Title: EOS, Thermodynamic, and Structural-Mechanical Properties of Intermetallic Compounds

Author(s): J. M. Wills, T-1
 G. Straub, T-1
 R. C. Albers, T-1

Submitted to: DOE Office of Scientific and Technical Information (OSTI)

Distribution of this document is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Abstract
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Several classes of binary intermetallic compounds have important potential application as high temperature structural materials because of their high melting temperature, low density, and high strength, but their use is limited by their poor low temperature ductility and fracture toughness. The goal of this project was to further the development of techniques for performing ab-initio calculations of the electronic, structural, and elastic properties of these materials in an investigation of the relation between structure, composition, and mechanical properties of intermetallics. Materials properties to be addressed in these calculations included the equation of state (EOS), defect structure energetics, and elastic constants and phonons. Major accomplishments included calculations of stacking fault and twin energies in layered TiAl, structural stability in binary and ternary Ti-Al-Nb compounds, and point defect energies and elastic moduli of Laves phase intermetallics.

Background and Research Objectives
Intermetallic compounds possess many properties that make them attractive in technological applications. Many of the ordered intermetallics exhibit high melting points and large elastic moduli, implying high strength at elevated temperatures; these materials are thus strong candidates for use as high-temperature structural materials. Ti-Al alloys, for example, because of their low densities, are potentially useful for aerospace applications. Despite these attractive properties, a major barrier to the widespread use of ordered intermetallics is that most of them lack room temperature ductility and/or toughness. There has been much research directed at improving the ductility of these alloys. A possible means for achieving this lies in stabilizing these alloys in different structures. Polysynthetically twinned TiAl, for example, exhibits improved low temperature ductility under uniaxial stress. Different structures may also be stabilized by ternary additions. The mechanism for this improved ductility, is not well understood.

Although the mechanical properties of intermetallics are determined by phenomena occurring over several length scales, an accurate understanding of the electronic structure of these materials is essential for any predictive, first principles theory of mechanical behavior. Methods for calculating the electronic structure of materials from first principles

*Principal Investigator, jxw@lanl.gov
have been developed extensively over the last few years, to the point where accurate
calculation of complex material properties is becoming feasible. The goal of this project
was to further this development in application to the calculation of material properties such
as extended and point defects, structural stability, elastic moduli, and phonon spectra both
on and off stochiometry in binary and ternary intermetallic compounds and alloys. The
calculations performed in the course of this research were based on highly accurate \textit{ab-initio}
electronic structure calculations. We sought to improve the \textit{ab-initio} understanding of the
elastic properties of these materials and, more generally, the relationship between structure,
composition, and mechanical properties in intermetallics.

\textbf{Importance to LANL\textquotesingle}s Science and Technology Base and National R&D
\textbf{Needs}

Of primary importance in attempting to engineer the properties of intermetallic
compounds is a theoretical understanding of the nature of structure, composition, and
elastic response in these alloys. Studying the energetics of point and extended defects in
intermetallics has the potential to significantly increase our understanding of mechanical
behavior in intermetallics while providing detailed theoretical data on a system of potential
technological importance. The study of elasticity in binary intermetallics as a function of
composition addresses relationships between composition and elasticity experimentally
observed but not well understood. The work performed under this project furthered the
development of the capability to calculate the equation of state (EOS) of materials from first
principles. This capability is highly desirable, theoretically as well as in application to
weapons and industrial technology. Our work develops and enhances Laboratory
capabilities in the core areas of advanced computing, modeling, and simulation and
integrated defense science and technology competencies. This work developed the theory
of intermetallic compounds at a fundamental level while providing practical information on
materials of technological importance. The electronic structure methods that we use are
"state-of-the-art" in \textit{ab-initio} electronic structure; the calculations performed under this
proposal push these methods to the limit and involve the development of new calculational
techniques for dealing with complex systems.

\textbf{Scientific Approach and Accomplishments}

Underlying the techniques used in this proposal was an \textit{ab-initio}, all-electron, total-
energy, electronic-structure method developed at LANL. Computer codes based on this
method are currently providing state-of-the-art calculations for elements, alloys, and
compounds throughout the periodic table. Three techniques were developed based on this
method during the course of this work. These techniques were all taken to the point of practical application, although further development is desirable and underway. A basic extension of the electronic structure method was the development of the method to be able to efficiently handle very large unit cells. This involved devising and/or implementing new algorithms for calculating and storing basis functions, potentials, and charge densities, and new algorithms for matrix diagonalization and construction. The principal calculation that was used as the focus for this development was the calculation of stacking fault and twin energies in layered TiAl. The geometry for this calculation consisted of stacked (111) planes of gamma-TiAl contained in a periodic supercell that contained as many as 72 transition and simple metallic atoms. Calculations for geometries containing both stacking faults and twins were taken to convergence. The change in energy and electronic structure (bands and EOS) were calculated and are being used to analyze extended defects in this material. The improvements made in the electronic structure code have since allowed the all-electron calculation of materials with unit cells containing 256 atoms, a record for all-electron, full potential, electronic structure calculations.

Extremely useful for the study of structural properties and defect structures in intermetallics was the development of ab-initio force calculations. The forces obtained from a density functional electronic structure calculation are Helman-Feynman forces with corrections; the difficult part of such a force calculation is in recognizing and implementing the corrections. For any basis set not containing its gradients, Pulay (or Incomplete Basis Set—IBS) corrections are essential. This correction is particularly tedious to implement on a site-centered basis such as that used in the electronic structure method being developed here, but the force method developed implements this correction fairly efficiently. Other necessary corrections, such as core and kinetic energy corrections, (Yu, 1991) were implemented without problem. Force calculations were then used in several calculations. Zone boundary phonons were calculated for TiAl and NiAl as a function of volume. These are being used, together with calculated elastic constants, to fit interatomic potentials to be used in the calculation of the EOS of these materials (Straub, 1994). Calculations of vacancy structures and formation energies in the Laves phase intermetallic NbCr(2) were performed using 24-atom supercells. These calculations were done with full relaxation and will be used together with calculated elastic moduli to investigate ductility in this material.

Several methods exist for the calculation of the electronic and structural properties of random alloys, ranging from the Virtual Crystal Approximation (VCA) to the Coherent Potential Approximation (CPA). Although the CPA is the theoretically most appealing of these methods, it is difficult to implement in full-potential calculations. The VCA has useful application in alloys containing constituents with similar electronic energy levels and, as a step toward a general capability for calculating the electronic structure and
structural energy of random alloys, we have implemented this method in our full-potential electronic structure code. In essence, this amounts to constructing an average Hamiltonian obtained by connecting alloy constituents with a common interstitial medium. This capability was used to investigate the energetics of (Ti, Zr, Hf)-(V,Ta) alloy structural stability and is currently being used to study volumes and Young's modulus in the metastable bcc phase of Nb-Cr alloys observed experimentally.

Other properties were studied under this project, making use of and testing the computational capability developed. The structural stability of stochiometric Ti-Al-Nb alloys (Ti(3)Al, Ti(2)AlNb, and Nb(3)Al was studied. The orthorhombic phase of Ti(2)AlNb is particularly interesting as it exhibits enhanced room-temperature ductility. A result of this study was the discovery that the stability of the orthorhombic phase is almost entirely due to lattice relaxation, and the source, in the electronic structure, of the lattice relaxation was identified (Asta 1994). This study was continued by investigating the stability of bcc-based binary and ternary alloys, motivated by the observation that Ti-Al and Nb-Al intermetallics do not form in simple bcc based structures, while the ternary Ti(2)AlNb has a stable high-temperature bcc-based phase (the Heusler phase). The energy along the Bain path was calculated for bcc based TiAl and NbAl and the Heusler structure in Ti(2)AlNb. The stability has been found to result from the additional electrons donated by Nb, essentially filling a set of valence bands (Asta, 1995). In the last year of the project, material properties of Laves phase intermetallics were studied, in part because of the potential availability of new experimental data (Ormeci, 1996). Calculations of the structural phase stability, formation energy, and elastic moduli of NbCr(2) and HfV(2) were completed as well as the vacancy formation energy discussed above.

Publications

References