AXO DETONATOR

L. D. Hanes

June, July, August 1969
Purchase Order Nos. 9316-75 & 9316-77

An investigation of some of the factors affecting performance of a coaxial type spark gap detonator.

ABSTRACT

A factorial spark gap detonator study is presented, with the results. UK PETN, (MF 81/10, 6200 cm3/g) at 1.12 g/cm3 had a higher voltage breakdown and a higher power deposition than others in the test.

A somewhat unusual firing system employed for these tests is described.
A factorial type experiment was performed on AXO type detonators with 10-mil electrode spacing using preaged powders. The three-factor, three level experiment was performed for the purpose of determining the effect of specific surface areas (or particle sizes), density, and energy input (including rate of energy input) upon various dependent variables. The independent factors and the levels of each are outlined in Table 1.

The fire set used for the tests was a triggered spark gap type with a modified output, shown schematically in Fig. 1. The output circuit capacitor C₂, which electrically parallels the AXO detonator, is charged through the 15-ohm resistor by capacitor C₁ upon triggering the spark gap. By adjusting the value of C₂ one can control the slope of the voltage ramp as seen by the AXO detonator. This somewhat unorthodox fire set was chosen so that voltage profile could be monitored and power profile calculated.

The currents contributed by capacitor C₁, the current contributed by capacitor C₂, di/dt of C₂ mixed with the AXO output pin pulse, and voltage across the AXO were recorded on Tektronix 519 oscilloscopes. A typical set of film records—PX PETN 8220 at 1.00 g/cm³ fired with capacitor C₂ of 0.04 μf—is shown in Fig. 2. The currents were summed to obtain the total current through the AXO. Transmission time (tₑ) was measured from voltage breakdown to pinswitch ionization using records 3 and 4; the fiducial marked was used for time orientation between the two records. Voltage breakdown is defined as the breakover point between the semi-linear voltage ramp and the exponential decay (sum of two exponentials each due to one of the capacitors discharging through the AXO).
<table>
<thead>
<tr>
<th>Factors</th>
<th>Level I</th>
<th>Level II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>0.01 uf</td>
<td>0.02 uf</td>
</tr>
<tr>
<td>Powder Type</td>
<td>PX PETN 8227*</td>
<td>PX PETN 8220†</td>
</tr>
<tr>
<td>Density</td>
<td>0.88 g/cm³</td>
<td>1.00 g/cm³</td>
</tr>
</tbody>
</table>

*Preaged 96 hrs. @ 100°C, $S_D = 3200 \text{ cm}^2/\text{g (FSSS)}$, average particle diameter = 9.5 μ, LRL Quarterly Report for July, August, September 1968.

†Preaged 300 hrs. @ 100°C, $S_D = 4500 \text{ cm}^2/\text{g (FSSS)}$, average particle diameter = 7.45 μ, LRL Quarterly Report for July, August, September 1968.

‡Preaged 300 hrs @ 100°C, $S_D = 6200 \text{ cm}^2/\text{g (FSSS)}$, average particle diameter = 5.5 μ, Sandia Quarterly Report for September, October, November 1967.
Fig. 2
AXO Test Records
(PX PETN Batch 8220, 4500 cm²/g, 1.00 g/cm³)
(C₁ = 2.0 μf; C₂ = 0.04 μf)

Display of the current delivered by capacitor C₁ (left) and capacitor C₂ (right). The CVR's were connected for negative polarity.

Display of the di/dt and pin switch (left) and the voltage across the AXO (right).
Data reduction included the assessment of breakdown voltage, transmission time, peak current, time rate of change of the voltage ramp, time rate of change of the current following breakdown, power profile from voltage breakdown to the peak power point, and peak power.

Power expended in the AXO detonator versus time measured from breakdown is plotted in Figs. 3 through 11.

An analysis of variance was computed for six dependent variables—breakdown voltage, transmission time, peak current, peak power, di/dt following breakdown, and dv/dt for the charging ramp. These results are given in Tables II through VII.

The relative importance of the independent variables can be estimated from the size of the mean square deviations listed in Tables II through VII: the greater the number, the higher the probability of significance. Actual significance cannot be presently computed because the experimental error is not determinable. (There was no replication because of cost and availability of hardware.) Main and first-order effects of the independent variables on breakdown voltage and transmission time are plotted in Figs. 12 through 27 with plus or minus one sigma bars which, it should be remembered, represent the effect of the factors that are averaged into each point. The other dependent variables and second-order effects are not plotted because they are apparently not significant.
Fig. 3

Power versus Time from Breakdown

PX PETN Batch 8227

$C_2 = 0.01 \text{ uf}$

$C_1 = 2.0 \text{ uf}$

- $\triangle \rho = 0.88 \text{ g/cm}^3$
- $\circ \rho = 1.00 \text{ g/cm}^3$
- $\square \rho = 1.12 \text{ g/cm}^3$

Power in AXO (MW)

Time from Breakdown (usec)
Fig. 4

Power versus Time from Breakdown

PX PETN Batch 8220

C2 = .01 uf
C1 = 2.0 uf

\[\Delta \theta = \frac{.88 g/cm^3}{\rho = 1.00 g/cm^3} \]
\[\Delta \theta = \frac{1.12 g/cm^3}{\rho = 1.12 g/cm^3} \]

Time from Breakdown (usec)
Fig. 5

Power versus Time from Breakdown

UK PETN MF/81/10
\[C_2 = 0.01 \, \mu F \]
\[C_1 = 2.0 \, \mu F \]

- \(\triangle \rho = 0.88 \, \text{g/cm}^3 \)
- \(\circ \rho = 1.00 \, \text{g/cm}^3 \)
- \(\square \rho = 1.12 \, \text{g/cm}^3 \)
Time from Breakdown

Fig. 6

PX PENN Batch 8227

Power versus Time from Breakdown

\(\text{Power} \)
Fig. 7

Power versus Time from Breakdown

PX PETN Batch 8220

$C_2 = 0.02 \ \mu f$

$C_1 = 2.0 \ \mu f$

- $\Delta \rho = 0.88 \ g/cm^3$
- $\circ \rho = 1.00 \ g/cm^3$
- $\square \rho = 1.12 \ g/cm^3$

![Graph showing power versus time from breakdown with various symbols and lines representing different densities and capacitances.](image-url)
Fig. 8

Power versus Time from Breakdown

UK. PETN MF/81/10

- $C_2 = 0.02 \ \mu F$
- $C_1 = 2.00 \ \mu F$
- $\rho = 0.88 \ \text{g/cm}^3$
- $\rho = 1.00 \ \text{g/cm}^3$
- $\rho = 1.12 \ \text{g/cm}^3$
Fig. 9

Power versus Time from Breakdown

PX PETN Batch 8227
\(C_2 = 0.04 \text{ uf} \)
\(C_1 = 2.00 \text{ uf} \)

- \(\Delta \rho = 0.88 \text{ g/cm}^3 \)
- \(\circ \rho = 1.00 \text{ g/cm}^3 \)
- \(\square \rho = 1.12 \text{ g/cm}^3 \)

Power in AXO (Mw)

Time from Breakdown (\(\mu \text{sec} \))
Fig. 10

Power versus Time from Breakdown

PX PETN Batch 8220

$C_2 = 0.04 \mu F$

$C_1 = 2.00 \mu F$

$\rho = 0.88 \text{ g/cm}^3$

$\rho = 1.00 \text{ g/cm}^3$

$\rho = 1.12 \text{ g/cm}^3$
Fig. 11

Power versus Time from Breakdown

UK PETN MF/81/10

$C_2 = 0.04 \, \mu F$

$C_1 = 2.00 \, \mu F$

$\Delta \rho = 0.88 \, g/cm^3$

$\bigcirc \rho = 1.00 \, g/cm^3$

$\Box \rho = 1.12 \, g/cm^3$
Table II

Analysis of Variance
Breakdown Voltage (Kv)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sums of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (C_2)</td>
<td>1822091</td>
<td>2</td>
<td>9110</td>
</tr>
<tr>
<td>Specific Surface Area (S_o^p)</td>
<td>5952066</td>
<td>2</td>
<td>29760</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>11174779</td>
<td>2</td>
<td>55873</td>
</tr>
<tr>
<td>$C_2 \times S_o^p$</td>
<td>3079710</td>
<td>4</td>
<td>7692</td>
</tr>
<tr>
<td>$C_2 \times \rho$</td>
<td>17666984</td>
<td>4</td>
<td>44167</td>
</tr>
<tr>
<td>$S_o^p \times \rho$</td>
<td>16349915</td>
<td>4</td>
<td>40874</td>
</tr>
<tr>
<td>$C_2 \times S_o^p \times \rho$</td>
<td>11650301</td>
<td>8</td>
<td>14562</td>
</tr>
<tr>
<td>Total</td>
<td>67695847</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Grand Mean</td>
<td>4640</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table III

Analysis of Variance
Transmission Time (μsec)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sums of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (C_2)</td>
<td>0.09179</td>
<td>2</td>
<td>0.0458</td>
</tr>
<tr>
<td>Specific Surface Area (S_o^p)</td>
<td>0.82801</td>
<td>2</td>
<td>0.4140</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>0.00192</td>
<td>2</td>
<td>0.0009</td>
</tr>
<tr>
<td>$C_2 \times S_o^p$</td>
<td>0.09259</td>
<td>4</td>
<td>0.0231</td>
</tr>
<tr>
<td>$C_2 \times \rho$</td>
<td>0.12068</td>
<td>4</td>
<td>0.0301</td>
</tr>
<tr>
<td>$S_o^p \times \rho$</td>
<td>0.01393</td>
<td>4</td>
<td>0.0034</td>
</tr>
<tr>
<td>$C \times S_o^p \times \rho$</td>
<td>0.04821</td>
<td>8</td>
<td>0.0060</td>
</tr>
<tr>
<td>Total</td>
<td>1.19712</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Grand Mean</td>
<td>0.683</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IV

Analysis of Variance
Peak Current (Amps)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sums of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (C_2)</td>
<td>2181842</td>
<td>2</td>
<td>1090921</td>
</tr>
<tr>
<td>Specific Surface Area (S_0^P)</td>
<td>656021</td>
<td>2</td>
<td>328011</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>666048</td>
<td>2</td>
<td>333024</td>
</tr>
<tr>
<td>$C_2 \times S_0^P$</td>
<td>376579</td>
<td>4</td>
<td>94145</td>
</tr>
<tr>
<td>$C_2 \times \rho$</td>
<td>809659</td>
<td>4</td>
<td>202415</td>
</tr>
<tr>
<td>$S_0^P \times \rho$</td>
<td>541740</td>
<td>4</td>
<td>135435</td>
</tr>
<tr>
<td>$C_2 \times S_0^P \times \rho$</td>
<td>317551</td>
<td>8</td>
<td>39694</td>
</tr>
<tr>
<td>Total</td>
<td>5549441</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Grand Mean</td>
<td>1060</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table V

Analysis of Variance
Peak Power (kw)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sums of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (C_2)</td>
<td>3519789</td>
<td>2</td>
<td>1759894</td>
</tr>
<tr>
<td>Specific Surface Area (S_0^P)</td>
<td>3053826</td>
<td>2</td>
<td>1526913</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>5862466</td>
<td>2</td>
<td>2931233</td>
</tr>
<tr>
<td>$C_2 \times S_0^P$</td>
<td>2599227</td>
<td>4</td>
<td>649807</td>
</tr>
<tr>
<td>$C_2 \times \rho$</td>
<td>4179889</td>
<td>4</td>
<td>1044972</td>
</tr>
<tr>
<td>$S_0^P \times \rho$</td>
<td>5939566</td>
<td>4</td>
<td>1484892</td>
</tr>
<tr>
<td>$C_2 \times S_0^P \times \rho$</td>
<td>2483699</td>
<td>8</td>
<td>310463</td>
</tr>
<tr>
<td>Total</td>
<td>27638462</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Grand Mean</td>
<td>1850</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VI

Analysis of Variance
di/dt @ Breakdown (Amps/μsec)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sums of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (C_2)</td>
<td>6235642</td>
<td>2</td>
<td>3117821</td>
</tr>
<tr>
<td>Specific Surface Area (S_o^p)</td>
<td>3201606</td>
<td>2</td>
<td>1600803</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>55239946</td>
<td>2</td>
<td>27619974</td>
</tr>
<tr>
<td>$C_2 \times S_o^p$</td>
<td>237750212</td>
<td>4</td>
<td>59437553</td>
</tr>
<tr>
<td>$C_2 \times \rho$</td>
<td>101211025</td>
<td>4</td>
<td>25302756</td>
</tr>
<tr>
<td>$S_o^p \times \rho$</td>
<td>13538623</td>
<td>4</td>
<td>3384656</td>
</tr>
<tr>
<td>$C_2 \times S_o^p \times \rho$</td>
<td>314232893</td>
<td>8</td>
<td>39279112</td>
</tr>
<tr>
<td>Total</td>
<td>731409949</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Grand Mean</td>
<td>18200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VII

Analysis of Variance
dv/dt of Voltage Ramp (v/μsec)

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sums of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (C_2)</td>
<td>1146937177</td>
<td>2</td>
<td>573468588</td>
</tr>
<tr>
<td>Specific Surface Area (S_o^p)</td>
<td>53274184</td>
<td>2</td>
<td>26632091</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>99561529</td>
<td>2</td>
<td>49930765</td>
</tr>
<tr>
<td>$C_2 \times S_o^p$</td>
<td>87019032</td>
<td>4</td>
<td>21754758</td>
</tr>
<tr>
<td>$C_2 \times \rho$</td>
<td>296755728</td>
<td>4</td>
<td>74188932</td>
</tr>
<tr>
<td>$S_o^p \times \rho$</td>
<td>59251807</td>
<td>4</td>
<td>14812952</td>
</tr>
<tr>
<td>$C_2 \times S_o^p \times \rho$</td>
<td>192860786</td>
<td>8</td>
<td>24107595</td>
</tr>
<tr>
<td>Total</td>
<td>1935460240</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Grand Mean</td>
<td>13700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 12

Breakdown Voltage versus Density
(Vertical bands are plus and minus σ)
Breakdown Voltage versus Average Particle Diameter (FSSS)

(VERTICAL BANDS ARE PLUS AND MINUS \sigma)

Average Particle Diameter (Microns)
Fig. 14

Breakdown Voltage versus Specific Surface Area (FSSS)
(Vertical bands are plus and minus σ)
Fig. 15

Breakdown Voltage versus Density
(Vertical bands are plus and minus σ)

- $C_2 = .01 \, \mu F$
- $C_2 = .02 \, \mu F$
- $C_2 = .04 \, \mu F$

Breakdown Voltage (Kv)

Density (g/cm^3)
Breakdown Voltage versus Capacitance (C_2)
(Vertical bands are plus and minus σ)

- $\rho = 0.88 \text{ g/cm}^3$
- $\rho = 1.00 \text{ g/cm}^3$
- $\rho = 1.12 \text{ g/cm}^3$

Fig. 16
Fig. 17

Breakdown Voltage versus Density
(Vertical bands are plus and minus σ)

- -- ○ $S_D^0 = 3200 \text{ cm}^3/\alpha$
- - - △ $S_D^0 = 4500 \text{ cm}^3/\gamma$
--- □ $S_D^0 = 6200 \text{ cm}^3/\alpha$

Breakdown Voltage (KV)

Density (g/cm3)
Fig. 18
Breakdown Voltage versus Average Particle Diameter (FSSS)
(Vertical bands are plus and minus σ)

- □ - $\rho = 0.88 \text{ g/cm}^3$
- △ - $\rho = 1.00 \text{ g/cm}^3$
- ▲ - $\rho = 1.12 \text{ g/cm}^3$

Breakdown Voltage (KV)

Average Particle Diameter (Microns)
Fig. 19

Breakdown Voltage versus Specific Surface Area (FSSS)
(Vertical bands are plus and minus σ)

- $\rho = 0.88 \text{ g/cm}^3$
- $\rho = 1.00 \text{ g/cm}^3$
- $\rho = 1.12 \text{ g/cm}^3$
Fig. 20
Transmission Time versus Capacitance (C_2)
(Vertical bands are plus and minus σ)
Fig. 21

Transmission Time versus Average Particle Diameter (FSSS)
(Vertical bands are plus and minus ε)

Average Particle Diameter
(Microns)
Fig. 22
Transmission Time versus Specific Surface Area (FSSS)
(Vertical bands are plus and minus σ)
Transmission Time versus Density

(Vertical bands are plus and minus \(\sigma \))

Fig. 23
Transmission Time versus Capacitance (C_2)
(Vertical bands are plus and minus σ)

Fig. 24
Transmission Time versus Capacitance (C_2)

(Vertical bands are plus and minus σ)

Fig. 25
Average Particle Diameter (Microns)

Transmission Time versus Average Particle Diameter (FSSS) (Vertical bands are plus and minus σ)

Fig. 26
Transmission Time versus Specific Surface Area (FSSS)
(Vertical bands are plus and minus σ)

Fig. 27
FUTURE WORK; COMMENTS; CONCLUSIONS

Some qualitative conclusions may be drawn from visual inspection of the plots as to the relative effects of each parameter.

As might be expected the breakdown voltage exhibits significant dependence upon ρ, and possible S_g^p. In addition the interaction of ρ with S_g^p appears to affect the breakdown voltage.

In all tests performed UK PETN at 1.12 g/cm3 showed high dielectric strength (high V_{BD}). The main-effect plot of the action of density on V_{BD} gives an indication of the packing properties of each powder type since V_{BD} is related to the arc path length and shape through the powder.

The power curves for the high density UK PETN illustrate the enormous power which can be delivered to the AXO detonator. Note that the power curve may maximize at a different density for each batch although the overall trend is to maximize at the higher density.

Transmission time, t_e, shows an inverse dependence upon S_g^p (thus a direct dependence on average particle diameter). This is the most clearly observed effect in the experiment. But t_e shows no dependence upon density within the limits tested. This result may be due to canceling effects of induction time versus detonation velocity.

Shorter t_e at lower C_2 values are attributable to the higher di/dt attained.

UK PETN proved to be unique among the three powders tested; its properties appear to be quite different from those of PX PETN in the AXO configurations. Thus, in
some ways (e.g., direct comparison of those levels of S_P) its choice was not rigorously optimum for this experiment; but the unexpected difference information outweighs the loss of rigor in the third level of S_P.

A method to measure the time of ignition should be developed in order to obtain more useful information about the amount of input energy actually expended in the detonation process. Cutback studies should be performed to ascertain the minimum HE thickness required for detonation.

Some of the other spark gap detonator factors which require investigation are potential hazards in the field or other safety aspects, environmental effects, and specific applications.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.