Deposition uniformity, particle nucleation and the optimum conditions for CVD in multi-wafer furnaces

PDF Version Also Available for Download.

Description

A second-order perturbation solution describing the radial transport of a reactive species and concurrent deposition on wafer surfaces is derived for use in optimizing CVD process conditions. The result is applicable to a variety of deposition reactions and accounts for both diffusive and advective transport, as well as both ordinary and Knudsen diffusion. Based on the first-order approximation, the deposition rate is maximized subject to a constraint on the radial uniformity of the deposition rate. For a fixed reactant mole fraction, the optimum pressure and optimum temperature are obtained using the method of Lagrange multipliers. This yields a weak one-sided ... continued below

Physical Description

21 p.

Creation Information

Griffiths, S.K. & Nilson, R.H. June 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A second-order perturbation solution describing the radial transport of a reactive species and concurrent deposition on wafer surfaces is derived for use in optimizing CVD process conditions. The result is applicable to a variety of deposition reactions and accounts for both diffusive and advective transport, as well as both ordinary and Knudsen diffusion. Based on the first-order approximation, the deposition rate is maximized subject to a constraint on the radial uniformity of the deposition rate. For a fixed reactant mole fraction, the optimum pressure and optimum temperature are obtained using the method of Lagrange multipliers. This yields a weak one-sided maximum; deposition rates fall as pressures are reduced but remain nearly constant at all pressures above the optimum value. The deposition rate is also maximized subject to dual constraints on the uniformity and particle nucleation rate. In this case, the optimum pressure, optimum temperature and optimum reactant fraction are similarly obtained, and the resulting maximum deposition rate is well defined. These results are also applicable to CVI processes used in composites manufacturing.

Physical Description

21 p.

Notes

OSTI as DE97053036

Source

  • Other Information: PBD: Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97053036
  • Report No.: SAND--96-8614
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/574183 | External Link
  • Office of Scientific & Technical Information Report Number: 574183
  • Archival Resource Key: ark:/67531/metadc698175

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Nov. 12, 2015, 11:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Griffiths, S.K. & Nilson, R.H. Deposition uniformity, particle nucleation and the optimum conditions for CVD in multi-wafer furnaces, report, June 1, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc698175/: accessed July 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.