 1 illustrates the problem setup. Initially, the pressures in Region 0 and Region 2 are assumed to be equal ($p_0 = p_2$) so that the interface is in stationary equilibrium.

![Fig. 1 A shock wave is traveling from left to right with a known speed u_s. As the shock moves through the material of Region 0 it processes the material into Region 1 material which has the same molecular properties as Region 0 material, but different thermodynamic properties, i.e. pressure, density, temperature, etc. At time $t = 0$ the shock will reach the boundary between Region 0 and Region 2. We now suppose that we have a shock wave traveling from Region 0 toward Region 2 with a known Mach number, $M = u_s/c_0$, where u_s is the shock speed in Region 0.](image-url)
and \(c_0\) is the sound speed in Region 0. (In what follows it is to be understood that a numerical subscript, \(i\), on a quantity indicates the region, \(i\), with which that quantity is associated.) As the shock wave propagates through Region 0 the material is “processed” into a material with the same polytropic index, but with a different pressure, density, temperature, and internal energy. We call the region of material processed by the initial shock Region 1. Once the shock contacts the Region 0-Region 2 interface all of Region 0 material will have been processed into Region 1 material. From the Hugoniot relations (e.g. Ref. [1]), it is straightforward algebra to relate Region 1 material properties to Region 0 material properties in terms of the Mach number of the initial shock, i.e.

\[
\frac{v_1}{c_0} = \frac{2}{\gamma_0 + 1} \frac{M^2 - 1}{M} \quad (1)
\]

\[
\frac{p_1 - p_0}{\rho_0} = \frac{2\gamma_0}{\gamma_0 + 1} (M^2 - 1) \quad (2)
\]

\[
\rho_0 \left(\frac{1}{p_1} - \frac{1}{p_0} \right) = \frac{2}{\gamma_0 + 1} \left(\frac{1}{M^2} - 1 \right) \quad (3)
\]

where \(v_1\) is the “piston velocity” driving the shock wave to the right. In the lab frame, the processed material behind the shock (Region 1) is flowing to the right with speed \(v_1\). From Eq. (2) it is easy to show that \(p_1 > p_2\) as long as \(M > 1\) (with \(p_0 = p_2\)).

![Diagram of shock wave propagation](figure2.png)

Fig. 2 Once the initial shock encounters the material interface between Region 0 and Region 2 a transmitted and reflected shock are produced and the interface is set into motion. The transmitted shock processes Region 2 material into Region 3 material while the reflected shock processes Region 1 material (formerly Region 0 material) into Region 4 material. All of the material between the reflected and transmitted shock moves with the speed of the interface, \(u_c\).

Now assume that the density of Region 2 is greater than that of Region 0, \(p_2 > p_0\). Once the initial shock wave encounters the material interface between Region 0 (now Region 1) and Region 2 a transmitted and reflected shock (as opposed to a rarefaction) are produced at the interface and the interface is set into motion (to the right) with speed, \(u_c\) (see Figure 2).

As the transmitted shock moves to the right in Region 2 it processes Region 2 material into what we call Region 3 material, maintaining the same polytropic index but changing the pressure and density. The Mach number of the transmitted shock is \(M_{23} = u_{23}/c_2\), where \(u_{23}\) is the speed of the shock, in the lab frame, moving into Region 2. Similarly, the shock reflected from the interface processes Region 1 material into what we call Region 4 material and travels to the left with a Mach number \(M_{14} = (u_{14} + v_1)/c_1\), where \(u_{14}\) is the speed of the shock in the lab frame. Note that since the material in Region 1 is flowing to the right with speed \(v_1\) the Mach number \(M_{14}\) is not a lab frame quantity.

There are two key physical insights which allow solution of transmission/reflection part of this problem. First, the speed of the materials in Regions 3 and 4 are the same and equal to the speed of the interface, \(u_c\). If the speeds of Regions 3 and 4 where not the same the mass in the neighborhood of the interface would change in time. Second, across the interface the pressures must be equal \((p_3 = p_4)\) so that the interface does not accelerate. Thus, \(u_c\) can be treated as an “effective” piston velocity driving the transmitted shock into Region 2 and \(v_1 - u_c\) can be treated as the “effective” piston velocity driving the reflected shock into Region 1. Therefore, in a fashion similar to Eqs. (1)-(2) we have

\[
\frac{u_c}{c_2} = \frac{2}{\gamma_2 + 1} \frac{M_{23}^2 - 1}{M_{23}} \quad (4)
\]

\[
\frac{p_c - p_2}{p_2} = \frac{2\gamma_2}{\gamma_2 + 1} (M_{23}^2 - 1) \quad (5)
\]

\[
\frac{v_1 - u_c}{c_1} = \frac{2}{\gamma_1 + 1} \frac{M_{14}^2 - 1}{M_{14}} \quad (6)
\]

\[
\frac{p_c - p_1}{p_1} = \frac{2\gamma_0}{\gamma_0 + 1} (M_{14}^2 - 1) \quad (7)
\]

where \(p_c = p_3 = p_4\) is the pressure at the interface. These four coupled equations form a nonlinear system the solution of which yields the unknowns \(u_c\), \(p_c\), \(M_{23}\), and \(M_{14}\). In general, solution of this system is not practical analytically, so numerical techniques must be employed (see Appendix A). By inspection of Eqs. (4)-(7) we see that the necessary conditions for the production of both reflected and transmitted shocks are \(p_c > p_1 > p_2\), and \(v_1 > u_c > 0\).

III. ANALYSIS OF THE COLLISION OF THE INTERFACE AND WALL REFLECTED SHOCK

Once the initial shock is transmitted through the interface and the interface is set in motion, both move to
the wall before the interface has a chance to reach the wall. As long as the right at their respective speeds. We now suppose that the right hand side of our system is bounded by a wall. As long as \(\gamma_2 > 1 \) the shock moves faster than the interface, so it will encounter the wall and reflect from the wall before the interface has a chance to reach the wall itself. To calculate the position at which the wall reflected shock encounters the interface it is necessary to compute the speed of the shock upon reflection from the wall (this speed is different than the speed of the shock before reflection from the wall). Figure 3 summarizes that problem at this stage.

\[
\frac{x}{L} = \frac{u_c}{u_{23}} + \frac{u_c}{1 + \frac{u_c}{u_{35}}}.
\]

\[\text{Fig. 4 The dynamical problem is easily visualized using a} \ x - t \ \text{diagram. If the material interface is set into motion at} \ t = 0 \ \text{then the interface covers a distance} \ x = u_c T \ \text{in time} \ T. \ \text{The time} \ T \ \text{is equal to the time it takes the transmitted shock to cover a distance} \ L \ \text{plus the time it takes the wall reflected shock to cover a distance} \ L - x, \ \text{i.e.} \ T = L/u_{23} + (L - x)/u_{35}.\]

IV. COMPARISON WITH THE CALE SIMULATION

In Figure 5 we show how prediction of the position \(x \) from the above analysis compares with that predicted by the CALE simulation for a range of initial shock Mach numbers ranging from \(M = 1.5 \) to \(M = 10 \).

To produce Figure 5 the initial conditions in CALE are prepared in a way similar to the situation shown in Figure 1. We choose the material in Region 0 to be air with molecular weight 28.8 (\(\rho_0 = 2.66 \times 10^{-4} \ g/cm^3 \), \(\gamma_0 = 1.4, \ c_0 = 0.0348 \ cm/\mu s, \) and \(\varepsilon_0 = \rho_0 / (\gamma - 1) \rho_0 = 2.16 \times 10^{-3} \ Mbar \cdot cm^3/g \)). The material in Region 2 is chosen to be SF6 with molecular weight 142.1 (\(\rho_2 = 1.31 \times 10^{-5} \ g/cm^3, \gamma_2 = 1.2, \) and \(\varepsilon_2 = 8.78 \times 10^{-4} \ Mbar \cdot cm^3/g \)). CALE is simulating a shock tube of total length 472 cm with 680 grids in 1-D. The interface between Region 0 and Region 2 is initially set at 62 cm from the wall on the right hand side. In CALE, the ideal gas law equations of state are used for both materials. The simulation is run in pure Lagrangian mode.

V. CONCLUSION

As a shock wave passes through a material interface into a region of higher density (the receiver material), a transmitted and reflected shock wave are generated and
the interface is set into motion. The speeds of the transmitted shock, reflected shock, and interface are related to the initial shock speed and material properties via a set of coupled nonlinear equations, Eqs. (4)-(7). Eqs. (4)-(7) cannot be solved explicitly, in general, but they can instead be solved using numerical techniques.

![Graph](image)

Fig. 5 Prediction of the point of collision (x in cm) between the interface and the wall reflected shock as a function of Mach number. The smooth curve is the analytical prediction and the crosses are the result obtained from the CALE simulation. Note that the zero is suppressed in this figure. The analytical and simulation results agree to within one percent.

Once the transmitted shock wave is reflected from a boundary located somewhere away from the initial material interface it will eventually collide with the material interface which was set into motion by the passage of the original shock wave. The analytical predictions, which come from numerical solution of Eqs. (1)-(10), compare quite well with results of running the CALE simulation in 1-D.

ACKNOWLEDGMENTS

This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. The first author would like to acknowledge useful conversations with Dr. John Edwards on the topic of reference frames. Also, we would like to thank Dr. Peter Stry who suggested this problem. Those who wish to obtain an electronic copy of the SHOCKINT code may contact the first author of this report at hurricane@llnl.gov.
This Appendix presents the numerical code \textit{SHOCKINT} used to solve the coupled set of nonlinear equations, Eqs. (4)-(7). In addition, the code has also been set up to solve Eqs. (1)-(3) and Eqs. (8)-(10) so as to yield the full solution to the problem discussed in the body of this report. The numerical method used is a globally convergent Newton’s method with line searching and backtracking [5]. The subroutines \texttt{newt}, \texttt{fdjac}, \texttt{fmin}, \texttt{lnsrch}, \texttt{lubksb}, and \texttt{ludcmp} are similar to those same routine found in Ref. [5]. Eqs. (4)-(7) are coded in the subroutine \texttt{funcv}.

The code uses an input file \textit{shint.inp} to read in the material properties of Region 0 and Region 2 as well as the Mach number of the incident shock. An example of the contents of the \textit{shint.inp} input file is shown below:

Sound speed (c0) for the undisturbed region (usually 0.348 cm/us for air):
0.0348
Polytropic index (gamma) for region 0 (1.4 for air):
1.4
Density (r0) of the gas in region 0 (g/cm³):
2.66e-4
Material energy (e0) of the gas in region 0 (Mbar·cm⁻³/g):
2.16165e-3
The Mach number (M) for the initial shock:
2.0
Polytropic index (gamma2) for region 2 (1.2 for SF6):
1.2
Density (r2) of the gas in region 2 (g/cm³):
1.31e-3
Material energy (e2) of the gas in region 2 (Mbar·cm⁻³/g):
8.7786è4

An example of the output of the code \textit{SHOCKINT}, for the input shown above, is given below:

Input parameters:

\begin{verbatim}
c0= 3.48000000E-02
gamma= 1.400000
rho0= 2.66999999E-04
e0= 2.16165000E-03
p0= 2.30097860E-07
Mach # 2.000000
gamma2= 1.200000
rho2= 1.31000000E-03
e2= 8.77860000E-04
p2= 2.30097860E-07
\end{verbatim}

Sound speed in region 2, c2= 1.451842E-02

Shock processed region 0 (i.e. region 1):

\begin{verbatim}
Piston Velocity, v1= 4.34999999E-02
e1/e0= 1.687500
e1= 3.6477842E-03
Pressure boundary condition, p1= 1.0364391E-06
\end{verbatim}

Sound speed in region 1, c1= 4.5206524E-02

Normal Return
Eqn. 1 0.0000000E+00
Eqn. 2 -2.9802322E-08
Eqn. 3 0.0000000E+00
Eqn. 4 5.9904646E-08

Pressure at interface, pc= 1.6188573E-06
Density in region 3, rho3= 5.6932378E-03

Speeds of material interface and transmitted shock:

\begin{verbatim}
Speed of the interface, uc= 2.8556962E-02
Speed of shock transmitted into region 2, u23= 3.7103351E-02
Speed of shock reflected from wall, u35= 1.1393987E-02
Collision point, x/L= 0.0043911
\end{verbatim}

5
Listed here is the fortran code for the \textit{SHOCKINT} program. All subroutines necessary to compile the code are included.

```fortran
C

C This simple code computes the startup conditions for
C the region "behind" the shock for use in the CALE
C simulation. Also, it computes the speed of the two-
C material interface after contact with the initial
C shock, the transmitted shock speed, and the speed
C of the transmitted shock after hitting the "back" wall
C of the shock tube. Finally, it computes the position
C of the point of collision between the wall reflected
C shock and the material interface.
C
C Units: lengths are in cm, times are in micro-sec.,
C pressures are in Mega-bars, material
C internal energies are in Mbar-cm^{-3}/g, and
C densities are in g/cm^3.
C
C Oct. 20, 1998
C
C Dr. Omar A. Hurricane
C A-division
C LLNL
C P.O. Box 808, L-312
C Livermore, CA 94550
C
C hurricane1@llnl.gov
C
```

\textit{NOTICE 1}

\textit{TO BE USED WHEN UC WILL NOT EXERT COPYRIGHT, BUT WHERE NOTIFICATION OF AN INTEREST TO COMMERCIALIZE IS DESIRABLE FOR VARIOUS REASONS.}

\textit{This work was produced at the University of California, Lawrence
Livermore National Laboratory (UC LLNL) under contract no.
W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE)
and The Regents of the University of California (University) for the
operation of UC LLNL. The rights of the Federal Government are reserved
under Contract 48 subject to the restrictions agreed upon by the DOE
and University as allowed under DOE Acquisition Letter 97-1.}

\textit{DISCLAIMER}

\textit{This work was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately-owned rights. Reference
to herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of
California, and shall not be used for advertising or product
endorsement purposes.}

\textit{NOTIFICATION OF COMMERCIAL USE}
C Commercialization of this product is prohibited without notifying the
C Department of Energy (DOE) or Lawrence Livermore National Laboratory
C (LLNL).
C
C**
implicit none
real p(1op), gamma, M, c0, r1or0, v1, eloe0, pbc, r0, p0, e0
real p1, r1, c1, gam2, r2, p2, e2, M14, uc, pc, c2
real r3, c3, M3, u3, w3, dum, x(4), f(4)
logical check
common /pars/ gamma, gam2, p2, p1, c1, c2, v1
open (unit=10, file='shint.inp')
rewind(10)
read(10,*)
read(10,*)
c0 !Sound speed of Region 0 material.
read(10,*)
gamma !Polytropic index of Region 0 material.
read(10,*)
r0 !Density of Region 0 material.
read(10,*)
e0 !Temp. of Region 0 material.
read(10,*)
M !Mach # of initial shock.
read(10,*)
gam2 !Polytropic index of Region 2 material.
read(10,*)
r2 !Density of Region 2 material.
read(10,*)
e2 !Temp. of Region 2 material.
close(10)
write(***, '') 'Input parameters:'
write(***, '')
write(***, '') c0=', c0
write(***, '') gamma=', gamma
write(***, '') rh0=', r0
write(***, '') e0=', e0
p0=', c0=gamma
write(***, '') p0=', p0
write(***, '') rh0=', rh0
write(***, '') eg=', eg
write(***, '') e2=', e2
p2=', p2
!Pressure balance at interface.
c2 = sqrt(gamma*p2/r2) !Sound speed in Region 2.
write(***, '') c2=', c2
write(***, '')
p1op = (2.0*gamma*M*gamma+1.0)/(gamma+1.0) !p1/p0.
r1or0 = (gamma + 1.0)*p1op*gamma+1.0
r1or0 = r1or0/((gamma-1.0)*p1op0+gamma+1.0) !rh0/rho0.
v1 = c0+2.0*(M*M-1.0)/(M+gamma+1.0)) !Piston Velocity.
e10e0 = p1op0/r1or0 !internal energy.
write(***, '') x=', x
write(***, '')
write(***, '') P1/p0=', p1op0
write(***, '') rh1/rh0=', r1or0
write(***, '') v1=', v1
write(***, '') e1/e0=', e10e0
write(***, '') e1=', e10e0
write(***, '') 'Pressure boundary condition. p1=', p1op0
p1=p1op0+p0 !Pressure of Region 1.
r1=r1or0+p0 !Density of Region 1.
c1=sqrt(gamma+1.0) !Sound speed of Region 1.
write(***, '') c1=', c1
write(***, '')
x(1)=0.9*v1 !Initial guess for the speed of the interface.
x(2)=0.5*(p2+p1) !Initial guess for the interfacial pressure.
x(3)=M !Initial guess for the Mach # of the transmitted shock.
x(4)=M !Initial guess for the Mach # of the reflected shock.
call newt(x,4,check) !Solve coupled nonlinear equation set.
if (check.eq .false.) write(*,*) 'Normal Return'
if (check.eq .true.) write(*,*) 'Bad return-local minimum?'
uc=x(1) !Speed of material interface.
pc=x(2) !Pressure at material interface.
M23=x(3) !Mach # of transmitted shock.
M14=x(4) !Mach # of reflected shock.
call funcv(4,x,f)
write(*,*) 'Eqn./1/',f(1)
write(*,*) 'Eqn./2/',f(2)
write(*,*) 'Eqn./3/',f(3)
write(*,*) 'Eqn./4/',f(4)
r3=-2.0*1.0/(M23**2)/(gas*1.0)/r2+1.0/r2
r3=1.0/r3 !Density of Region 3.
write(*,*) 'Density in region 3, rho3=',r3
if (pc.le.0.0) then
write(*,*) 'Negative or zero interface pressure!'
write(*,*) 'Try a slightly different Mach number.'
write(*,*) 'Or adjust error bounds/initial guess in '
write(*,*) 'solution algorithm.'
write(*,*) 'DO NOT TRUST THE FOLLOWING NUMBERS!'
p3=-pc
end if
c3=sqrt(gas*2*pc/r3) !Sound speed of Region 3.
M35=0.5*(gas+1.0)+c3
M36=0.5*(gas+sqrt(M35**2+4.0)) !Mach # of wall reflected shock.
u33=M35+2 !Speed of transmitted shock.
u36=M36+uc !Speed of reflected shock.
write(*,*) 'Speeds of material interface and transmitted shock:'
write(*,*) 'Speed of the interface, uc=',uc
write(*,*) 'Speed of shock transmitted into region 2, u23=',u23
write(*,*) 'Speed of shock reflected from wall, u36=',u36
dum=(uc+uc)/u36/(1.0+uc/u36)
write(*,*) 'Collision point, x/L=',dum
end
SUBROUTINE fdjac(n,x,fvec,np,df)
 INTEGER n,np,NMAX
 REAL df(np, np), fvec(n), x(n), EPS
 PARAMETER (NMAX=40, EPS=1.e-4)
 INTEGER i, j
 REAL h, temp, f(NMAX)
 do j=1,n
 temp=x(j)
 h=EPS*abs(temp)
 if(h.eq.0.) h=EPS
 x(j)=temp+h
 h=x(j)-temp
 call funcv(n,x,f)
 x(j)=temp
 do i=1,n
 df(i,j)=(f(i)-fvec(i))/h
 end do
 end do
 return
end
FUNCTION fmin(x)
INTEGER n, NP
REAL fmin, x(*), fvec
PARAMETER (NP=40)
COMMON /newtv/ fvec(NP), n
SAVE /newtv/
INTEGER i
REAL sum
call funcv(n, x, fvec)
sum=0.0
do i=1,n
sum=sum+fvec(i)**2
end do
fmin=0.5*sum
return
end

SUBROUTINE lnsrch(n, xold, fold, g, x, f, stpmax, check, func)
INTEGER n
LOGICAL check
REAL f, fold, stpmax, g(n), x(n), xold(n), func, ALF, TOLX
PARAMETER (ALF=1.e-4, TOLX=1.e-7)
EXTERNAL func
INTEGER i
REAL a, alam, alam2, alamin, b, disc, f2, fold2, rhs1, rhs2, slope, sum, temp, test, tmplam
check=.false.
sum=0.
do i=1,n
sum=sum+p(i)*p(i)
end do
sum=sqrt(sum)
if(sum.gt.stpmax) then
 do i=1,n
 p(i)=p(i)*stpmax/sum
 end do
endif
slope=0.
do i=1,n
 slope=slope+g(i)*p(i)
end do
test=0.
do i=1,n
 temp=abs(p(i))/max(abs(xold(i)),1.)
 if(temp.gt.test) test=temp
end do
alam=TOLX/test
alam=1.
 continue
 do i=1,n
 x(i)=xold(i)+alam*p(i)
 end do
 if(func(x)) then
 if(alam.lt.alamin) then
 do i=1,n
 x(i)=xold(i)
 end do
 check=.true.
 return
 else if(f.le.fold+ALF*alam*slope) then
 return
 else if(alam.eq.1.) then
 tmplam=-slope/(2.*(f-fold-slope))
 else
 rhs1=f-fold-alam*slope
 rhs2=(fold2-alam2*slope)
 a=(rhs1/alam**2-rhs2/alam2**2)/(alam-alam2)
 b=(-alam2-rhs1/alam**2+alam-rhs2/alam2**2)/(alam-alam2)
 end if
 end if
end do
end subroutine lnsrch
if(a.eq.0.) then
 tmplam=-slope/(2.*b)
else
 disc=b*b-3.*a*slope
 if(disc.lt.0.) pause 'roundoff problem in lnsrch'
 tmplam=(-b+sqrt(disc))/(3.*a)
endif
 if(tmplam.gt.5*alam) tmplam=5*alam
endif
endif
alam2=alam
d2=f
fold2=fold
alam=max(tmplam,1*alam)
goto 1
end
SUBROUTINE lubksb(a,n,indx,b)
INTEGER n, indx(n)
REAL a(n,n), b(n)
SUBROUTINE ludcmp(a,n,indx,d)
INTEGER n, indx(n),imax
REAL d(n,n),TINY
PARAMETER (NMAX=500,TINY=1.0e-20)
INTEGER i,imax, j, k
REAL aamax, dum, sum,vv(NMAX)
d=1.0
do i=1,n
 aamax=0.
 do j=1,n
 if(abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))
 end do
 if (aamax.eq.0.0) pause 'singular matrix in lubksb'
 vv(i)=1./aamax
end do
end
do i=j,n
 sum=a(i,j)
 do k=1,j-1
 sum=sum+a(i,k)*a(k,j)
 end do
 a(i,j)=sum
 dum=vv(i)=abs(sum)
 if (dum.ge.aamax) then
 imax=i
 aamax=dum
 endif
 end do
end do
if (j.ne.imax)then
 do k=1,n
 dum=a(imax,k)
 a(imax,k)=a(j,k)
 a(j,k)=dum
 end do
 d=-d
 vv(imax)=vv(j)
end if
indx(j)=imax
if(a(j,j).eq.0.)a(j,j)=TINY
if(j.ne.n)then
 dum=1./a(j,j)
 do i=j+1,n
 a(i,j)=a(i,j)*dum
 end do
end if
end do
return
end

subroutine funcv(n,x,fvec)
integer n
real x(n),fvec(n)
real gamma,gam2,p1,c1,c2,v1
common /pars/ gamma,gam2,p1,c1,c2,v1
fvec(1)=(x(1)/2-2.0*(x(3)-1.0)*x(3))/(gam2+1.0)
fvec(2)=(x(1)-1)/c1+2.0*(x(4)-1.0)/x(4))/(gamma+1.0)
fvec(3)=(x(2)-p2)/p2-2.0*gamma2*(x(3)+x(3)-1.0)/(gam2+1.0)
fvec(4)=(x(2)-p1)/p1-2.0*gamma*(x(4)+x(4)-1.0)/(gam2+1.0)
return
end

