Research program on fractured petroleum reservoirs. Final report, January 1, 1996--December 31, 1996

PDF Version Also Available for Download.

Description

Multiphase flow in fractured porous media is a complex problem. While the study of single phase flow in a fractured or a layered medium can be pursued by some kind of averaging process, there is no meaning to averaging two-phase flow when capillarity is an active force. For a two-layer system comprised of high and low permeable layers, the performance of gas-oil gravity can be less efficient than the homogeneous low permeable medium. On the other hand, heterogeneity may enhance water imbibition due to capillarity. Due to the above and various other complexities, current tools for predicting the performance of ... continued below

Physical Description

234 p.

Creation Information

Firoozabadi, A. May 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Multiphase flow in fractured porous media is a complex problem. While the study of single phase flow in a fractured or a layered medium can be pursued by some kind of averaging process, there is no meaning to averaging two-phase flow when capillarity is an active force. For a two-layer system comprised of high and low permeable layers, the performance of gas-oil gravity can be less efficient than the homogeneous low permeable medium. On the other hand, heterogeneity may enhance water imbibition due to capillarity. Due to the above and various other complexities, current tools for predicting the performance of fractured hydrocarbon reservoirs are not reliable. Based on the research work carried out at the Reservoir Engineering Research Institute, and some other Institutions, a good deal of progress has been made in recent years. But still we are a long way from good predictive reservoir models. In this final report, we summarize some of our achievements in the understanding of multiphase flow in fractured media. Since some of the features of two-phase flow in fractured and layered many are similar due to the capillary forces, the work includes progress in both types of media. There are some basic issues of flow in both fractured and unfractured media that are currently unresolved. These issues include: (1) new phase formation such as the formation of liquid phase in gas condensate reservoirs, and gas phase formation in solution gas drive process and (2) composition variation due to thermal convection and diffusion processes. In the following, a brief summary of our findings in the last three years during the course of the project is presented.

Physical Description

234 p.

Notes

OSTI as DE96001276

Source

  • Other Information: PBD: May 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96001276
  • Report No.: DOE/BC/14875--13
  • Grant Number: FG22-93BC14875
  • DOI: 10.2172/513532 | External Link
  • Office of Scientific & Technical Information Report Number: 513532
  • Archival Resource Key: ark:/67531/metadc698340

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Nov. 10, 2015, 9:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Firoozabadi, A. Research program on fractured petroleum reservoirs. Final report, January 1, 1996--December 31, 1996, report, May 1, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc698340/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.