Studies of the structure of turbulence by high-resolution simulation and theory

PDF Version Also Available for Download.

Description

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a study of structures of fluid turbulence using high-resolution direct numerical simulation and the theory development based on observations and measurements on the numerical simulations. Significant advances have been made in the study of fundamental fluid turbulence through numerical and theoretical work. The research has been focussed on the following areas: (1) The dynamics of advected passive scalar: Using the equations of motion, we analytically predict the anomalous scaling exponents for a passive scalar advected by ... continued below

Physical Description

9 p.

Creation Information

Chen, Shiyi; Kraichnan, R. & Zemach, C. December 31, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a study of structures of fluid turbulence using high-resolution direct numerical simulation and the theory development based on observations and measurements on the numerical simulations. Significant advances have been made in the study of fundamental fluid turbulence through numerical and theoretical work. The research has been focussed on the following areas: (1) The dynamics of advected passive scalar: Using the equations of motion, we analytically predict the anomalous scaling exponents for a passive scalar advected by fluid turbulence. The exponents are verified through large-scale simulation with 8192{sup 2} mesh points. This is the first case in which anomalous scaling exponents for a turbulence problem have been deduced from the equations of motion. (2) The inertial range scaling in three-dimensional (3D) turbulence: High-resolution direct numerical simulations of 3D Navier-Stokes turbulence with normal viscosity and hyperviscosity are carried out to study the inertial-range statistics. It is found that both the scalings and the probability distribution functions are independent of the dissipation mechanism, but the near-dissipation-range fluctuations show significant structural differences; (3) Statistics and structures of pressure field, vorticity, and dissipation in three-dimensional incompressible isotropic turbulence have been studied. The statistical relations among pressure, vorticity, dissipation, and kinetic energy are investigated using a conditional averaging process; and (4) The refined similarity hypothesis: We studied the conditionally averaged velocity increments as a function of the locally averaged dissipation. Our results provide direct evidence in support of the refined similarity hypotheses.

Physical Description

9 p.

Notes

OSTI as DE98001518

Source

  • Other Information: PBD: [1998]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98001518
  • Report No.: LA-UR--97-3288
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/560866 | External Link
  • Office of Scientific & Technical Information Report Number: 560866
  • Archival Resource Key: ark:/67531/metadc698192

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 20, 2016, 1:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chen, Shiyi; Kraichnan, R. & Zemach, C. Studies of the structure of turbulence by high-resolution simulation and theory, report, December 31, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc698192/: accessed September 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.