The Korteweg-de Vries equation (KdVE) is a classical nonlinear partial differential equation (PDE) originally formulated to model shallow water flow. In addition to the applications in hydrodynamics, the KdVE has been studied to elucidate interesting mathematical properties. In particular, the KDVE balances front sharpening and dispersion to produce solitons, i.e., traveling waves that do not change shape or speed. In this paper, we compute a solution of the KdVE by the method of lines (MOL) and compare this numerical solution with the analytical solution of the KdVE. In a second numerical solution, we demonstrate how solitons of the KdVE traveling ...
continued below
Publisher Info:
Superconducting Super Collider Lab., Dallas, TX (United States)
Place of Publication:
Dallas, Texas
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
The Korteweg-de Vries equation (KdVE) is a classical nonlinear partial differential equation (PDE) originally formulated to model shallow water flow. In addition to the applications in hydrodynamics, the KdVE has been studied to elucidate interesting mathematical properties. In particular, the KDVE balances front sharpening and dispersion to produce solitons, i.e., traveling waves that do not change shape or speed. In this paper, we compute a solution of the KdVE by the method of lines (MOL) and compare this numerical solution with the analytical solution of the KdVE. In a second numerical solution, we demonstrate how solitons of the KdVE traveling at different velocities can merge and emerge. The numerical procedure described in the paper demonstrates the ease with which the MOL can be applied to the solution of PDEs using established numerical approximations implemented in library routines.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Schiesser, W.E.Method of lines solution of the Korteweg-de Vries equation,
report,
June 1, 1993;
Dallas, Texas.
(digital.library.unt.edu/ark:/67531/metadc698169/:
accessed April 24, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.