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Abstract 

Congestion and contention can greatly reduce the effective performance of an interconnection network. 
'This report gathers together research done under a Laboratory Research and Development Program (LDRD) 
project at Sandia National Laboratories. The goal of the project was to explore the contention properties 
of novel optical interconnects. In the process of exploring optical interconnects the project also gained new 
insights into the use of backoff protocols in the current dominant interconnect technology, Ethernet. 
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1 Introduction 
Over the last ten years Sandia has had great success by replacing the old monolithic supercomputer model 
with the massively parallel processing (MPP) model. In conjunction with both nCUBE and Intel Sandia 
has developed machines which contain thousands of processors. Groups at IBM and SGI/Cray have followed 
suit. Currently many groups x e  working on clustering commodity building blocks to attempt to emulate 
the success of MPPs without ir icurring the cost creating custom networks. 

The research described in t k  is report was targetted to look at networks of the future which might become 
useful in creating MPPs or distributed supercomputers. Three key properties determine the usefulness of a 
network to MPPs: latency, bandwidth, and congestion. 

Latency is the time required for the first bit of a message to arrive from one node to another. Currently 
much of the latency time derivz from software overhead and from memory latency on the nodes. A small 
amount of latency is due to the travel time through the network. At current clock speeds even short 
distances can yield measurable speed-of-light transit times. However, there is little which can be done within 
the network design to avoid these latencies. Thus when latency enters into the research it is usually in the 
form of ensuring that latency has not been increased rather than in looking for ways to decrease latency. 

Bandwidth is the rate at which data can flow through the network between two nodes. Networks with 
higher clock rates and/or wider links have higher bandwidths. Optical technologies can potentially greatly 
increase the bandwidth availabl 2. By making the size of links smaller it can also allow there to be more links 
and thus increase the system wi 3e bandwidth. Understanding the implications of using optical interconnects 
was thus chosen as a focus of the research described in this report. 

Perhaps the greatest effect of network design is in the amount of congestion observed. Congestion can 
occur when several messages attempt to use the same link at the same time. In a fully connected network 
(with a direct link between every pair of nodes) there is no congestion on the links. Unfortunately with 
electric wires (or circuit board Ijnes) it becomes prohibitively expensive to produce fully-connected networks 
for thousands of nodes. The z.bdity of optical networks to broadcast a message in space and use wave 
properties to avoid interference provides a way around the cost of creating direct links between millions 
of pairs. However, the practica use of such a system must also address congestion due to many messages 
arriving at a single node at a time. This project set out to build on earlier work which suggested that better 
algorithms could limit arrival cclngestion. 

One early surprise in the research was that it became apparent that the techniques being developed for 
optical interconnects of the future applied well to ethernet networks of the past and present. Ethernet is 
also based on broadcast over a :;hared medium, in this case an electrical bus rather than an optical media. 
Backoff protocols to recover fron contention for the bus have been in use since 1976. However, there has 
remained room for theoretical iriprovement of the standard ethernet protocols. The majority of this report 
is a reprinting of a paper by the first two authors showing that superhear backoff protocols are stable for 
a wide range of ethernet uses. This paper also includes a discussion of the use of the new protocol within 
optical networks. 

2 Optical Networks 
Over the last several years a standard model of optical networks has been developed. In this model each 
node is assumed to have a transmitter which can in each time step send a message to any other node. Each 
node also has a receiver which :an receive a message from any other node. However, the receiver is not 
capable of processing multiple inzoming messages at the same time. Thus, if only one message is sent to this 
node it is received properly but if more than one message is sent than nothing is received. It is relatively 
straightforward to show ways of providing confirmation of reception so it is assumed that the sender knows 
whether the message arrived or not. 

Within this model a standarc. algorithmic test is the routing of an h-relation. In an h-relation each node 
has a message to send to at moljt h other nodes and each node is the target of at most h messages. The 
send bound is easy to check locally by having each node count its number of outgoing messages. The receive 
bound is less obvious to ‘check zmd most algorithms just assume it is a given. The challenge is to avoid 
sending several messages to the jame node concurrently while using only the ability to send messages as a 
means of coordination. 
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Several papers describing this model and work done in the model prior to this project are listed below. 

0 Leslie Ann Goldberg, Yossi Matias and Satish Rao, An Optical Simulation of Shared Memory- SPAA 
6 (1994) 2517-267. Submitted for journal publication. 

0 Leslie Ann Goldberg, Mark Jerrum and Phil MacKenzie, A Lower Bound for Routing on a Completely 
Connected Optical Communication Parallel Computer. To appear in SIAM Journal on Computing. 

0 Leslie Ann Goldberg. Mark Jerrum, Tom Leighton, and Satish Rao, Doubly Logarithmic Communi- 
cation Algorithms for Optical Communication Parallel Computers. To appear in S U M  Journal on 
Computing. 

Leslie Ann Goldberg. Routing in Optical Networks: The Problem of Contention, in Interconnection 
Ketworks and 1Iapping and Scheduiing Parallel Computations: DIMACS Series in Discrete Mathe- 
matics Vol 21. (Frank Hsu, Arnold Rosenberg and Dominique Sotteau, eds.) American Mathematical 
Society 1995. 

Subsequent to leaving the Sandia project the first two authors also published the following paper. 
Leslie Ann Goidberg and Philip D. MacKenzie, Contention Resolution with Guaranteed Constant Ex- 

pected Delay. to appear in the Proceedings of the Symposium on Foundations of Computer Science 38 
(1997). 

3 Ethernet backoff protocols 
The majority of the results of this project were pubIished as the following paper which is reprinted in its 
entirety as Appendx .A. 

Leslie Ann Goldberg and Philip D-MacKenzie, Analysis of Practical Backoff Protocols for Contention 
Resolution with Multryle Servers. Proceedings of SODA 17 (1996) 554563. Submitted for journal publication. 

4 Summary 
The LDRD project described in this report set out to better understand interconnection networks for poten- 
tial use in future MPPs. Sea. algorithms and theoretical bounds were discovered for both optical networks 
and ethernet busses 

Appendix A: Reprinted paper 
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Analysis of Practical Backoff Protocols for 
Contention Resolution with Multiple Servers* 

Leslie Ann Goldbergt Philip D. MacKenzie* 

Abstract 

Backoff protocols are probably the most widely used protocols for contention resolution in 
multiple access channels. In this paper, we analyze the stochastic behavior of backoff protocols 
for contention resolution among a set of clients and servers, each server being a multiple access 
channel that deals with contention like an Ethernet channel. We use the standard model in 
which each client generates requests for a given server according to a Bernoulli distribution 
with a specified mean. The client-server request rate of a system is the maximum over all 
client-server pairs ( i ,  j )  of the sum of all request rates associated with either client i or server j .  
(Having a sub-unit client-server request rate is a necessary condition for stability for single 
server systems.) Our main result is that any superlinear polynomial backoff protocol is stable 
for any multipleserver system with a subunit client-server request rate. Our result is the first 
proof of stability for any backoff protocol for contention resolution with multiple servers. (The 
multipl+server problem does not reduce to the singleserver problem, because each client can 
only send a single message at any step.) Our result is also the first proof that any weakly 
acknowledgment based protocol is stable for contention resolution with multiple servers and 
such high request rates. Two special cases of our result are of interest. Hastad, Leighton and 
Rogoff have shown that for a single-server system with a subunit client-server request rate any 
modified superlinear polynomial backoff protocol is stable. These modified backoff protocols are 
similar to standard backoff protocols but require more random bits to implement. The special 
case of our result in which there is only one server extends the result of Hastad, Leighton and 
Rogoff to standard (practical) backoff protocols. Finally, our result applies to dynamic routing 
in optical networks. Speciiidy, a special case of our result demonstrates that superlinear 
polynomial backoff protocols are stable for dynamic routing in optical networks. 

1 Introduction 
We study the problem of contention resolution with multiple clients and multiple servers. We 
assume that each server handles contention as follows: when multiple clients attempt to access the 
server at the sagle time, none succeed. This is the contention-resolution mechasism that is used 
in an Ethernet channel. Specifically, a client attempts to access an ethernet channel by sending a 
message to the channel. If no other messages are sent to the channel at the same time then the 
client's message is received and the client receives an acknowledgment. Otherwise, the message is 

'This work was performed at Sandia National Laboratories and was supported by the U.S. Department of Energy 
under contract DSACW76DP00789. Address: Sandia National Laboratories, MSllIO, PO Box 5800, Albuquerque, 
NM 87185-1110. 

'EmaiI: IagoidbQcs.sandia.gov 
%-mail: philmac@cssandia.gov 
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not received and the client mrst retransmit the message. The clients in the system use a contention- 
resolution protocol to decide when to retransmit. During the time that a client is trying to send 
one message, it may generate more messages that it needs to send. These messages are stored in a 
buffer. An important feature of a good contention-resolution protocol is that, even when messages 
are generated fairly frequently, the size of the buffers that are used remain bounded. 

We use the standard model in which each client generates requests for a given server according to 
a Bernoulli distribution with i. specified mean. Following Hbtad, Leighton and Rogoff [HLR93], we 
say that a contention-resolution protocol is stable for the specified request rates if the expectation 
of the average waiting time incurred by a message before it is successfully delivered is finite and the 
expectation of the time that elapses before the system returns to the initial state (in which there 
are no messages waiting in the buffers) is also finite. It is easy to see that if a protocol is not stable 
then the buffers that it requircs to store waiting messages grow larger and larger over time and the 
amount of time that it takes to send each message increases without bound. 

1.1 Related Previous Work 
The most popular protocol that is used for contention-resolution on an Ethernet is the Binary 
Exponential Buckofl Pmtocol of Metcalfe and B o a s  [MB76]. In this protocol each client maintains 
a counter, b, which keeps tracl: of the number of times that the client has tried to send its message 
and failed. After it unsuccessfully tries to send a message, it chooses t uniformly at random from 
the set (l,,. . ,2b}  and it retrimmits after t steps. (In practice, a truncated Binary Exponential 
Backoff Protocol is usually used, in which t is chosen uniformly at random from { 1, . . . , 2-{10,b)}. 
Many works refer to this truntated version as “Binary Exponential Backoff.”) 

Most of the previous results on contention-resolution protocols concern systems in which the 
number of clients is infinite. As [HLR93] explains, these results have limited relevance to the finite 
case. It has not been shown that the Binary Exponential Backoff Protocol is stable for Ethernets 
with a finite number of clients. However, there are some related results. In [GGMM88], Goodman, 
Greenberg, Madras and Mar& modify the protocol as follows. If a client has unsuccessfully tried 
to send a message then on each successive step (until the message is successfully delivered), it 
retransmits the message with p::obabiity 2-b. (The decision as to whether to retransmit the message 
is independent of a3l previous decisionh.) This Modified Binary Exponential BackoE Protocol is 
similax to the original protocol, but it is not implemented in practice because it requires too many 
random bits (a random number is reqnired at every time-step). [GGMM88] shows that the modified 
protocol is stable as long as the sum of the request rates, which we refer to as A, is suf3iciently small. 
(The dellnition of stability thai; is used in [GGMM88] is actually slightly weaker than the one that 
we use above.) [HLR93] shows that if X > 1/2, the modified protocol is unstable. However, it 
shows that any Modified Supehear  Polynomial Backoff Protocol (in which a client retransmits 
with probability ( b  + 1)‘”) is stable as long as a > 1 and A < 1. 

In [RU95], Raghavan and ‘Dpfal consider the problem of contention resolution with multiple 
servers, each of which handles :ontention in the same way as an Ethernet channel. Note that this 
problem does not reduce to multiple instances of the singleserver problem because each client can 
send only one message on each time step. Raghama and Upfal describe a contention-resolution 
protocol that is stable as long AS the snm of the request rates associated with any client or server 
is bounded from above by a constant A’ < 1. The expected waiting time of a message in their 
protocol is O(1ogN). This is much smaller than the expected waiting time of messages in any 
backoff protocol, which they show to be Q ( N ) .  However, their protocol is more complicated than 
a backoff protocol and A’ may l e  small compared to I, so their protocol may not be stable for high 
request rates. Furthermore, lice the modified backoff protocols, their protocol requires random 
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number generation on each time step. For these reasons, it seems likely that backoff protocols will 
continue to be used in practice for contention resolution with multiple servers. 

1.2 Our Results 
The client-sewer request rate of a system is the maximum over all client-server pairs (i,j) of the 
s u m  of all request rates associated with either client i or server j. Having a sub-unit client-server 
request rate is a necessary condition for stability for single-server systems. Our main result is that 
any snperhear polynomial backoff protocol is stable for any multiple-server system with a sub-unit 
client-server request rate. 

Our result extends the previous results in the following ways. First, our result is the first 
stability proof that applies to standard (un-modified) backoff protocols. This is important because 
the standard protocols are used in practice1. The special case of our result in which there is just one 
server extends the result of [HLR93] to standard (practical) backoff protocols. Second, our result is 
the first stability proof for any backoff (or modified backoff) protocol for contention resolution with 
multiple servers. Thus, our result generalizes the result of [HLR93] to the multiple-server case. 

We say that a contention-resolution protocol is wed& achmledgsnent based if each client 
decides whether to transmit on a given step without knowing anything about the other clients 
other than the number of clients in the system and the results of its own previous transmissions. 
Our result is the first proof that any weakly acknowledgment based protocol is stable for contention 
resolution with multiple servers and such high request rates. 

One application of our result is the following: When N processors are connected via a complete 
optical network (as in the OCPC model [AM88, RT94]), the resulting communication system con- 
sists of N clients and N servers. Thus, the special case of our result in which the number of clients 
is equal to  the number of servers shows that if the s u m  of the request rates associated with a given 
processor is less than 1 then any superlinear polynomial backoff protocol cas be used to route the 
messages. 

2 The Protocol 
There are many ways to generalize the ethernet backoff protocol to a multiple server protocol. We 
consider the following generalization, which is natural (and perhaps easiest to analyze). 

We have N clients and K servers. For each & a t  i and each server j we have a queue Q i j  which 
contains the messages that the client i has to send to server j. We use the notation qi,j,t to denote 
the length of Qi,j before step t. (qi,j,l = 0.) We define a backoff counter whose d u e  before step t 
is bj,j,t (bi,j,l = 0). The protocol at step t is as follows. With probability Xi,,, a message arrives at 
Qi,j at step t. If a message arrives and qi,j,t = 0 then Qi,j decides to send on step t. I3 q;,j,! > 0 
then Qj,j decides to send on step t only if it previously decided to retransmit on step t. If &at i 
has exactly one queue that decides to send, it sends a message from that queue (otherwise, it does 
not send any messages). After step t ,  the Msiables 4i,j,t+1 are set to be the new queue lengths. If 
Q i j  decided to send on step t but it was not successful (Le., either client i did not actually send 
the message, or more than one message was sent to server j (we refer to either of these events as 
a collision at queue Qj,j)), then it sets bij,t+l to bi,j,t + 1 and it chooses as integer 1 uniformly at 
random from (1,. . ., L(bj,i,t+l+ 1)"J) and it decides to retransmit on step t + 1. If Q;j successfully 
sent on step t then it sets bi,j,*+l to be 0. 

one that we study because of 
'Although standazd protocols are used in practice, the system that arises in practice is more complicated than the 

such as message length, synchronization and so on. See [HLR93] for the details. 
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ki order to simplify the analysis of the above protocol, we use the following equivalent formda- 
tion: For each queue Qi,j, we also define a step counter whose value before step t is si,j,t (s;,j,~ = 1). 
Then in the new formdation of the protocol, if q;,j,t > 0 then Q;,j decides to send on step t with 
probability s& (This decision is made independently of other decisions.) After step t, the step 
counters are updated as follows. If q;,j,t > 0 but Q;,j did not decide to send on step t then s;,j,t+l 
is set to si,j,t - 1. If Qi,j decided to send on step t but it was not successful then it sets S;,j,t+l 

to L(bi,j,t+l + 1)"J. If Q;,j successfully sent on step t then it sets si,j,t+l to be 1. (To see that this 
formulation is equivalent, note that the probability that Q;,j retransmits on a step t' in the r a g e  
t + 1,. . .,t + [(bi,j,t+l+ 1)"J after a collision at step t is l/[(b;,j,t+l+ 1)"J. Thus, each step in the 
range is equdy likely to be chosen.) 

3 The Proof of Stability 
Following [ELR93], assume that the system starts in the initial state in which there are no messages 
waiting in the buffers and le; TM be the number of steps until the system returns to this state. 
Let L; be the number of mesr,ages in the system after step i, aad let Lavg = limn-,m(l/n) Cy='=1 L,. 
Let Ways denote the average waiting time incurred by a message before it is successfully delivered. 
RecaJl that a contention-resolution protocol is stable for a given set of request rates if Ex[WS,.,) 
aad Ex[Tret] are finite when the system is run with those request rates. By a result of Stidham 
[Sti74], the fact that Ex[WaYg] is finite follows from the fact that Ek[Lav$ is finite. 

The main result of our piiper is that the protocol described in Section 2 is stable as long as 
Q: > 1 and the system has a sub-unit client-server request rate. The condition that the system 
have a sub-unit client-server Iequest rate is necessary in a single-server system. For the worst case 
multipleserver system (a system with the same number of clients and servers), the condition may 
reduce the usable bandwidth by up to a factor of 2. 

The starting point for om proof is the proof of [HLR93], so we begin by briefly describing th&* 
proof. We use the notation of [ELR93] in our proof whenever it is possible to do so. 

3.1 

The proof of [HLR93] analyzes the behavior of a Markov chain which models the single-server 
system. The current state of the chain contains the cment queue lengths and backof€ counters for 
all of the clients. The probahiities of transitions in the chain are defined by the protocol. The 
authors define a potentialfotnction which assigns a potential to each state in the chain. If the chaic 
is in state s just before step t ,  the potential of state s is defined to be 

The Stabsty Proof of Hiistad, Leighton and Rogoff 

The potential function is used to prove that Ex[Tnt] and Ex[LavJ are finite. 
The proof in [HLR93] has two parts. The bulk of the proof establishes the fact that there are 

constants 6, d and V such that for any state s with potential at least V, there is a tree of depth 
at most d of descendant states over which the decrease in the square of the potential is at least 
6POT(s). The proof of this fact has three cases. 
1. E state s contains a queue &; that will send aad succeed with overwhelming probability, then 

the authors consider the camplete tree of depth 1, and show that the expected decrease in the 
square of the potential is si&ciently large. 
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2. Otherwise, if state s contains a queue Q; with a big backoff counter then tue tree that they 
consider is the complete tree of depth 1 or 2. Since the backoff counter of Qi is big, the potential 
decreases significantly if Q; succeeds in sending a message. They show that this happens 
with sufiiciently high probability that the expected decrease in the square of the potential is 
SufEciently large. 

3. In the remaining case, they show that with reasonably high probability, a long queue (which 
we call the control queue) takes over and dominates the server for a long time, sending many 
messages. Specifically, the tree that they consider consists of long paths in which the control 
queue dominates the server (the potential decreases significantly on these paths) and of short 
branches off of the long paths in which something goes wrong and the control queue loses control. 
The potential may increase on these short branching paths. However, it turns out that it does 
not increase too much, so over the tree, the expected decrease in the square of the potential is 
s&ciently large. 
The second (easier) part of their proof shows that, given the fact that each state with sufficiently 

large potential has a tree as described above, Ex[Lavg] and Ex[T,t] are finite. 

3.2 Overview of our Stability Proof and Comparison to The Proof of Hktad 
et al. 

Following [HLR93], we view our protocol as being a Markov chain in which states are 3KN-tuples 
containing the queue lengths, backoff counters and step counters associated with each queue. The 
transition probabilities between the states are defined by the protocol. This Markov chain is easily 
seen to be time inmriant, irreducible, and aperiodic. We use a potential function argument to show 
that Ex[Tmt] and Ex[Lavg] are finite. In order to show that Ex[LavS] is finite we show that the 
expected average potential is bounded. According to our potential function, each state just before 
step t has the following potential associated with it. 

N K  

The use of step counters in our potential function is motivated by the following problem (which 
we describe in the single server case). Suppose that s is a state with two queues &I and Q2 that 
have step counters equd to 1, but huge backoff counters. In this case, with probability I, Q1 and 
Q 2  collide on this step, and increase their backoff counters. If the potential function of [ELI1931 
were used, this would cause a massive increase in potential. This is not the case with our potential 
function. 

Our proof is structurally similar to that of [HLR93] in that we first show that for every state s 
with POT(s) 2 V there is a tree of depth at most V - 1 rooted at s such that the expected decrease 
in the square of the potential over the tree is at least POT(s) and from this we prove that Ex[T,t] 
and Ex[Lavg] axe finite. Our proof of the first part is broken up into cases. However, we do not use 
the same cases as [HLR93]. For instance, our potential function prevents us from considering the 
first case of [HLR93] in which a single queue sends and succeeds with overwhelming probability. 
The problem is that this single queue only reduces the potential by 1, whereas the step counters of 
the other queues cause a larger increase in potential. 

The first case that we consider is the case in which every backoff counter in s is small. Suppose 
that Q1,1 is the longest queue in s. (We call &,I the control queue.) In the skgle-server case, 
[HLR93] finds a tree of depth U rooted at s such that with reasonably high probability, Q1,1 sends 
successfully on most of the U steps. When this occurs, the potential goes down because almost U 
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messages are sent Fhereas zit most XU messages are received. (The tree is defined in such a way 
that the backoff counters, which start small, do not increase the potential by too much) 

In the K-server case this approach does not suffice. First of all, it could be the case that atnost 
all o€ the messages start at queue Q ~ J ,  so it is the only queue that can dominate a server during the 
U steps. However, even thotgh Q1,1 sends a message on most of the U steps, about KXU messages 
are received on the U steps, so the potential increases (assuming K > A-’). One possible solution 
to this problem involves modifying the potential function to give Merent “weights“ to messages 
depending upon the distribction of queue sizes or backoff counters. However, this solution seems 
to cause other difEcult problems, and thus does not seem to help. 

Our solution to the problem is approximately as follows. We define a tree of descendant states of 
depth U such that with reasonably high probability Q ~ J  successfully sends on most of the U steps, 
and the part of the potentia. that is attributed to client 1 and server 1 goes down. Next, we wish 
to prove that the part of the potential that is attributed to the queues that do not have client 1 
or server 1 (we refer to these queues as free queues) does not go up too much over the tree. This 
problem is complicated by :;he fact that the free queues interact with the other queues as the 
Markov chain runs, so there axe dependence issues. In order to deal with the dependence of the 
control queue and the other queues with client or server 1 on the free queues, we let M denote 
the Markov chain that describes our protocol and we define several Markov chains that are simila 
to M but do not depend upm the behavior of the €tee queues. Next, we define the states in our 
tree in terms of the chains tl.at are similar to M rather than in terms of M itself. We prove that 
M is related to the other chains, aad we use this fact to prove that we still expect the potential 
that is attributed to client 1 and server 1 to decrease over the tree. We now wish to prove that 
we do not expect the potentd of the free queues to  go up much over the tree. The definition of 
the tree has nothing to do with behavior of the free queues, so the problem is equivalent to finding 
an upper bound on the expezted potential of the free queues at a given step, t. In order to iind 
such a bound, we have to deal with dependences because the queues that are not free can &ect 
the behavior of the free queues. If we (temporarily) ignore the dependences by pretending that the 
free queues are not disturbed by the other queues, our problem reduces to bounding the expected 
potential of a smaller client-server system at step t ,  To deal with the dependence, we define a 
stochastic process which is a Markov chain extended by certain “interrupt steps”. We show that 
even with the interrupt steps, the expected potential of the free queues does not increase too much 
by step t. The details are given in Case 1 of our proof. 

Cases 2 and 3 of our proof are similar to cases in the proof of [HLR93]. In both cases, s contains 
a backoff counter that is s.o.fficiently large such that, with sufEciently high probability, the queue 
with the large backoff counta sends and succeeds and decreases the square of the potential. 

Our fourth ( a d  final) case is motivated by a problem that cas occur when s has a queue &j,j  

with a big backos counter. bt the single-server case, [HLR93] either finds a queue Q ~ J , ~ I  that will 
successfully send with OverWfielming probability, or shows that with sdiciently high probability 
&;,j sends successfully within 1 or 2 steps (as in our Cases 2 asd 3). As discussed above, even if 

sends successfully, the llotential may not decrease. However, &;t,j~ might prevent Q j j  from 
sending successfully. Thus, thc approach of [HLR93] does not sufEce in the multiple-server case. We 
solve this problem by showing that unless it is s&ciently likely that &i,j (or some other queue with 
a big backoff counter) sends sriccessfully within some reasonable number of steps (in which case we 
are in Case 2 or 3), we can identify a control queue that dominates its server as in Case 1. This 
does not snfEice, however, because there may be free queues with big backoEcounters. Although we 
cas guasastee that at any given step t the expected potentid of the fiee queues does not increase 
too mu& (even if they have large backoff counters), we do not know of a way to guasastee that at 
any given step t the expected square of the potential does not increase too much in this case. We 
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solve this problem by identifying several control queues rather than just one, so that the free queues 
never have big backoff counters. Unfortunately, we cannot ensure that all of our control queues 
decide to send at the beginning of our tree. In order to make sure that the potential goes down, 
we must make sure that with reasonably high probability these delayed control queues succeed 
whenever they IinaUy do send. (Otherwise, they may never send again and the potential would 
go up.) To ensure this, we identify temporary control queues which dominate their servers for a 
while, blocking any queues that may send messages which collide with the messages of the delayed 
control queues. After a temporary control queue stops being a control queue it becomes a free 
queue. Thus, we also have delayed free queues and we have to argue about the increase in the 
square of the potential of the delayed free queues as well as that of the ordinary free queues. This 
situation is described in Case 4 of our proof. 

3.3 Preliminaries 
Fact 3.1 Given T 2 1, and given z, y 1 0 where Iz/yI < 1, (z + y)' 5 y' + r.1 rr+ll~r-lz 

Proof: The quantity (3 is defined as follows: 

The Binomial theorem says that if 1z/yl < 1 then (z + y>' = Ck (;)~~y'-~. We use the following 
observations to bound the sum. 

1. Iflc > T then I(;)zky'-kI 2 I&' +1 ) z k + y - - ( k + l ) l .  

2. If r is not an integer then for any odd positive integer i, (rri+;J < 0 and (rrlii+l) > 0. 

Thus, (z + y)" 5 Cz, ( ; ) ~ ~ y ' - ~ .  This quantity is at most 

3.4 Lemmas about Markov Chains 
In the following lemma, a > 1 is a constant, and we assume U is large enough so that the analysis 
holds. 

Lemma 3.1 Let c be a suficiently large constant. Consider a Markov c h i n  with states c m -  
spading to pairs of positive integers and tmmXons f r ~ m  (i, j )  to (i, j - 1) with pmbabiEity 1 - $ 
andfrom (i, j )  to (i+ 1, L(i+ 1)"J) with probability f .  If the initial state is (b1,sl) with s1 5 bf and 
t 5 U steps are taken, then with probability greater than 1 - O((1og U ) - l )  the state (b2, s2) reached 

1 - 1  -+f -  1-h 
at step t satisfies b;++ - s2 Ia - (b, S1 4 9  - < cul-*. 
Proof: Note that 
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1 1-' 
and that when at most U steps are taken, either s1 
in which case 

sp in which case si-= - s p  5 0 or s1 > sp 

4 a  - si-", s (s1 - s2)l -h 5 p - t .  
1 

So in general, we simply need to show that b;+5 - b:+$ 5 O(U1-*). 
For a given state ( i , j ) ,  we say i is the level of the state. We proceed in three cases. 

Case 1: bl < U1/(*+') 
For the f i s t  iU* steps after one reaches a level of at least U*, the probability of another 

increase in level is at most 2 U-*. Then in U of these steps, the expected number of increases 
in level is at most 2U1-* := 2 U X .  Using a Chernoff bound, the probability of over twice that 
many is at most 2 -Q(UWa+l) 5 O((logU)-l). Also, the number of increases at other steps &er 
one reaches a level of at least U h  can be at most 3 U l - a  = 3 U h ,  since there are at least 
LU* 3 steps between any of .;hose steps. Thus with probability 1 - O((log U)-'), bp < 8U*, and 
thus 

1 

b;+h - b;+B < - O( Ul-*). 

Case 2: bl 2 U1/ulog U 
If s1 2 iU(log U)O, then the probability of any increase in level at any of U steps is at most 

U(4U-l(log U)'O) 5 O((1og 
If s1 < aU(log U)O . then there might be a large possibility of an increase in level. If this increase 

occurs, we are essentially in the situation above, so with probability at least 1 - O((1og U)-'), there 
will be no further increases in level. Then b2 - 

E there is no increase in level, then b2 = bl.  

Q 1/2 is bounded by O(b,- ), but 

Thus 

Finally, if there is no increase in level, then b p  = bl. 
Case 3: ~l/("+l)  < bl < U1/(Q)log u 

Using a Chernoff bound (similar to Case I), we can show that with probability at least 1 - 
O((1og U)-l), there will be at most O(max{Ub,Q,loglog U)) increases in levels in at most U steps. 
Using Fact 3.1, we see that if Ub;" 5 loglog U then b2 - b;+li2 is bounded by 

Similarly, if log log U 5 Ubra then b2 - b;+lI2 is bounded by 

Let f be the €unction defined by f(z) = [z + ~ 1 8 - r z + ~ 1 .  
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Lemma 3.2 Consider a Markov chain with states corresponding to pairs of positive integers and 
tramitions from ( i , j )  to ( i , j  - 1) with probability 1 - $ and fmm ( i , j )  to (i + 1, [(i t 1)"J) with 
probability $. If the initial state is (bl ,  sl) with s1 5 by, and t < ( (bl  + 1)/ f steps are taken, 

1 1--' then any state (bz ,  s2) reached at step t satisfies b, "+F - s2 40 - (by+$ - si-&) - < SI. 
Proof: Let z be the number of transitions that cause an increase in level. If z = 0 then b2 = bl so 
the quantity has an upper bound of SI. Otherwise, the quantity is at most 

- ( [(bl + I)"] - t)l-& - by+$ f s ,  4 a .  

. 

(bl + 
1 - 1  

Now, ( [ (b l  + 1)"J - t ) ' - t  is at least ( (bl  + 1)" - (bl  + l)'/') 
which is at least (bl + 1)("-'I2)(b1 .+ l)('/'). We c a s  use the bound on t in the statement of the 
lemma to show that this is at least (b,  + 1)(a-1/2)t [a + 41 ["+%I. 

4a which is at least (bl + l)(a-1/8)(1-k) 

By Fact 3.1, (bl i - by+$ is at most bl(P-1/2)t[ct + $1 rQ+%l . The bound follows. 

Corollary 3.1 Consider a Markov chain with states corresponding to pairs of positive integers and 
transitions f.om ( i , j )  to ( i , j  - 1) with probability 1 - $ and from ( i , j )  to (i + 1, [(i + 1)"J) with 
probability 5. I' the initial state is ( b l ,  sl) with SI 5 by}  and 1 step is taken, then any state (b2 ,  $2) 

"+l /2  1 1 - 1  
reached at step r satisfies bF+T - s2 la - (b,  "++ - si-&) 5 s1 + f(a) . 
Lemma 3.3 Consider a Markov chain with states corresponding to pairs of positive integers and 
transitions fnnn ( t ,  j )  to ( i , j  - 1) with probability 1 - 5 and from ( i , j )  to (i + 1, [(i + 1)"J) with 
probability 5. If tAc initial state is (bl ,s l )  with s1 5 by, and (b2 , s z )  denotes the state after one 
step is taken, and B+ denotes b:+' - s2 Q-f1/2 1 1 - 1  1 1 - 2  - (byfT - s1 '"), then Ex(B+) 5 P f ( c r )  . 
Proof: B+ 5 (bl  i 1]"+~+b$1-8). I f ( b l f 1 )  5 f(a), this is at most f(a)"'i+f(a)". Otherwise, 
we use Lemma 3.2 to show that, when the level increases, B+ is at most SI. The probability that 

1 1---L 
the level increases is l/sl.  If the level does not increase, then B' is at most -(SI - 1)l-Z + s1 la 
which is at most 1. C 

A natural concept about Markov Chains we use is that of a tree of descendent states &om a 
given state s. Let the root node be ((s),to). Now for each node ((s, T I ,  ~ 2 , .  . ., T ) ,  i) at level i, and 
for each transition r -.. r' in the Markov chain, let ( ( s , T ~ , T ~ , .  . .,r,r'),i + 1) be a child of that 
node. When there is no confusion, we often refer to a node simply by the last state in its list of 
states. Assuming there is a potential fnnction defined OR the states of the Markov chain, we define 
the potentid of a code to be the potential of the last state in its list. 

We say a Mazkov Chain with non-negative potentials assigned to each state is V-good if it 
satisfies the following properties. 

1. If a state s has potential POT(s) 1 V then there is a tree of depth at most V - 1 rooted 
at s such that the expected decrease in the square of the potential over the tree is at least 
POT(s). 

2. For any state s with POT(s) 5 V, every transition from s is to a state with potential at most 
2v. 

3. The number of states with potential less than 2 V  is at most 2v. 
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4. From each state s wit:i POT(s) 5 V we can define a canonical path of length at most 2V 
to the unique state with potential 0 such that when the chain starts at s the probability that 
the path is taken is at least 2-? 

Lemma 3.4 Given a V-good Markov chain, let TRtv(s) denote the first step during which the 
potential lis at most V at the start of the step, given that the chain starts at s. (IfPOT(s) 5 V 
then Tretv(s) = 1.) Then staq-ting at any state s, 

Ex F ' P O T t ]  5 ~'(POT(S))~, 

Proof: (We model this proof after that in [HLR93].) As in [HLR93], since TXtv(s) might be 
infinite, a priori, we define a modified system that is terminated after T steps, meaning the system 
goes to the unique state of potential 0 at step T and stays there. We then prove 

is bounded from above by 2'1'0T(~)~ by induction on 2'. 
This is true for T = 1, since POTI = POT(s). This is also true for any s with POT(s) 5 V, 

since then T,,v(s) = 1. 
For the induction step, zsume that E(s,T') 5 ~ 'POT(S)~  for all 2" < T and any s with 

POT(s) 2 V. We then bound E(s,T)  as follows. 
Let the leaf s' of the trec of descendent states appear with probability p , ~ ,  have potential 

POT(s') and be at depth dd. Let POT'(s') denote the sum of POTt over the d,t steps taken to 
reach leaf s'. Since the potent:al can at most double at each step, 

4 1  
PClT'(s') 5 POT(s) x2j _< 2d6J+1POT(s). 

j=O 

Then following [HLR93], we c i a  see that 

E(s,T; 5 ~ps~(2d~r+'PoT(s)  + E(s',T - dsJ))  
S' 

5 2VPOT(s) + 2' ~P . I (POT(S ' ) )~  

5 2VPOT(s)+ 2VPOT(s)2 - 2'POT(s) 
= ~'POT(S)~.  

SJ 

As in [HLR93], this implies the lemma. 0 

Lemma 3.5 Given a V-good Markov chain, if we start at state s with POT(s) 5 V then the 
expected potential at step t is a t  most (~)~2~'. 

Proof: For any state s', consider the partial tree of descendent states from s' in which, for every 
node, all proper ascestors of th%t node have potential greater than V. Let St($) be the set of nodes 
at level t of this tree. Let E'(::',t) = '&St(sr)pvPOT(v), where p, is the probability of reaching 
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node v from s'. Let E(s') = E Z [ C ~ , ~  T&V( a') POT& Then E(s') = CtE' (s , t ) .  By Lemma 3.4, 
E(s') 5 ~'(POT(S))~. and thus Et E'(s',t) 5 2V(POT(s))2. 

Let E(s , t )  be the expected potential after t steps when starting in state s. We would like to 
prove for all t that when POT(s) 5 V, E(s , t )  5 (2V)222v. Let T be the full depth t tree of 
descendent states of s. Note E(s,  t )  is the sum over leaves of this tree of the probability of reaching 
the leaf times the potential of that leaf. For any node v E T, let d,  be the depth of o, and let p,, 
be the probability of reaching node o. Note that if Q is a set of nodes in T such that each leaf v in 
T has as ascestor v' in Q and every node on the path from v to u' has potential greater than V, 

Since the root of T has potential at most V, for every leaf v in T there is exactly one node 
u('D) which is the closest ascestor to 'D whose paent has potential at most V. We let Q = {a f r )  : 
o is a leaf of T}, and note that it satishes the conditions above. 

Now we let p,~,; be the probability of being in state s' at level i of T. (Note that this is the s u m  
of probabilities of being in 'my node at level i of T with state s'.) Let S be the set of all states 
with potential at most 2V. Then 

t 

= E'(s',t - i)psi,i 

t 
5 C E ' ( s ' , t  - i) 

= CE'(s ' , i )  

- < 2'(2V)2 

- < (2V)222V. 

s'fS i=o 
t 

s'ES i=o 

S'fS 

For the next lemma we extend a Markov chain with interrupt steps, which are steps in which we 
externally modify the transition probabilities of the chain. (Each step could modify the chain in a 
Herent way.) The timing and modification of these interrupt steps will be defined independently 
of the chain itself. 

Lemma 3.6 Consider a V-good M a T h  chain extended with a set of interrupt steps M ,  such that 
this extended Markov chain has the property that for any state s, the expected increase in potenid 
in one step is at most z, whether OT not the step is an intempt step. If we start at state s then the 
expectedpotential at step t of this extended Markov chain is at most POT(S)+((MI+Z)((~V)~~*"+ 
4. 
Proof: We prove this result for every set M which has the property stated in the lemma, by 
induction on IMI. Let E(s , t ,M)  be the cqected potential after t steps when starting in state s 
with a set of interrupt steps M. For the base case, let M = 0. We prove by induction on t that 
E(s, t ,@) .I POT(s) + (2V)222v. For t 5 V, E(s,t ,0) 5 POT(s) + V, asd when POT(s) < V, 
E(s, t ,  0 )  5 (2V)222v, by Lemma 3.5. 
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Now we must prove that the result holds for any s and t with POT(s) 2 V and t > V .  We can 
assume that the result holds for all t' with t' < t. Since POT(s) 2 V ,  we have a tree T of depth at 
most V - 1 such that the expected change in potential is at most zero. Let S contain each leaf in 
T. For a leaf s' of T, let p , ~  be the probability of reaching that leaf, and let dsl be the distance of 
that leaf from the root. Now we have 

E(-% t ,  0) 5 WE(s'7 t - d d ,  0) 
S'ES 

psi(POT(s') + (2V) 2 2 2v ) - 
S'ES 

POT(s) + (2V)222v, 

Now that the base case for /MI = 0 is established, we need to prove the result for [MI > 0 
assuming the result to be true for any t given that there are less than [MI interrupt steps. (Note 
that we prove a slightly stronger result for the case IMI = 0 than for /MI > 0.) 

Let tl be the time of the first interrupt step in M. Then E(s, t l -  1,0) 5 POT(s) + (2V)222v, 
and thusE(s,tl,0) 5 P O T ( S ) + ( ~ V ) ~ ~ ~ ~ + Z ,  pr'owweexamine thecomplete treeofstatesofdepth 
tl. C d  this tree T, and let S be the set of leaves of T. 

Defi POT,, = limn+= POT;. 

Lemma 3.7 Given a V-good M a ~ b v  chain, Ex(POT,,) 5 22v(2V)2 and Ex(Tret) 5 (2v(2V)2 + 
The following lemma is sindar to one in [HLR93]. 

2vpV3.  

Proof: Let SO be the state wkh potential zero. Let Tmt(s) be the number of steps taken to reach 
so when starting from s. Let p ; ( s )  be the probability of not reaching a state with potential at most 
V within i steps when starting; in state s. (For convenience, let p - l ( s )  = 1.) Then by Lemma 3.4, 
for any s with POT(s) 5 2V, 

Let 2 = m.x,:p~~~,>~v{~[~~.t(s)l). We w i l l  determine as upper bound for 2. 
From each state s with EOT(s) 5 V we cas define a canonical path of length at most 2V 

to so such that when the chain starts at s the probability that the path is taken is at least 2-". 
If the path is not taken then the chain will make a transition from the path, ending in some state 
s' where POT($) 5 2V. Let P , , + ~ I  be the probability that s' is the first step of€ the canonical path 
from s to so. Let p be the probability that s goes to so in the canonical way, and notice that this 
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will take at most V steps. Then for any s with POT($) 5 V, 

Then we get 2 5 2Vi(l-p)[2v(2V)2+z], fiom which we derive the bound 2 5 p-1[2V+2v(2V)2]. 
The result for Ex[T,,] follows by noting that p 2 2'vs. 

The bound on ExjT,,] implies that the a V-good Markov chain is stationary. &om Lemma 3.5, 
when starting from 50 ,  the expected potential at any step t is at most 22"(2V)2. Then we get 

Ex[POT,,,] = l n  EX[ lim - CPOTi]  
n+o3 n 

i=l 
. n  

I 

Ex[lim inf 1 POT;] 
n+w n 

i=l 

I n  liminf EX[- POT;] 
ndo3 

;=I 

The second equality relies on the fact that the limit exists with probability one (and an event 
with probability zero doesn't &ect the expectation), which can be shown using the strong ergodic 
theorem for stationary processes . The first inequality comes from Fatou's Lemma since the random 
variables are always non-negative. E7 

3.5 The Proof 
Now we are ready to prove stability of the N client, K server system as deiined in the introduction. 

Theorem 3.1 Suppose that we have an N client, K server system and message bund X < 1. 
Then there is a constant I' such f iat  the system corresponds to a V-good MaTkov chain. 

From Lemma 3.7 we get the following corollary. 

Corollary 3.2 Suppose thut we have an N client, K server system and message bound A. Then 
t k  is a constant V such that Ex(POT,) 5 22v(2V)2 and Ex(Tret) 5 (2v(2V)2 + V)2va. 

Proof: [of Theorem 3.11 We proceed by induction on K.  The case K = 0 is trivial with V = 1 so 
assume that the theorem holds for any K' server N' client system with K' < K (more specifically, 
with constant V ~ , N I , X ) .  We will show that it holds for a K server N client system. That is, we 
must d e h e  a constant V such that the Markov chain is V-good. (Note that we only need to prove 
the Theorem holds for large N ,  since this will imply the Theorem for smaller N ,  using the same 
v-1 
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Given large enough V ,  Clmditions 2 and 3 follow directly from the definition of the ethernet 
system. Condition 4 &o fallows directly from the definition. Suppose that s is a state with 
POT(s) 5 V. The canonical path of length at most 2V from s to the unique state with potential 0 
is defined as follows. First, 110 new messages arrive in the system during the walk on the path. 
Second, during the first V stcps of the path, every non-empty queue decides to send. If there are 
still messages in the system after the first V steps then, during the remainder of the path, the 
queues take turns sending. (E'irst, sends until it is out of messages and then Q1,2, and so on.) 
Since the system has at most '7 messages in state s,  the path has at most 2V steps. The probability 
that no messages arrive is thtrefore at least (1 - A)2KV. Since the backoff counters in state s are 
at most 2V- 1 the probability that every non-empty queue decides to send during the first V steps 
is at least (4V)'* VKN. The Frobabiity that the proper queue sends during the remaining steps is 
at least (4V)-"'. By the end of the iirst V steps, the step counter of every non-empty queue is at 
least V (actually, it is larger) Therefore? the probability that the other queues don't send during 
the remaining steps is at leas1 2-KNV.  Condition 4 follows. 

The rest of this subsection proves that Condition 1 holds for a V which will depend on N ,  
K ,  A, and V' = m~KI<K,Nl<NVKl,Nl,X. That is, we s e e k  to prove that if a state s has potential 
POT(s) 2 V then there is a tree of depth at most V -  1 rooted at s such that the expected decrease 
in the square of the potentid over the tree is at least POT(s). In order t o  help the reader follow the 
proof, we note that the Msiables that we will use in the proof will satisfy the following inequality. 

I - ,\ 
We will assume in the proof that each variable is chosen to be sdEciently large with respect to 

the smaller Msiables. We will have W = R/2  and 2 = W1/(2") - 2.  
Fix a state s with POT(s 1 2 V and suppose that the Markov chain is in state s right before 

step to.  We show that Conditilm 1 holds by splitting the analysis into cases, depending upon which 
(if any) of the following properties hold. 
1. every backoff counter bi,jn is less than B,  
2. there is a backoff counter 2 2 such that with probability at least 

queue Q;,j succeeds at leas; once during steps to,.. . ,to 4- 4 and every other queue Qp,jt decides 
to send on step t (for t f (to,. . .,to + 4)) only if sit,y,t 5 8. 

3. there is a backoff counter E~i,j,~, 2 B such that with probability at least 

queue Qi,j succeeds at least once during steps to , .  . .,to + R + 3 and every other queue Q p j t  
decides to send on step t (:'or t E {to, .  . . , t o  + R + 3)) only if ~ i t , j t , ~  5 R2". 
In our asalysis we use the following raadom variables: We let QZj (9;') denote the increase 

(decrease) in potential due to the queue length of Qi,j over a path in the tree of descendent 
states. We let B;',. (B;li) denote the increase (decrease) in potential due to the combination of 
backoff counter and step counler for Q ; j  over a path in the tree of descendent states. Then we let 
Q+ = cEl Q,',, and we define Q', B+, and B- analogously. We let 6 denote the change in 
potential over a path in the tree of descendant states and we let A denote the change in the square 
of the potential over a path in the tree of descendant states. 

be random variables which are uniformly 
distributed over the unit interval. We can now describe our protocol in tenns of these vaziables. 

We will use the following mtation. Let pi,j,t and 
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We will say that a message axrives at Qi,j at step t if p;,j,t 5 X i j .  If qi,j,t > 0 then Qi,j decides to 
send on step t if py,j,t 5 .Lit. The progress of the Markov chain describing our protocol (which we 
call M )  depends only the values of the p and p* wuiables. Thus, the branching at depth t in our 
tree depends on the values of the random Mlriables pi,j,t and p& In three of our cases, the states 
that we use for our tree are combinations of the states of Markov chains that are similar to M 
rather than states of M itself. (In Cases 2 and 3,  all of the chains start in state s at step to  and run 
with the p and p* values that are associated with the path in the tree. In Case 1, we argue about 
step to  separately, and the chains then start in a fixed state s' (dependent on s) at step t o  + 1.) 
In order to define the states that we consider in our tree, we define, for every queue Qi,j, a new 
Markov chain Mi,.. In the chain Mi,j, queue Q;,j follows the protocol, but all of the messages that 
it sends collide with messages sent by some external source. None of the other queues participate. 
We use the notation q&t, bZj$ and s t t  to denote the queue lengths and counters when Mi,j is 
run. The progress of Mi,. is a function of the random variables p;,j,t and We let B&f denote 
the increase in potential over a path in the tree due to the combination of the backoff counter and 
the step counter for Q;,j when Mi,. is run. (Since B;f; denotes an increase in potential when 

s;,j,t in the potential function when we calculate B;'. At all other times, when we speak of the 
potential function, we mean the original potential function, which depends upon q;,j,t, bij,t and 
Si,j,t .)  For every queue &,-j,d, we define a new Markov chain Ma. In the chain Md, the queues in 
{ Q i j  1 i = d or j = Q} follow the protocol, but the other queues do not participate. We use the 
notation ej,f, btj,* and s$t to denote the queue lengths and counters when Md is run. Note that 
if aJl of the chains are started at step t o  then q$,to+l - - qi,j,to+1 = ~ ; , j , ~ ~ + ~ .  d Similarly, each queue 
has the same initial counters for all three chains. Recall that in Case 1, we start the individual 
chains in a fixed state s' at step t o  + 1. Thus, in Case 1 qzj,fo+l = ~ i , j , ~ ~ + l  = Similarly, at 
step to  + 1, each queue has the same counters for all three chains. 

Mi,j is run (rather than when M is run), we use q$j,t, bi,j,t + and s&t in place of q;,j,t, b;,j,t and 

3.5.1 Case 1 

Property 1 holds: When the Markov chain is started in states right before step to with POT(s) 1 V, 
every backoff counter bi,j,t,, is less than B.  

Without loss of generality, we assume that Q1,1 is the largest queue in state s. We call Q I , ~  
the control queue and any other queue with client or server 1 a slave queue. We call the other 
queues free queues. Recall that our god is to show that there is a tree of depth at most V - 1 
rooted at s such that the expected decrease in the square of the potential (over the tree) is at least 
POT(s). We will let U denote the depth of this tree. (We will choose U such that ql,l,to 2 U.) 
As we stated above, the branching in the tree depends upon the values of the p asd p* variables, 
so by fking the d u e s  of the variables p;j,t and p:,j,t for a l l  i and j and ail t 5 t o  + U - 1 we 
fix a path p of length U. We define ~ ( p )  as follows: For every slave queue Qij, and every step 
t > t o  + 4, if Q i j  has b&t 5 E1/* and it decides to send on step t in M i j ,  then t is in <',-@). Let 
~ ' ( p )  = {t 1 Qi,j is a slave A t E ai&)}. Let ~ ( p )  = a'(p) U {t + 1 5 t o  + U - 1 I t E d ( p ) } .  Let 
Q&) denote the kth step in Q. We say that path p is good if it satitdies the following conditions. 

1. At step to,  no message is received at any queue, the control queue decides to send in M ,  every 
other queue Qi,. with q$to > 0 and s&to 5 5 decides to send in M ,  and no other queue Q;j 
decides to send in M .  

2. At step to + 1, no message is received at the control and slave queues, the control queue 
decides to send in M I ,  every slave queue Qi,l with q$l,to+l > 0 and s & ~ ~ + ~  5 4 decides to 
send in M ~ J ,  and no other slave queue Qi,j decides to send in M i j .  
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At step t o  + 2, no memage is received at the control and slave queues, the control queue 
decides to send in M I ,  every slave queue Q l j  with qtj,to+2 > 0 and 5 3 decides to 
send in MI,-, and no o;her slave queue Qi,j decides to send in M ; j .  

. At step t o  + 3, no message is received at the control and slave queues, the control queue 
decides to send in M I ,  every slave queue Qi,1 with qifi,t0+3 > 0 and s$1,tO+3 5 3 decides to 
send in M ~ J ,  and no other queue Qi, j  decides to send in Mi,.. 

3. At step t o  + 4, no messages are received at the control asd slave queues, the control queue 
decides to send in M I ,  and every slave queue Qi,j does not decide to send in Mi,. 

4. For each slave Q l j ,  and each t E &(p),  t # t o  mod 2. Also, for each slave Qi,1 ,  and each 
t E &(p),  t = t o  mod 2. 

5 -  For every step ak@) E cr(p), P ; , J , ~ ~ ( ~ )  5 (k + 
6. If t is in o(p) ,  and Q i , j  is a slave queue with bzj,t > R1/", then Qi, j  does not decide to send 

on step t in Mi,.. If t is not in a(p) and Qj,. is a slave queue with btj,t > R1/a which decides 
to send on step t in &i,j  then, for any t' in the rmge t - 2a - 1,. . . , t ,  there is no slave 
queue Q ; ~ , j t  with b$,j,,t, > R1/" that decides to send on step t' in M;t,jt. 

7. If Qi,j is a slave or control queue then for every t in the range to 5 t < t o  i- U, p:,js > 

8. For every slave queue Q;,j and any t in the range t o  5 t 5 to  + U, we have (& + l )O++ - 
- S i j , t o  ' -&) 5 2cU1-* where c is the constant defined in 

9. For any t in the range to + 5 5 t < t o  + U, the number of messages received by the control 

- 

2( log( u))-", 

sij , t  + 1 - t  - (@+. u t o  + 1) 
Lemma 3.1 

and slave queues during steps to + 5, . . . , t is at most A( t  - t o  - 4) + U1/2 log U. 

The tree that we consider will be the tree consisting of every good path of length U plus every 
child of every internal node of such a path. We will show that €or this tree &[A] 5 -POTe. The 
key to showing this will be to prove that with sufEicient probability a good path is taken when the 
chain is run. The properties in the definition of "good" deal with the Martov Chains Ma and Mi,j. 
However, we will prove that in the internal nodes of our tree, the state of M is related to the states 
of Md and Mi,.. Thus, we will be able to show that for this tree Ex[A] 5 -POTt,. 

We start by proving a lemma which establishes some of the relationships between M ,  M1 and 

Claim 3.1 If n is a node in dae tree at level t 2 t o  + 1 (i.e., step t is just about to take place) and 
the pa9.ent of n is in good path p ,  then 

M j .  

1. For any slave queue Q;,j .  qi,j,t = q&,t = qi,j,t, 1 b;,j,t = b$j,t = b k t  and Si, j , t  = siljtt + = s;tj,t. 1 
1 2. g1,l.t 5 ~l , l ,~ ,  bi,l,t 5 bi,l,t a d  ~1,1 , t  5 s:,l,t. 

3. If t > to + 4 t h m  b{ 7 7  5 1 + [ d ( p )  n {to,. . . , t - 111. 
Proof: The proof is by induction on t. First note that the actions of every queue is forced at step 
t o ,  asd thus there is only one node s' at step t o  + 1 in any good path. Then the base case includes 
the five steps t E {to + 1,. . .,IO + 5 )  The case t = t o  + 1 is clear because the queue lengths and 
counters have the same values before step t o  + 1 in all of the chains. To see that Item 1 holds for 
steps t o  + 2 to t o  +4, note that my slave queue that decides to send collides with the control queue. 
Spe&caUy, in step t o  + 2, only queues that client-codict with Q1,1 decide to send, and in steps 
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to  + 1 and to  + 3 only queues that server-conflict with decide to send, and in steps t o  + 1, to  + 2 
and t o  + 3, &1,1 decides to send. To see that Item 1 holds for t = t o  + 5 note that the slave queues 
do not decide to send on step to + 4. 

To see that Item 2 holds for steps t o  + 2 through t o  + 5 we consider the possible cases. In 
deiining the cases, we observe that for any t, if Item 2 has been established for step t - I, then if 
QIJ decides to  send on step t in M I ,  &1,1 also decides to send on step t in M .  Also, if Item 1 and 
Item 2 have been established for step t - 1, then if &1,1 sends and succeeds at step t in M I  then 
QIJ sends and succeeds at step t in M .  (Note that Item 2 was established for step t o  + 1.) The 
cases are: 

a. &,I sends and succeeds in M .  
b. QIJ decides to send in M and fails and does not decide to send in M I .  
c. &,I decides to send and fails in M and MI. 
d. &,I does not decide to send in M or MI. 

It is clear that Item 2 holds in Cases a, c, and d. Finally, we note that Case b c m o t  occur on 
steps to  + 1 through t o  f- 4 since Q I , ~  decides to send on those steps in M I ,  and inductively Item 2 
can be established €or steps t o  + 2 through t o  + 5. To see that Item 3 holds for t = t o  + 5 ,  we note 
that bi,l,to+5 is 0. 

We now do the induction step. In order to  establish Item 1, we wast to show that if a slave 
queue Q i j  sends on step t (for t > t o  + 4) then it collides in M and in M I .  We consider two cases. 
If t E a(p) (suppose that t = a&)), then, by property 4 and property 6, if j = 1, then no slave 
queue Q13 decides to send on step t. Whether or not j = 1, by property 5,  5 ( I C  + 1)-". 
Also, (by Item 3, inductively), bi,l,t 5 I C ,  so 5 ( I C  + 1)". By Item 2, inductively, sl,l,t 5 si . ,  t ,  
so the control queue decides to send on step t in M and MI. Thus, Q;j has a collision. Now 
suppose t $! cr(p). We will show that bi,l,t = 0. (To do this, we can assume inductively that for 
t' < t ,  if t' ob), then b: tt = 0.) Consider the maximum t' < t where either t' E a(p), some 
slave sent at step t', or t' = to + 5. If t' E &I), then t' + 1 @ ~ ( p ) ,  so no slave queue sends at step t', 
but by property 5 and the argument used above, &1,1 sends and succeeds at step t' in M I .  Thus 
b],l,t = 0. If t' = t o  + 5,  then &1,1 sends and succeeds at step t' in MI,  and therdore bi ? I  = 0. 
Otherwise, by property 6, t' < t - 2", and inductively bi 1 1  t l  = 0, so b:,l,tl+l = 1. But then &IS 
sends and succeeds by step t - 1, so = 0. Thus, (since the queue size of the control queue is 
at least U), it decides to send on step t and Qi,j has a collision. 

In order to establish Item 2, we want to d e  out Case b, in which &1,1 decides to send at step t 
in M and fails and does not decide to send in MI. We have already shown, in the analysis in the 
preceding paragraph, that &,I sends in M I  on every step in cr(p). So suppose that t @ ab). By 
the same argument as in the preceding paragraph, we can show that b:,l,t = 0 unless there is some 
t' < t, where some slave sends on step t' $! a ( p )  and t' 2 t - 2". So either no slave sends at step 
t ,  in which case Q1,1 will succeed if it decides to send, or else some slave sends at step t ,  and by 
property 6, bi,l,t = 0 (and thus Q1,1 decides to send in MI) .  Thus, Case b does not occur. 

In order to establish Item 3, we note that we have already shown that &1,1 sends in M1 on 
every step in ~ ( p ) ,  asd that it succeeds on the last step of every consecutive block of steps in a(p). 
F'urthermore, &1,1 succeeds on step to + 4. By property 6 (and, inductively, by Item l), Q1,1 can 
have at most 1 collision in M I  just before the consecutive block of steps from ~ ( p ) .  Item 3 follows. 
n 

, ¶  

As in [HLR93], we will use the equality 

&[A] = 2POTt0 k [ 6 ]  + Ex[h2]. 
Thus it is sufEcient to show that E[S]  5 -1 and Fx[~~] 5 POTt,. Let E be the event that a 
good path is taken when the chains are run. (That is, E is the event that all the conditions in the 
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definition of "good" hold for U steps.) Let E; be the event that condition i holds for U steps. Let 
U' = rnax(U1I2 log U, U1/" log U, U1-1/(4("+1)), U1-1/(4u) 

Call two paths in the trec? equivalent if and only if every queue has the same p aad p* values at 
step to, and every control a;l d slave queue has the same sequence of p and p* values over the the 
r e m h g  transitions in the paths. This notion of equivalence is cleaxly an equivalence relation. 
kthermore, if one path in the tree ends at level t (Le., if t < t o  + U, there is no good path 
continuing on from the node at level t ,  but there is a good path continuing on from the node at 
level t - I), then every equivdent path also ends at level t. 

Let M' denote the Markov chain in which the free queues run the protocol (after step t o ) ,  and 
no other queues participate. By induction, there is a constant V' such that M' is V'-good. Xow 
suppose that we fix a sequence of p and p* d u e s  for the control and slave queues and we run M .  
If we just look at the free queues during this run, we can think of this as being a run of M', in 
which M' is extended by the set of interrupt steps I which is determined by the sequence of p 
and p* d u e s  for the control and slave queues ( a d  the p and p* values of the queues at step t o ) .  
Lemma 3.3 shows that when M' is extended by I, the expected increase in potential in any one 
step (other than step t o )  is :,t most 3KNf(c1)*+'~~. (The expected increase due to each ba&oE 
asd step counter is at most 2 f ( t ~ ) " + ' / ~  and the expected increase due to each queue is at most 1.) 
If the fixed sequence of p ani p* va3ues is such that the path taken is in the tree (i.e, all of the 
properties continue to hold (eucept possibly after the last step)), then the number of interrupt steps 
in I is at most KNU1lalog( Y). (To see this, note that, by Claim 3.1, every slave queue collides 
every time it sends (except possibly the last time it sends). Furthermore, since Property 7 holds. a 
slave queue does not send on:e its backoff counter is U1/alog(U) - 1 (except possibly on the las: 
step). Therefore, the slave queues provide at most K N U 1 / u  log(U) interruptions.) 

Claim 3.2 Suppose that we ,% a paTticulaT equivalence class of paths of length at least t ,  and we 
condition on the event that wh ?n M is run for t steps, starting with step to, one of the paths &om thrs 
equivalence class is taken. Then the expected potential of the free queues, after the t steps, is at most 
the potentiaZ of the free queue:: at step t o  + 1 plus ((KNU'/"log U) + 3 K N f ( ~ t ) " + ~ / ~ ) ( ( 2 V ' ) ~ 2 ~ ' * '  + 

U}, and note U' = o( U). 

3KNf(a)=+1/2). 

Proof: We view the free queues as forming a Maxkov chain M' which is extended by the set of 
interrupts 1 that is determine1 by the set of p and p* d u e s  associated with the equivalence class. 
We now apply Lemma 3.6 using the facts that the expected increase in potential in any one step is 
at most 3 K N f ( c 1 ) " + ~ / ~  and the number of interruptions is at most (KNU'1"log U). 

Claim 3.3 There is a functim f1 such that 

EX[S IE]< - ( l -X)U+u' . f i (cr ,K,N,V' ,R) .  

Proof: Given E and Claim 3.1, there are at most 

[(K + N - l)U'/Qlog u]2= 

steps on which the control queue does not broadcast successfu3ly. (Each of the K + N - 1 slave 
queues provides at most U1/alogU interrupts. For any run of interrupts in ob), the control queue 
sends successfully after the last step of that run (which is still in ~ ( p ) ) .  For any interrupts not in 
~ ( p ) ,  the control queue sends within 2" steps. Therefore, at least 

u - [ (K 4- N - l)U1/"log(U)]2~ 
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messages are sent successfully. By Property 9, the number of messages that are received by the 
control and slave queues is at most XU + U1/210g U. By Property 8 and Claim 3.1, the increase in 
potential due to the backoff counters and step counters of the slave queues is at most 2c U1-i(Q+l). 
By Claim 3.1, the backoff counter of the control queue is at most (K + N - l)(R'/O + 1) + 1, 
so the increase in potential due to the backoff counter and step counter of the control queue 
is at most ( ( K  + N - l)(R1/Q + 1) + 2)"+1'2. Claim 3.2 shows that for each equivalence class 
of paths, the expected potential of the free queues increases by at most ((KNU1lQlogU) + 
~ K N ~ ( C X ) " + ~ / ~ ) ( ( ~ ' V ' ) ~ ~ ~ ~ '  + 3 K N f ( c ~ ) " + ~ / ~ )  during steps t o  + 1,. . . , to + U - 1. By Corollary 3.1, 
it increases by at most KN(5  + f ( c ~ ) " + ~ / ~ )  on step to. 
Claim 3.4 

I 

Pr(E) 1 2((1- W/3) 5 + ( K + N - 1 ) ( R ' / a + 1 ) 5 - 5 ( ~ ~ - 1 ) ( ~  + 5 ) - 5 " ( q ~  + N - 1)(xl/a + 1) + I)!)-** 

Proof: We can divide the calculation as follows. 

W E )  = Pr(E1) WE? I ~ 1 )  P r ( E 3  I E 1  A E2) Pr(E4 I E1 A ~2 A ~ 3 )  

Now we analyze each probabiIity in turn. Clearly, Pr(E1) 2 (1 - X)K(B + 1)-a5-(KN-1). Note 
that every slave QiJ with Ql,j,to+l > 0 has Sl,j,to+1 > 1 and every slave Qi,l with ~ i , l , t ~ + z  > 0 
has si,i,to+2 > 1 and eveq slave Q1,j  with gl,j,to+3 > 0 has ~ l , j , t o + 3  > 1. Thus, Pr(E2 I El)  2 
(1-X)3(B+4)-304-3("-.I.'-1). Note that every slave Qi,j  has si,j,to+4 > 1. Thus, Pr(E3 I E1AE2) 1 
(1 - X)(B + 5)-02-("'x-1). 

The next probability essentially requires two separate arguments, one to lower bound the prob- 
ability of each slave queue receiving its first message at either an odd or even step, and one to lower 
bound the probability of it attempting each send (until its backoff counter exceeds at either 
an odd or even step. 

In the first argrrment. note that we must show that Q i , j  receives its first message at either an 
odd or even step. (If A,, = 0, then Qi, j  never receives any messages and we can disregard it.) If 
X i j  2 1. then it receives a message at step to + 5 (an odd step) with probability at least fr, and it 
receives Its first message at step t o  + 6 with probability at least i(1- A i , j )  2 $(l - A).  If X i j  < 3, 
let x be the probabiliq that a message is first received on an odd step (noting that the first step 
possible is t o  + 5. an odd step). Then it can be easily shown that a message is f i s t  received on an 
even step mith probability (1 - Ai, j )K.  Thus x + (1 - A i , j ) x  = 1, implying K = (2 - X;j)-'. Since 

In the second = p e n t ,  we must show that slave queue Q;,j attempts each send (until its backoff 
counter exceeds R1/O) at either an odd or even step, assuming that if it is empty, it attempts its first 
send at the correct step. First, we deal with the first step of the slave queues &i,i with Qi,j,to+s > 0. 
If &l,j is a s h e  queue aith ql,j,to+s > 0 and Sl,j,to+s = 1 then it sends on step to  + 5, which is 
fine. E v ~  other S ~ W  queue Qi, j  with ~ i , j , t ~ + 5  > 0 has si,j,to+5 2 2. Since Sj,j,to+s 2 2, there is 
a step of the correct parity in the range t o  + 5 , .  . . , t o  + Si,j,to+s + 4. Let t' be the last such step. 
The probability that QId does not send before step t' is at least l / s i , j , t o + s  and the probability 
that it sends on step t', given that it did not send earlier, is at least 1/3. We now consider steps 
after t o  1- 5. If Q j j  collides at step t - 1, we have Sid,t = [(b;,j,t + 1)"J. By Claim 3.1, a slave queue 
never succeeds, so siLt,: 2 2 and we cas use the same argument that we used for the first step. 

4 9 5 

I A Ei) Pr( A E j  I A ~ i ) .  
i=l j=6 i=l 

2 '. 

1 0 < Ai,j  < 4 and f < z < S I  (I - &Q)K > z. 

Thus, since the relevaat step counters are at most (E1/" + l)", we have 
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Using Claim 3.1, we see that for any good path p ,  la'(p)I 5 (K+N-l ) (R' /"+l ) .  Thus, la(p)I 

Next, we note that Pr($, Ej I 
2(K+ N - l ) (RIIP+  1). We conclude that Pr(& I Ei) 2 ((2(K + N - 1)(R1/" + 1 )  + l)!)-". 

E;) is at least 

1 - P r ( Z  I A J ; )  - Pr(& J A E;) - Pr(& I A E;) - P r ( z  I A E;) 
5 5 5 5 

i=l i=l i=l i=l 

We cdcdate f r ( z  I Ei),  by considering the following game. Suppose that we have U - 2 
boxes, which are labeled t o  + 5 , .  . . , to+ U - 1. Each box will represent one time-step. Note that o(p) 
is completely determined by the values of the variables  ti,^ for slave queues Q j , j  with b&, 5 R1/". 
We look at these variables, and place a blank pebble in each box that represents a time-step in a(p). 
If slave queue Q;,j  had bzj,to+.j > R1/" then we choose a random number 1 between 1 and ~ ; , j , ~ ~ + 5  

and we put pebble Pjj in box t o  + 4 + e. (This choice of the random nnmber is dependent upon 
the values p:,j,to+5, pT,j,to+G, . . .) Otherwise, we use the d u e s  of the same p' variables that we used 
to identjfy u(p)  and we identify the integer t such that b&,t > R1iQ and b&,t-l 5 R1/" and we put 
pebble Pji in box t - 1. To play the game we now consider the boxes in order. When we consider 
box t we check whether it contains a pebble, Pi,+ If so, we choose a random number .! between 1 
and i(b;, j , t+l+ l>"J and we put Pj,j in box t + 1. (This choice of the random number i s  dependent 
upon the d u e s  pz,i,t+l, pi,j,t+2, . . .) We lose the game if any box other than box to + 5 ever contains 
more than one pebble, or if any two boxes t # to  + 5 and t' # t o  + 5 ever contain pebbles and have 
It - t'l 5 2". Otherwise, we win. One can see that winning this game corresponds exactly to having 
condition E4 hold. Note that the p* d u e s  that we use to play the game are independent of the 
p* d u e s  that we used to show that the probabilities that &-E5 hold. The probability that P;,j 
causes a loss is at most the swn of 

2(K + N - 1)(R1/" + 1) + (2"+' + 1)(K + N - 1) 
R 

(this is an upper bound on the probability that Pi,j bits moth& pebble on its initial placement), 

- 

and 

The s u m  is O((K + N - l)R("")-'). Since there are at most K + N - 1 pebbles, the probability 
of losing is O((X + N - I ) ' R ( I / ~ ) - ~ ) .  

Let H = m b ( l / S ,  (B i- 4)-4, (2(K + N - l)(R1/" + 1) + l)-=). Dnring the proof that E1-E5 
hold with sufEciently high probability we sometimes forced pi,j,t d u e s  to be large. The only times 
that we forced p;,j,t d u e s  to be small, we only forced them to be as small as H. Thus, 

The portion of 
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that is caused by backof€ counters before they exceed R1ia is at most KN(R1/" + l)a+1'2. For the 
remaining portion, we use Lemma 3.1, to conclude that the the probability that the portion due to 
any one queue exceeds c U1'* is O((1og U)-'). Thus, 

5 

Pr(G I A E;) 5 O((K  + N - I)(log u)-'). 
i=l 

For the last calculation, note that the conditioning in the calculation of E4 only affects the 
arrival of the first K + N - 1 messages. For the remaining messages, let Mt be the number of other 
messages received at control and slave queues during steps t o  + 5 , .  . . , t. The expected d u e  of Mt 
is at most At - t o  - 4. By a Chernoff bound 

Pr(Mt 1 X(t-t0+4)+U'/~logU I E I A E ~ A E ~ )  5 2e~p( -2 (U~/~ logUf /U)  5 2exp(-210g2U). 

Thus 

Assuming that U and R are SufEciently large compared to N and K .  we have shown 

The claim follows. 0 

Claim 3.5 There is a positive function fi such that Ex[6 I 
Proof: Let 6' denote the chasge in potential over all but the last step of a path in the tree of 
descendant states and let 6" denote the change in potential during the last step of a path in the 
tree of descendant states. Clearly, 6 = 6' + 6". 

5 U' - f 2 ( ( ~ ,  K ,  N ,  V', R) .  

The proof of Claim 3.3 shows that Ex[# 1 
Suppose that p is a path of length t that doesn't satisfy E. We will calculate an upper bound on 

the amount that the potential could increase on step t o f t -  1. (Thus, we are upper bounding 6" for 
this path.) The increase due to messages arriving at slave and control queues is at most K + N - 1. 
The increase due to the backoff counter and step counter of queue Q;,j is at most 

5 U' - f l (a ,  K ,  N ,  V', R). 

Using Fact 3.1, this is at most 

Since the parent of the last node in p is part of a good path, bl,l,to+t-l 5 (K + N - l)(R1/" + 1) + 1 
and for every slave queue Qi,j, bi,j,g+t-l 5 U1/"log(U) - 1. Thus, as long as U is big enough 
compared to K ,  N and R, the increase in potential due to the backoff counters and step counters 
of control and slave queues is at most [a + 1/21 ra+3/212KNU'. 

Finally, we use the fact (from Lemma 3.3) that the expected increase in potential of the free 
queues in any one step is at most 3 K N f ( ~ r ) " + ~ / ~ .  0 

Claim 3.6 Ex[6] 5 -1. 
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Proof: Ex[6] I Ex[6 I E]Pr[E] + Ex[6 I q. The claim follows from Claims 3.3, 3.4, asd 3.5 
provided that U is sufficiently large compared to a, K, N ,  V', R, B, and 1/(1- A). 0 

Claim 3.7 Ek~[6~] 5 POTt,. 

Proof: Since each queue &i,j can gain at most U messages and has bi,j,to 5 B,  6 <, K N ( U  + 
( B  + U + 1)"+li2). Thus, as long as V is sufliciently lasge compared to a, K, N ,  B, and U, 
Ex[a2] 5 V 5 POTt,. D 

3.5.2 Case 2 

Property 2 holds: When the Markov chain is started in state s right before step t o  with POT(s) 2 V ,  
there is a backoff counter bi,j,to 2 2 such that with probability at least 

{:I - ~ ) ~ 5 8 - ~ ~ 4 ( 6 ; , ~ , ~ ~  + 4)-a2-KN7 

queue Qi,j succeeds at least once during steps to,. . . , to  + 4 and every other queue Q ~ I , ~ I  decides to 
s a d  on step t (for t E { to ,  . . . , i o  + 4)) only if Sir,jl,t 5 8. 

Without loss of generality, ht Q1,1 be the queue & j j  described in Property 2 and let E be the 
event that queue Q1,1 succeeds at least once during steps to , .  . . , to + 4 and every other queue &i,j 
decides to send on step t (for t E ( to, . .  . , to + 4)) only if Sj,j,t  5 8. Recall that OUT goal is to show 
that there is a tree of depth at most V - 1 rooted at s such that the expected decrease in the square 
of potential (over the tree) is at least POT(s). The tree that we will consider is the complete tree 
of depth 5.  We consider steps to through t o  + 4 and d y z e  POT:,+, - POT:,. Clearly 

Ex[POT~o+, - POT;o] = Ih[POT~,+, - POT?,IE] Pr[E] + Ex[POT;,+, - POT:, lq Pr[El 

We start by computing a loiver bound for the decrease in potential in the event that E occurs. 
Let g ( a )  denote (5Ya + 1/21rQS3/21) First, we show that for every queue Qi,j  except Q ~ J ,  when 
E OCCUTS, B;',. I (g(a) + 6)O+iS This is easy to see in the case that bi,j,to < g(a ) .  If bi,j,to 2 g ( a )  
then either Q i , j  doesn't send (in which case Bi',. = 0) or &j,j sends and succeeds (in which case 
BZj < - @lf2 or Qi,j decides to send aad collides, in which case it never decides to send again aad 
B;tj is at most 

8 

1-1/(4~) 
(bi,j,to + 2) - (bi,j,to + 1) - (l(b;, j , t ,  + 2)QJ - 4)1-1'(4Q) + s i j f o  

Using Fact 3.1, this is at most 

ra+3/21(b. . + 1 ) ~ - 1 / 2  - ( ~ ( b ~ , ~ , ~ ,  + 2 ) ~ ~  - 4)1-1/(4~) + S ; T : / ( 4 ~ )  r. + 1/21 a, ?,to 3 3 ,  0 

which is at most s;,j,to since &$,to 1 g(cr). 
For &,I, when E occurs, B;il 1 (bl,l,to + 1)Qf$ - (bl,l,to + 1)"-$ - 5a+1/2. &+ 5 K N 5 .  Thus, 

when E occurs, since bl,l,h 2 2 and 2 is s&ciently large compared to a, K and N, the potential 
decreases by at least $(bl,l,to + 

Thus, POT:,+, - POT; is zbt most 

1 1 
-(bi,i,to + l)Q+BPOT(s) + ;(bi,i,t, + 1)2Q+1 I -5(bi , i , to  + l)P+gPOT(s) 
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since POT(s) 2 (3/4)(bl , l , t ,  + Using the lower bound on the probability of E from the 
statement of Property 2 and the fact that bl,l,to 2 Z and that 2 is sufficiently large compared to a, 
K ,  N and 1/(1- A), we find that 

1 EX[POT:~+, - POT,", IE] Pr[E] 5 -#,l,to + l)iPOT(s). 

Using the facts &+ 5 5 K N ,  &- 2 0, and B- 2 0, we see that 

Ex[POT:,+, - POT;o I Pr[E] I Ex[(POTt, + 5KN + B+)' - POT;, I Pr[E]. 

Clearly, this is at most 

[ ( 5 K S ) *  i 10K-V - POTt, + 2(POTt, + 5KN)E4BS I Z] + Ex[(B+)' I m] - Pr[El. 

We can bound the iast two expectations by noting that Ex[Y In Pr[E] 5 Ex[Y]. 

Ex[(B+)*] = 
Recall that we defined B+ to be x g l x g l B z j .  Thus, Ex[B+] = &Ex[Bzj]. Similarly, 

EX\(B;~)~] + 2&i,j}+(;t,jt) EX[B:~B$,~,]. We will now proceed to bound Ex[Bzj], 

Claim 3.8 Fu any sequence of values for the p and p* variables. Then, for every queue Q;,j such 
that bi,j,to 3 100. when M and Mi,j are run with these p and p* values, BZj 5 Bz:. 

Proof: Vntil the first successful transmission by Q;,j in M ,  bi,j,t = b t t  and ~; , j ,~  = s & ~ .  (Thus 
if &i,j does not have any successful transmissions in M ,  then the claim holds.) Assuming the fixst 
successful t r a m i s i o n  in M is at step t', b;,j,tt+l = 0 and s;,j,tl+l = I, but b$tr+l 2 100 and 
s&t,+l 2 1000. Io the next 5 - t' steps, b;j,t < 5 but b&t 2 100. Then 

Ex[(B$')'] a d  ExiB;C,B:dt] when bi,j,to (or bit,jt,to) is large. 

1 
(bL,b+s + - (s;j,to+5)l-h 2 100" 2 2 (bi,j,to+5 + - ( s j , j , t ~ + ~ ) l - ~ *  

Claim 3.9 EX:B,+,; z ~ / ( K N ) .  

Proof: If bsJlo 5 ( ~ O Q ) ' ~ ,  then Bi',. 5 ((10~)~~" + 6)"+'12 5 ( 2 0 ~ ~ ) ~ ~ " '  5 Z b / ( K N ) .  Otherwise, 
we use claim 3.8 to show that Ex[B&] 5 Ex[Bz:] and we bound Ex[Bz7] as follows. If &i,j doesn't 
send during the 5 steps then BZ', 5 5. Otherwise, we know by Lemma 3.2 that BZ' 5 S;,j,to. 

The probabikty that Q,,, sends during the 5 steps is mh(1,5/si,j,t0). Therefore, Ex[B&+] 5 

Claim 3.10 Ex[(B;c,)*] 5 (POT(s) + Z ) ) / ( K N )  

Proof: If b;$,b 5 ( 

5 + (5/Si&&*J& I 10 L Z' /* / (KN) .  0 

then we follow the proof of claim 3.9 to show that (B$j)2 5 Z i / ( K N ) .  
Otherwise, we use Claim 3.8 to show that Ex[(BZj)'] 5 Ex[(Bz?)'] and we bound Ex[(Bij ++ ) 2 ] as 
in claim 3.9 to get 25 + fisi,j,to. Since S;,j,t, 5 (b;,j,t0 + 1)" and 1 0 ~  < b$!;,%', Ex[(B$.)'] is at 
most (bi,j,to + 1) 
Claim 3.11 EX[B$~B;,~,] 5 Z i / ( K N ) 2  

which is at most POT(S)/KN. 
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Proof: If b;,j,*, _< then we follow the proof of Claim 3.9 to show that BZj 5 Z i / ( K N ) .  
We conclude that Ex[B$~B$,~]  5 [Zi/(KN)]Ex[B,f,j,] so the result follows from Claim 3.9. On 
the other hand, if bi,j,to > ( ~ C I C U ) ~ ~  and b;r,jt,to > ( 1 0 ~ ~ ) ~ ~ ~  then we use Claim 3.8 to show that 
B:. 3 3  .< - BZ? and l?:,j, 5 B:;;. Thus, EX[BZ~B$,~,] ,< Ex[B$+B:$,]. But BZ' and B$$ are 
independent, so the result follciws from Claim 3.9 U 

Recall that our goal was tcl bound Ex[POT;,+, - POT;*] and that we have shown that this is 
at most 

1 

Claim 3.9 shows that Ex[B--] 5 Z i  and Claims 3.10 and 3.11 show that Ex[(B+)~] 5 POT(s)+ 
2; + 2Zi. Using the facts that POT(s) 2 Z3/*, that bl,l,t, 2 Z and that 2 is large compared 
to N and K we find that Ex[POT:,+, - POT:,] is at most -POT(s); 

-Z(bl, l , t0 + l)$POT(s) + (51:N)2 + lOKN - POT(s) + 2(POT(s) + 5KN)Ex[B+] + Ex[(B+)~]. 

3.5.3 Case 3 

Property 3 holds: When the Markov chain is started in states right before step t o  with POT(s) 2 V, 
there is a backoff counter bi,j,to 2 B such that with probability at least 

queue Qi,j succeeds at least once during steps t o ,  - . .,to + R + 3 and every other queue Qi,,j, decides 
to send on step t (for t E {to,. . .,to + R + 3 ) )  only if s;t,jr,t <, R2". 

Without loss of generiility, let &1,1 be the queue Qi,j described in Property 3 and let E be 
the event that queue succeeds at least once during steps to , .  . .,to + R + 3 and every other 
queue &i,j decides to send on step t (for t E {to,. . . , to  + R + 3)) only if si,j,t 5 Xza.  Recazl 
that our goal is to show that lhere is a tree of depth at most V - 1 rooted at s such that the 
expected decrease in the square of potential (over the tree) is at least POT(s). The tree that we 
will consider is the complete tree of depth R + 4. We consider steps t o  through t o  + R - 3 and 
analyze - POT:,. Clearly 

Ex[POT:,+~+, - POT:,] = I:X[POT:,+~+~ - POT:oIE] PrfE] + Ex[POT:,+~+, - POT:o lq Pr[q 

We start by computing a lover bound for the decrease in potential in the event that E occurs. 
First, we show that €or every queue Qi , j  except Q ~ J ,  when E occurs, B& 5 (R2 + R + 4)a+$. This 
is easy to see in the case that bi,j,t, < R2. If b;,j,to 2 R2 then either &;,j doesn't send (in which 
case B;'j = 0) or Q;,j sends and succeeds (in which case B;',. 5 Raf1l2 or Q+ decides to send and 
collides, in which case it never decides to send again and Bi',. is at most 

Using Fact 3.1, this is at most 

which is at most s;,j,to since bi,j,to 2 R2 and R is sufficiently laxge. 
For (&,I, when E occurs, BZl 2 (bl,l,to + l)"+fr - ( b l ~ , ~ ,  + l)Q-i - ( R  + 4)4+1/2. Q+ 5 

K N ( R  + 4). Thus, when E occurs, since B 5 bl,l,to and B is d c i e n t l y  large compared to R, K, 
a d  N ,  the potential decreases by at least i ( b l , ~ , t ,  + l)Q+f. 
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Thus, POTZ0+R+, - POT:o is at most 

1 1 
-(bl,1,t0 + ~)"+SPOT(S) + q(bi, i , to + 5 -5(bi, i , to + l)".+fPOT(s) 

since POT(s) 2 (3/4)(bl,l,t0 + l)"++. Using the lower bound on the probability of E from the 
statement of Property 2 and the fact that B ,< bl,l,to and B is sdiiciently large compared to R, K ,  
and N ,  we find that 

1 
EX[POC~+R+~ - POTt0IE] Pr[E] ,< -z(bl , l , to  + l)fPOT(s). 

Using the facts Q' 5 (R+4)KN, Q- 2 0, and B- 2 0, we see that 

k[POT:0+~+4 - POT:o I E] Pr[a  I Ex[(POTo + (R + 4 ) K N  + Bs)2 - POT:o I q Pr[n.  

Clearly, this is at most 

[ ( (R+4)KN)2+2(R+4)KN-POTto  +2(POTto +(B+4)KN)Ex[B+ I ~ + E ~ c [ ( B + ) ~  I E]] .Pric.  

We can bound the last two expectations by noting that Ex[YIq Pr[E] 5 Ex[Y]. 
Recall that we defined B+ to be czl xgl Bzj .  Thus, Ex[B+] = cj,j Ex[Bz']. Similarly. 

Ex[(B+)~] = Ci,j EX[(BZ~)~] + 2&j)+{j,jt) Ex[B&B$,~,]. We will now proceed to bound Ex[B,f,j. 
Ex[(B&)~] and Ex[B&B;it] when bi,j,t, (or bit,jt,h) is large. 

Claim 3.12 Fix any sequence of values f o r  the p and p* variables. Then, for every queue Q I J  .wch 
that b;,j,to 1 (2R)2, when M a d  M;,j are m n  with these p and p* values, BZj 5 BzT. 

Proof: Until the f i s t  successful transmission by Qj,j in M ,  bj,j,t = b&t and ~ i , j , ~  = st,.,. (Thus 
if Qj,j does not have any successful transmissions in M ,  then the claim holds.) Assuming the first 
successful trammission in M is at step t', bi,j,tt++l = 0 and sj,j,tl+l = 1, but b&t,+l 1 (2R)2 and 
s & , ~ , + ~  2 (2R)2". In the next R + 4 - t' steps, bj,j,t < R but b&t 2 (2R)2. Then 

( b L  j ,  o+R+4 +l)"+i - (~;,j,h+R+4)'-& 1 (2R)2" 1 Raf$ 2 (bi,j,to+~+4 + 1) "++ - ( S j , j , t o + R + 4 ) 1 - k  

Claim 3.13 Ex[B&] 5 B i / ( K N ) .  

Otherwise, we use Claim 3.12 to show that Ex[Bzj] Ex[B$:] and we bound Ex[Bz?] as follows. 
I€ Qi,j doesn't send during the R + 4 steps then B$. 5 R + 4. Otherwise, we know by Lemma 3.2 
that Bit', <, The probability that Qi,j sends during the R + 4 steps is min(1, (R+4) /s , , , t , ) .  
Therefore, Ex[B&+] 5 R + 4 + ( ( R  f 4)/s;,j,t0)sj,j,i,to 5 2(R + 4 )  5 B1/8 / (KN) .  U 

Claim 3.14 

Proof: If bj,j,to (2aR)16", then we follow the proof of claim 3.13 to show that (Bz j )2  5 
B k / ( K N ) .  Otherwise, we use Claim 3.12 to show that Ex[(B&)~] 5 Ex[(B$')~] and we bound 
E~[(B;fjf)~] as in claim 3.13 to get (R + 4)2 + ( R  + 4)si,j,tO. Since ~;,j, j ,t~ 5 (bi,j,to + 1)" and 
2aR < btl;';'), EX[(Bij ++ ) 2 ] is at most (bi,j,to + 1) 

Proof: If bi,j,to 5 (2aR)l&, then BZ' 5 ((2aR)lga + R + 5 (4~yR)~~"' 5 B i / ( K - y ) .  

5 (POT(s) + B i ) / ( K N )  

which is at most POT(S)/KN. 
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Claim 3.15 EX[B;~,.B;,~,] 5 B f / ( K N ) 2  

Proof: 
If bi,j,to 5 (2~2)'~ ther we follow the proof of Claim 3.13 to show that BZj 5 B t / ( K N ) .  

We conclude that E X [ B $ ~ $ , ~ ~ ]  5 [Bi/(KN)]Ex[Bf,.,] so the result follows &om Claim 3.13. On 
the other hand, if bi,j,to 7 (21~R)'~" and bi',j',to > (2~rR)'~@, then we use Claim 3.12 to show that 
Bitj 5 BZ,j+ and B$,jr 5 Bl!$,. Thus, Ex[BljBifj ,]  5 Ex[B&+B$,$,]. But l?:: and B:,$ are 
independent, so the result follows from Claim 3.13 IJ 

Reca3l that o w  goal was 1,o bound Ex[POT:~+R~ - POT:o] and that we have shown that this 
is at most 

-~(h,l,t,,+l) iPOT(s)+( (RS 4)KN)2+2(R+4)KN-POT(s)+2(POT(s)+(R+4)KN)Ex[B+lfEx[(B+)2~. 1 

Claim 3.13 shows that Ex[ B+] 5 B i  and Claims 3.14 and 3.15 show that Ex[(B+)~] 5 POT(s)+ 
8) + 2B). Using the facts that POT(s) 2 B3i8, that bl,l,to >, B and that B is large compared 
to N ,  K and R we find that I~X[POT;~+(~+~) - POT:o] is at most -POT(s). 

3.5.4 Case 4 

None of Properties 1-3 hold. In order to define the terms that we need for this case, we consider 
a run of the chain €or steps to, .  . . , to + 3 in which no messages arrive and Q;,j decides to send on 
step t ifqi,j,t > 0 and Si,j,t 5 8-t+to. Note that Z q i , j , t , , ~  > 0 and Si,j,to+4 = 1 then Q ; j  succeeded 

We use the following defkitions. We say that queue &i,j is foxed on step t if q;jS > 0 and 
S;,j,t = 1. We say that it is idmost f m e d  if q;,j,t > 0 and si,j,t 5 2. We say that queue Qi,j is 
short if qi,j,to+4 < R/2.  Othemise, we say that it is long. If j # j' we say that Qi,j client-conflicts 
with queue Qi,jr. If i # if we jay that Q;,j sme~-con . i c t s  with queue Qit,j If Qi,j client-conflicts 
or server-conflicts with Qit,jt then we say that Qi,j conflicts with queue &;,,it. A queue Qi,j is 
a potentially active peue  if 4';j,to+4 = 0 and Xi,. > 1/R2. A queue Qi,j is a working queue if 
gi,j,to+4 > 0 and s;,j,b+4 < R2'r. A quene is called a potential12 working queue if it is a potentially 
active queue or a working queue. A queue Qi,j is a blocking queue if it is potentially active or it 

In the appendix we will show that we can split the queues into categories so that the following 
conditions (which we call the Case 4 conditioszs) are satisfied. 
1. There will be three categories of control queues: solid cmtml queues, delayed control queues, 

asd temporary contml queres. No two control queues will conflict. Every queue that conflicts 
with a control queue is c d d  a slave of that control queue. (A queue cas be the slave of up to 
two control queues.) Every queue that is not a control queue or a slave is a free queue. 

2. Slaves are not blocking queues. If a slave & j j  has bi,j,to+4 2 B then &i,j is a slave of a solid or 
delayed control queue. 

3. Every solid control queue $ I ; , .  is long and has bi,j,t0+4 = 0 and si,j,to+4 = 1. 
4. Every delayed control queue Q;,j is long and has bi,j,to+4 < 2. If Qjt,j is a working slave of Qi, j ,  

then either qii,j,t0+4 = 1 a d  X;t,j 5 1/R2, or there is a temporary or solid control queue Q;tai 
with Qi',j,,to+4 2 min(R/2, S;,j,to- - 2,  Sit,j ,j ,tow - 1). If Qi,jt is a working slave of Q j i ,  then 
either Qi,j',to+4 = 1 and Xi ,y  5 1/R2, or there is a temporary or solid control queue Qjtd with 
qi'.j',to+4 L *(R/2,~i,.i,to+4 - 2, ~ i , j t , t 0 + 4  

in Sending On step to  + 3 (SO ti ,j ,to+4 = 0). If qi,j,tO+r > 0 and ~ i , j , t o + 4  > 1 then si,j,t0+4 > 4. 

has qij,to+4 > 0 and bi,j,to+* < R2/" 2. 

1). 
6 .  If Qi,j is a temporary control queue then bi,j,to- = 0, si,j,tof4 = I and qi,.j,t0+4 2 2. 
7 .  Every free queue &;,j has bj,j,toH < B.  
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We now show that if the Case 4 conditions axe satisfied, there is a tree of depth at most V - 1 
rooted at s such that the expected decrease in the square of the potential over the tree is at least 
POT(s). We will let W denote the depth of this tree. 

In our proof, we use the following terminology. We refer to solid and delayed control queues 
as permanent control queues and we refer to slaves of these control queues as permanent slaves. 
All other slaves are called tempontry slaves. We refer to temporary slaves and temporary control 
queue as delayed free queues. Without loss of generality, we assume that the permanent control 
queues are queues Q1,1 through Qr,?, and that the temporary control queues axe queues Qr+l,r+l 

though Qr,,r#, ordered by Qd,d,to+4 in decreasing order @e., Qr’,r‘,t0+4 5 qr+l,r+l,to+4)* If Qi , j  is a 
slave queue and m = m.in{i,j} then we refer to Qm,m as the primary control queue of Q;, j .  We 
associate a threshold value h ; j  with each queue Qi,, as follows. If Q ; , j  is a permanent control queue 
then h; , j  = t o  + W .  If it is a temporary control queue then h;,j  = t o  + 4 + min(W1i2, q i , j , t o w ) .  If it 
is a free queue then h; , j  = to + 4. The threshold d u e  of each slave is equal to the threshold d u e  
of its primary control queue. If h ; j  < to + W then we will say that Q ; , j  is a free queue at the start 

As in Case 1, the branching in our tree depends on the values of the p and p* variables, so by 
fixing the values of the variables pi,j,t and p& for all i and j and all t 5 t o  + W - 1, we fix a path 
p of length U. We make the following definitions for path p :  For every slave queue Q i , j ,  let t i j  
denote the first step after t o  + 3 on which Qi , j  decides to send. If t i , j  < h ; j  then let a : , j @ )  = t i j  
and put t i j  in d(p). Otherwise, let &-(p) = 00. Let a ( p )  = Q’ U {t + 1 5 t o  + W - 1 1 t E ~ ’ ( p ) ) .  
Let a&) denote the kth step in a(p). Let t d  denote the first step after step t o  + 3 at which control 
queue Qd,d decides to send. If t d  < t o  + 4 + W1/2 then let Td(p)  = t d .  Otherwise, let T d ( p )  = m. 
We say that path p is good if it satisfies the following properties. 

of step h i j .  

1. On each step t ,  ( t o  5 t 5 to + 3), no messages arrive and Qi,j  decides to send if€ Qi,j,t > 0 and 

2. For each delayed control queue Qd,d, if Sd,d,&+4 5 (KN)3  then ~ d ( p )  = t o  + 4. Otherwise, 

3. For each slave queue Qi,jy if Q i , j  client-conflicts with a solid or temporary control queue and 

with a solid or temporary control queue then a$p) = to + 5.  If si,j,to+4 > (KN)3  and 

s;,j,t 5 8 - t + to .  

T d ( p )  5 t o  + Sd,d,to+4 + 2- 

Si,jrto+4 5 (Ki.N)3 then a,!,j@) = to + 4. If ~i , j , t o+4  2 ( K N ) 3  but Q i , j  doesn’t client-conflicts 

a;’, j(P) < hij  then to + 6 I <,i@) I t o  + Si,j,to+4 t 3. 
4. Consider two slave queues Qi, j  and Qit,j, such that qij,t,+4 > O and Qi’,jr,to+4 > 0. If &(p) = 

5. For each delayed control queue &d,d and each slave Q i j ,  either Td(p)  = to+4 or T d ( p )  # o$p).  

6. If for a Control queue Qd,d, T d ( p )  < Q ( p )  < hd,d,  then &&,ka,@) I (k -k I)-=. 
7. If Qi,j is a slave queue and q;,j,to+.r > 0 then for all t ( to  $4 5 t < h;,j>, p&f > 2(Wlog W)-’. 
8. IfQ;,j is a slave queue and qi,j,t0+4 = 0 then for all t ( to+4 5 t < hj j ) ,  p;,j,t > 2(WlogW)-l. 
9. During the first t steps, the number of messages received by the permanent control and 

then either ~ : , ~ ( p )  = t o  + 4,  ~ : , ~ ( p )  = t o  + 5,  or a i , j @ )  = m. 

permanent Slave queues is at most T ( X ~  + W1/21og w). 
The tree that we consider will be the tree consisting of every good path of length W plus every 

child of every internal node of such a path. We will show that for this tree, &[A] 5 -POT,,. The 
key to showing this will be to prove that with suflicient probability a good path is taken when the 
chain is run. 

First, we prove some claims about good paths. 
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Claim 3.16 On any good paih p ,  each delayed control queue Qd,d succeeds the first time that it 
decides to send after step to + 3. 

Proof: This follows from Prcperty 5 unless T d ( p )  = t o  + 4. By Property 3, the only slaves that 
send'on step to + 4 dent-confiict with a solid or temporary control queue, so they cannot collide 
with &d,d. 

Claim 3.17 On any good path p ,  every slave queue Q ; , j  decides to send cat most once during steps 
t o  + 4,. . -, hi,j - 1. Evgr conld queue Qd,d decides to send on steps Td, . . . , hd,d - 1. 
Proof: We start by observing that, if a slave $i,j is not working, then, by Property 7 and Prop- 
erty 8, it will not decide to stad at d during steps to + 4,. . . , h;,j - 1. If a working slave Q ; , j  
has Qi,j,to = 1 and X i j  5 (2W.)-2,  then, by Properties 7 and 8, after it decides to send once, it 
will not decide to send again. :Every remaining slave codicts with a temporary control queue or a 
solid control queue. If one of i,he remaining slaves decides to send and does not succeed, then by 
Property 7, it will not decide to send again. 

We wiU prove by induction on t that if a remaining slave &i,j f is t  decides to send on step 
mh(t,hi,j - 1) it has a cohitm. F'urthermore, every control queue Qd,d decides to send on steps 

The base case is t = to + 4, which holds by the definition of Td, the fact that each solid a d  

For the inductive case, consider step t + 1. Suppose that for control queue &d,d, t + 1 < hd,d. 
Then Qd,d,t+l > 0. If t + 1 = rd  then &d,d decides to on step t + 1 by definition. Suppose that 
t + 1 > r d .  By induction, Q d d  decides to send on step t .  If t $2 n(p) or t is the last step in a 
consecutive block of steps in u(p),  then Qd,d succeeded on step t so Sd,d,t+l = 1 and &d,d decides to 
send on step t + 1. Otherwise, we use Claim 3.16 to show that every delayed control queue succeeds 
the first time that it decides to send after step t o  + 3. Therefore, for any contiol quene &d&, 

is at most the number of coUsions that it had during steps to + 4,. . . , t. Thus, by induction, 
bd,d,t+l 5 l~'(p) n (to + 4,. . . ,t}l m d ,  therefore, Sd,d,t+l I ( )a'(p)  n {to + 4,. . . ,t}l+ I)&. By 
Property 6, &d,d decides to send on step t + 1. 

We now show that if Q;,j is a remaining slave and it first decides to send on step t + 1 < hi,., 
it has a collision. 

The first case that we consider is the case t + 1 = t o  + 5. In this case Q i , j  collides with the 
solid or temporary control queie that it server-codicts with. (If Qi,j client-codicts with a solid 
or temporary or solid control qieue it will instead send on step to  + 4. Note that the control queue 
decides to send on step to + 5 rcince hd,d 1 t o  4- 6. Furthermore, nothing that client-conflicts with 
it sends.) 

The other case that we consider is the case in which t + 1 > t o  + 5.  By Property 4, Qj,j does 
not send at the s a e  step as a n y  other slave queue. If Qi, j  confticts with a solid control queue &&a, 
then since no other slave queue sends at the same step as &i,j, it will be blocked by &d,d. If Qi,j 
confiicts with a temporary conlrol queue &d,d aad sends before step hd,d then since no other slave' 
queue sends at the same step :B Qi,j ,  it will be blocked by The remaining case to consider 
is when the primary control queue of &;,j is a delayed control queue Qd,d ,  Q i , j  also codicts with 
temporary control queue Qdt,dt,  but Qj , j  sends after hdi,dt. Now, by the definition of delayed control 
queue, qdI,#,to 2 Sd,d,to+4 - 2 SCI hdtdt, to 2 t o  + Sd,d,to+4 + 2.  Thus, the Step on W h i c h  Qi,j Sends iS 
at least Step t o  + Sd,dfo+4 + 2. .By Property 2,  Qd,d sends by this step, So &id has a collision. U 

Td, . . . ,I?liIl(t, hd,d - 1). 

temporary Control queue Qd,d qd,d,toM > 0 and Sd4,to+4 = 1, and Property 3. 

Claim 3.18 On any good path p ,  every control queue decides to send by step t~ + 3 + W1j2. 
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Proof: Every solid or temporary control queue decides to send on step t o  + 4. If Qd,d is a delayed 
Control queue then bd,d,to+4 < = W1l2" - 2 SO Sd,d,to+4 < W1l2. 0 

A s  in [HLR93], we will use the equality 

&[A] = 2POT(s) *  EX[^] + Ex[S2]. 
Thus it is suilkient to show that Ex[S] 5 -1 and Ex[S2] 5 POT(s). Let E1 be the event that 
a good path is taken when the chain is run. (That is, E1 is the event that all conditions in the 
definition of "good" hold for W steps.) Let Dj be the event that condition i holds for U steps. 
For each queue Q;,j, let E z j j  be the event that Q i , j  decides to send at step t ( to  + 4 5 t < h i j )  

with b i j t  > (WIOgW)l/a - 1 and Si,j,t > (bi,j,t + l)*/2. Let E2 = u ; , j  Ez,i , j .  Let E3 be the event 
E1 V E2. Let W' = max{W1/*log W, W1IQlog2 W, W1-1/(4a(a+1))), ( w l ~ g W ) ~ - ~ / ( ~ " ) ) ,  and note 
that W' = o(W). 

Call two paths in the tree equivalent if€ every queue Q j , j  has the same p and p* values from 
step to through step t o  + h i , j  - 1. This notion of equidence is clearly an equivalence relation. 
Furthermore, if one path in the tree ends at step t (i.e., if t < to  + W, there is no good path 
continuing on from the node at level t ,  but there is a good path continuing on from the node at 
level t - l), then every equivalent path also ends at step t. (This is because the p and p* d u e s  of 
a queue Qi,j  on or after step h i , j  are not considered in any of the properties.) 

Let v be the set of h j , j  values for a3l queues Q j j .  By the definition of the h ; j  values, 1.1 5 K .  
Assume v is ordered, and let Vk be the kth element of v. During steps v k ,  . . . , Vk+l - 1, there will 
be a certain set of queues Q;,j (dk 5 i 5 N ,  dk  5 j 5 K )  for some dk which are the free queues. 
Let M' denote the Markov chain in which these free queues run the protocol and no other queues 
pastiupate. By induction, there is a constant V' such that M' is V'-good. Now suppose that we 
fix the sequence of p and p* values for the control and slave queues and we first run M for steps 
to, .  . . , Vk - 1 and we then run M for steps vk, . . . , Vk+1- 1. If we just look at the free queues during 
steps vk, . . . ,vk+l - 1, we can think of this as being a run of M', starting at step Vk, in which M' 
is extended by the set of interrupt steps I which is determined by the sequence of p and p* values 
for the control and slave queues. Lemma 3.3 shows that when M' is extended by I, the expected 
increase in potential in any one step is O ( K N ) .  If the k e d  sequence of p and p* values is such 
that all of the properties continue to hold (except possibly after the last step) then the number of 
interrupt steps in I is at most K N  + 1. (To see this, note that each s h e  sends at most once in a 
good path.) Let Ft denote the set of free queues at the start of step t. 

Claim 3.19 Suppose that we fi. a particular equivalence class of paths of length at least t, and we 
conditknz on the event that when M 4s run for t steps, starting with step to, one of the paths fmm 
this equivalence class is taken. Then the expected potential of the queues in 3 t  after the t steps is 
at most the original potential of the queues in 3t plus O ( K N )  + O(K2N)((2V')222V' + O ( K N ) )  + 
( O ( K N )  a+3/2)w'/2* 

Proof: Note that each queue Qi, j  in 3 t  satisfies all of the properties in the definition of good 
during steps to,. . . , h;,j - 1. (Otherwise, the paths would end before step h ; j ,  so Q;,j  would not 
become free.) 

By Lemma 3.3, the expected increase in the potential of the queues in F' during steps to through 
t o  + 3 is at most O ( K N ) .  

Suppose that t' > t o  + 3 and that Q i , j  is a queue in Ft that is not free at the start of step t'. If 
Q;,i is a control queue then its potential goes up by at most 2 + ( K N  + 1)Q+1/2 on step t'. (This 
follows from Claim 3.17, since each slave sends at most once prior to step t'.) If Q j j  is a slave 
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queue then b i j , ~  > R2/* - 2 .  If it sends on step t', then since it does not violate property 7, 
Si,j,t' <, (Wlog W)/2 .  By delixition, the change in its potential is at most 

By Fact 3.1, this is at most 

Since is sufficiently large with respect to a, this is at most 

Clearly, this is negative, so the potentid goes down. 
There are at most K N  queues in Ft, and (by Claim 3.18) at most W1/2 steps after step to  + 3 

before a delayed free queue bezomes a free queue. 
To finish the proof of the claim, we will prove that during steps Uk, . . . , vk+l - 1, the poten- 

tial of the current free queue?, (those queues that are free at the start of step vk) increases by 
0(KN)((2V')222v' + O ( K N ) ) .  Since 

We view the current fr'ee qiteues as forming a Markov chain M' which is extended by the set of 
interrupts I' that is determined by the set of p and p* values associated with the equivalence class. 
We now apply Lemma 3.6 using the facts that the expected increase in potential in any one step is 
O ( K N )  and the number of interruptions is at most K N  + 1. ff 

5 K, this will prove the claim. 

Claim 3.20 There is u fincthn f1 such that 

Ex[dIEl] 5 - - T [ ( l -  X)W - W' * fl(N, K ,  V)].  

Proof: Given E l ,  we use Claims 3.18 and 3.17 to show that each permanent control queue suc- 
cessfully broadcasts for all but at most K N  + W1j2 + 4 steps. Thus, we send at least T(W - 
( K N  + wfl2 + 4)) messages. 13y Property 9, we receive at most T(AW + W21ogW) messages in 
the permanent control and pexmasent slave queues. By Claim 3.17, the increase in potential due 
to the backoff and step counter of a permanent control queue is at most (XN + 1)Q+1/2. We can 
follow the proof of Claim 3.19 YO show that if a permanent slave decides to send, its potential goes 
down. Thus, the increase in potential due to the backoff and step counter of a permanent slave 
is at most W1-1/(4a). Thus for each path the potential attributed to the permanent control and 
permanent slave queues decreases by at least 

Last, from Claim 3.19, for each possible equivalence class, the expected potential of the free and de- 
layed free queues increases by al most O(KN)+O(K2N)((2Vt)222v'+O(KN))+(O(KN)Q+3~2)W1~2. 
0 

Claim 3.21 There is a positize finction f2 such that 
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Proof: We can divide the calculation as follows 

Now we analyze each probability in turn. We know Pr(D1) 2 (1 - X)4K8-4KN, 
Since for each delayed control queue &as, 4 5 Sd,d,to+4 5 w112, P ~ ( D ~ I D ~ )  2 ( K N ) - ~ .  
Note that the number of slaves is at most K N ,  and for each slave Q;,j, Si,j,to+4 2 4. Then the 

probability that a slave Q;,j with S;,j,toH 5 (KN)3  sends at the appropriate step ( t o  + 4 or t o  + 5 )  
is at least 3(KN)-3, and that a slave Qi,j with ~ i , j , t ~ + 4  > ( K N ) 3  sends by step t o  + s;,j,tO+4 + 3 is 
at least i. Thus Pr(D3 I D1 A 0 2 )  2 

Given Property 3, for each slave Qi,j with ~ ; , j , ~ ~ + ~  > (KN)3 ,  the probability of conflicting with 
any of the other slaves is at most (KN)-2 .  Thus Pr(D4 I D1 A 0 2  A 0 3 )  2 1 - (EN)". 

Given Properties 1 through 4, the probability that no delayed control queue sends at step t o  + 5 
is at least 1 - K(KN)-3 .  Then the probability that some slave queue first sends at a step in which 
one of the at most K delayed control queues e s t  send (except for steps t o  + 4 and t o  + 5 )  is at 
most ( K N ) ( K / ( ( K N ) 3  - K N ) ) .  Thus, 

Pr(DslD1 A ~2 A D~ A 0 4 )  2 (1 - K ( K N ) - ~ ~  - ( K N ) ( K / ( ( K N ) ~  - K N ) )  2 A. 
2 

Since la(p)I I 2 K N ,  and the number of control queues is at most K ,  Pr(DGj&Di) 2 

It is easily seen that Pr(DTl& D;) 2 1 - ~ K N W ( W ~ O ~ U T ) - ~  2 3. 
In the proofs that D1 through D7 hold with sufEciently high probability we forced some of the 

pi,j,t values to be large. The only times that we forced p;,j,t values to be s m d ,  we only forced them to 
be as small as (KN)-3 .  Thus, the probability that a given queue fails to satisfy Property 8 on a given 
step is at most 2(KN)3/(W10gW) and Pr(D8t 0;) 2 1 - KNW(2(KN)3(W10gW)'1) 1 3. 

For the last calculation, let Mt be the number of messages received by the permanent control 
and permanent slave queues by step t. The conditioning on D, only helps, so the expected d u e  
of MT is at most rAt. By a Chernoff bound 

( ( 2 K N  + l)!)--"K. 

Claim 3.22 There is a positive findion f4 such that E;x[G 1 E31 5 W' - f4(N, K,V'). 

Proof: Consider a group of equivalent paths G that satisfy E3. Let 5' denote the change in 
potential over all but the last step, and let 5" denote the change in potential of the last step. 
Clearly 6 = 5' + 5". The proof of Claim 3.20 shows that Ex[S' I E3] 5 W' - f i ( N ,  K ,  V'). To bound 
6", note that in the last step in the path, the expected increase in potential of the free queues 
is at most O ( K N ) .  Also note that the increase in potential due to messages arriving is at most 
K N .  Now we bound the increase in potentid due to backoff counters and step counters of the 
non-free queues. Assuming that a queue does not fail in a send, the potential increase associated 
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with the backoff and step counters of that queue is bounded by 1 (i.e., the step counter decreases 
by I). Since E2 does not hold, a queue that sends and fails must have either Si,j,t 5 $(bi,j,t  + 1)" 
or bi,j,t 5 (WlogW)l'Q - 1. If bi,j,t 5 (WlogW)l/m - 1 then the potential increases by at most 
( W ~ O ~ W ) ~ - ~ / ( * " ) .  Otherwise, since ~ i , j , ~  5 $(bi,j,t++)Q and b;,j,t > (WlogW)'/"-l, the potential 
actually decreases on a failed send. Thus the otential increase of the last step due to queues that 
send aad fail is at most O ( K L V ( W ~ O ~ W ) ~ - ' /  P &I). D 

Claim 3.23 There is a positive fiznction f.3 such that Ex[6lEz] Pr[E2] 5 W' - f3(K, N ,  VI). 

Proof: First, we observe tkat if & , i j  is satisfied then b;,j,to > (WlogW)l/Q - 2. (To see 
this, suppose instead that bi,j,t0 5 (WlogW)l/" - 2. Then if E z , ; , ~  holds, for some t we have 
(Wlog W)l'Q - 2 2 b;,j,t 1 (Wlog W)"" - 3 (either this is true for t = to  or there is a collision at 
step t - 1). Then Si,j,t 2 L((M'logW)l/Q - 2)"J. So if Q i , j  sends after step t then Property 7 %ill 
be violated so the path will a .d .  ) 

Let E? be the set of queues Q j j  with bi,j,to > ( W 1 0 g w ) ~ / ~  - 2. 
Let 6' denote the change in potential over all but the last step and 6" denote the chuge in 

potential of the last step. Clearly 6 = 6' + 6". As in the proof of Claim 3.22, Ex[6' I E3j 5 
W f  - fl(N, fit, V'), at most KIT messages arrive on the last step, and the potentid due to backoff 
counters and step counters of queues that are not in 23 go up by at most O(KN(WlogW)l-l/('Q)) 
on the last step. Let 6"' denote the increase on in potential on the last step due to the backoff 
counters and step counters of queues in E?. 

We wish to bound Ex[6'" I &] Pr[&]. We do this as follows. For each queue Q;,j in 23, let 

bi, j,to 9 

bi,j,*o + 1, otherwise. 
if b;,j,to > (Wlog W)'jQ - 1 and ~;, j , t , ,  > (b;,j,to + 1)Q/2; b*(Qi , j )  = { 

(Note that Ez,ij will occur if ( z i j  sends with backoff counter at least b*(Qi,j) but that it will not 
occur because of &i,j sending with a smaUer backoff counter. Also note that Q i , j  will never sound 
with backoff counter bigger t h n  b*(&i,j) because it will violate Property 7 when it sends m5th 
backoff counter b*(Qi , j ) ,  so the path will end.) Let the queues in 23 be Q1,. . . , Qm, ordered such 
that b'(Q1) 2 - - -  2 b*(Qm). Ie t  S; be the event that &i attempts to send once it has attained a 
backoff counter of b*(Qi). Then 

E Q; attempts to send once it has attained backoff counter b*(Q;) then its potential increases 
by at most 

Using Fact 3.1, we find thar; if Si A then 6"' = O ( K N ( b * ( Q i )  + 1)Q-1/4). Once Qi has 
reached backoff counter b*(Qi), its step counter will be at least q(b*(Qi) + l)Q for themxt W steps, 
a d  thns Pr[Si] I 4W(b*(Q;) -+ 1)-". 
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Plugging this into the equations above, we obtain 
rn 

EX[S"IE2] 5 C ( O ( K N ( r ( Q ; )  + l)Q-i))w(b*(Qi) + 1)- 
i=l 

I o((KN)2(W(b*(Qi) + l)+)) 
1 

5 O((KN)2(W((WlogW)~~Q - 1)-") 
- < O(W/(KN)2) .  

Claim 3.24 &[E]  5 -1. 

Proof: Using the previous claims we have 

assuming W is large enough. 0 

Claim 3.25 Ex[( l )y  5 POT. 
Proof: If QrJ is a free queue or a delayed free queue then bi,j,to < B.  Therefore, the potential due 
to Qi,j increases by at most O ( ( B  + W)Q+1/2). 

Suppose that QIJ is a permanent control queue or a permanent slave, but that E~,i,j does not 
hold. Using the proofs of Claims 3.20 and 3.22, we see that the potential due to queue Q;,j increases 
by at most O( 14" . fl (-V, If, Vf) ) .  

Thus, as long i ~ s  1. is s&ciently large compared to N ,  K ,  V', B and W ,  Ex[b2 I E1 V E31 5 V. 
To bound Ex:(CiJ2 1 &] Pr(E2) we follow the proof of Claim 3.23. 

m i-1 

i=l j=1 

As before, Prl5 , )  5 :W(b*(Qi)  + 1)-O. Given that Si A Ai;: 5, 

The claim follows since POTe = Q((b*(Q1))Q+'/2) and V is sufEciently large with respect to 

This Concludes the proof of Theorem 3.1. 0 
B, W ,  N ,  and K. 0 
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A Establishing the Case 4 Conditions 
In the following case analysis, we show that if we are in Case 4 then we can split the queues into 
categories so that the Case 4 conditions are satisfied. 

First, we note that since we are in Case 4, none of properties 1-3 hold. That is, when the 
Markov chain is started in state s right before step t o  with POT(s) 2 V, there is not a backoff 
counter bi,j,to 2 2 such that with probability at least 

queue Qi, j  succeeds at least once during steps to, .  . . , to + 4 and every other queue Q;t,j t  decides to 
send on step t (for t E (to,  . . . , t o  + 4)) only if 5 8. There is a backoff counter bi,j,to 2 B, but 
for every such backoff counter, it is not the case that with probability at least 

queue Q;,j  succeeds at least once during steps to,. . . , t o  + R + 3 and every other queue Q ~ I , ~ I  decides 
to send on step t (for t E { to , .  . .,to + R + 3 ) )  only if s;tjttt 

Suppose that b;j,to 2 B. We will show that unless we are in Case 2 or Case 3, we can identify a 
solid or delayed control queue that coficts with Qi,j. In order to do so, we need some dehitions. 
We will say that a queue Q;tl,t which conflicts with Q i j  is a solid candidate if q;r,jtto+., > 0, 
sil,jl,t0+4 = 1, and (therefore) bil,jt,to+r = 0. We will say that Q;t,j t  is a delayed candidate if it 
is long and has no conflicting blocking queues and has bit,jt,to+4 < 2, and satisfies the following 
conditions. 

R2". 

1. If Q ; I ~ , ~ I  is a working queue then either q ; 1 1 , j t , ~ ~ + 4  = 1 and X ; I I ~ ~  5 1/R2, or there is a 
queue Qp,jti which does not con3ict with a blocking queue and has ~it~, j l l , t~+4 = 1 and 

2. If Q;~, j t t  is a working queue then either ~ ; t , j r t , ~ ~ + 4  = 1 and X ; ~ , j t t  5 1/R2, or there is a 
queue Q ; ~ ~ , j "  which does not codict with a blocking queue and has sp,yt,to+4 = 1 and 

We say that a solid candidate is clear if it has no codicting blocking queues and we say that it is 
unclear otherwise. Note that each client and each server has at most one candidate, so if candidates 
are made into control queues then these control queues will not codict. (To see this, note that each 
solid candidate succeeded on step t o  + 3, so solid candidates cannot codict with each other. Solid 
candidates and delayed candidates are blocking, so they cannot conflict with delayed candidates.) 
Note that clear solid candidates and delayed candidates do not confIict with blocking queues. 

We now consider the possible cases (split by the number asd type of solid candidates that exist): 

1. If there is no solid candidate then we are in Case 3. Consider the run of the chain for steps 
to, .  . . ,to + 3 that we described earlier. Suppose that on step t o  + 4, no message arrives, Qi,j 
decides to send if qi,j,t0+4 > 0, and every other queue decides to send only if it is forced. The 
probability of this event is at least (1 - X)K(5)(8)-KN4(b;,j,t0 + 5)-'2-KN. Since there are 
no solid candidates, Q ; j  succeeds if it decides to send on step to + 4. Furthermore, every 
queue &;tit other than Q;,j only decides to send on step t with sit,jtlt 5 R2&. 

2.  If Qit,jfi is a long clear solid candidate then we can make Qit,y a solid control queue. 
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3. IfQi1,jt is an unclear solid candidate and there is no other solid candidate then we are in Case 3. 
Consider the run of the chain for step to, .  . .,to + 3 that we described earlier. Suppose that 
no messages arrive OR steps t o  + 4,. . .,to + 6. If qit,jt,toG = 1, then no other queues that 

. con3ict with either Qil , i t  or Q;,j decide to send on steps t o  + 4 through t o  + 6 and after one 
step Qi',j',to+J = 0. Therefore, Q;,j can decide to send on step to + 6, and it will succeed. 
Therefore, suppose that > 1. If there is a blocking queue Qit,jt~ then Q ; t g  and Qj th j l l  

decide to send on s t ep  to  + 4 and t o  + 5. Otherwise, there is a blocking queue Q ; t ' i t .  If 
there is a blocking queue that dient-conflicts with Q;tt,jt then on step t o  + 4 Q;t~, j t  decides to 
send aad every blockin; queue that dient-conflicts with Qitt,jt decides to send. On step t o  + 5 
Qit,j l  and Qjtt,jt decide to send. Otherwise, Q;t,jt and Q;tt,jt decide to send on steps t o  + 4 
and t o  + 5. On step t o  + 6, Q i , j  decides to send if Qi,j,t0+6 > 0. On each of the steps, every 
other queue decides tc i  send only if it is forced. The probability of this event is at least 
(1 - X)K'7) (8) -K~4(~*, . i , t0  + 7)-aR-2"KN(3). Note that Qi7j  succeeds if it decides to send on 
step t o  + 6. Furthermore, every queue Q p , j t t  other than &ij only decides to send on step t 

4. If there are two unclea solid candidates, Qi,j, m d  Qit,;, then we are in Case 3. Consider the 
run of the chain for stcp to, .  . .,to + 3 that we described earlier. Suppose that no messages 
arrive on steps t o  t 4,. . . , t o  + 6. If qi,jt,t0+4 = 1 or qit,j,t0+4 = 1 then we can treat &;,it and 
Q i j , j  separately, usmg 1 he analysis of the previous case. Also, if Qi,jt codicts with blocking 
queue Q;tt,jtt and & ; t i  conflicts with blocking queue Q ; t t ~ , ~ , ~ t ,  with i" # i, illt # i f /  and iN # it, 
then again we can trez; Q i j !  and Q;t,j  separately, using the analysis of the previous case. 
Otherwise, note that if" # i, since Qi,j cannot be a blocking queue (because bi,j,to+4 2 B ) .  
Thus, for every blocking queue Qitttjttt that conflicts with Q;t , j  and every blocking queue Q i t t j m  

that con3icts with Q ; g  , either i"' = iN or i f f  = i'. Note that no blocking queue client-conflicts 
with Q;,jt in this case. 
If there is a blocking queue Q;t,jl, then suppose no messages arrive on steps to t 4,. . .,to + 9. 
On step t o  + 4, Q ~ J ,  Q ; I , ~ ,  Q;t,jt decide to send, dong with my working queues that client- 
c o d k t  with &;,.I or C'i t , j -  On step to + 5 ,  Qit,j decides to send, along with my working 
queues that server-confict with Qit,j .  (Note that after step t o  + 5 ,  any working queue Qi.,j 
that s ~ ~ - c o d i c t s  with Q e j  has ~ ; * , j , t ~ + 6  2 5.)  On step t o  + 6 and t o  + 7, Qi1,j a d  Q i ~ , j t  
decide to send, along w th any blocking queues that client-codict with Qit,j. On step to + 8, 
Qi, j t  and Qit,jr decide to send, along with any forced queues, unless 4;jt,t0+8 = 0, in which 
case just Qjt,jt decides to send. On step t o  + 9, Qi,j decides to send if q;,j,t0+9 > 0. (Note 
that no queue conflicting with Qi, j  is forced at step t o  + 9. On each of the steps, every other 
queue decides to send only if it is forced. 
The remaining possibiky is that & ; i t  coficts with blocking queue &;tt,jt and Q i t j  codicts 
with blocking queue Qitt,j such that iff # i and i" # i'. (Note that there are no other 
blocking queues that conflict with & ; i t  or Q;t?j, or the situation could have been handled 
previously.) Suppose that no messages h v e  on steps t o  + 4,. . . , t o  + 10. For t in the r a g e  
t o  + 4 5 t 5 t o  + 6, Qitt,; and Qitt,jt decide to send on step t. Q;,jt decides to send on step t if 
q;jt,t > 0 and Qi1,j decides to send on step t if git,j,t > 0. On step to  + 4 any working queue 
that client con.fticts with Q;,jt, Q j t j  or Qi.,j decides to send. On step to + 5 any working 
queues that server-conflict with or Q;,,j decide to send. On steps t o  + 5 and to + 6, any 
blocking queues that climt-con3ict with Q p , j  decide to send. If ~ i td ,~ ,+7  = 0 then we proceed 
as follows. if q;t,j,to+7 > 0 then Qit,j  and Q;tt,jt decide to send on step t o  + 7. On step t o  + 8, 
Qi,j decides to send if 4i4,to+8 > 0. On each of the steps, every other queue decides to send 
only if it is forced. (No;e that no queue that codicts with Q j i  is forced at step t o  + 8.) If 

with Sjn,jtr,t 5 Rk. 
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1 

q;1,j,t0+7 > 0 then Qi1,j and Q i t ~ , j  decide to send OR steps t o  + 7 and t o  + 8. If qil,j,tO+S > 0 
then &it,. and Qit1,jl decide to send OR step to + 9. OR step t o  + 10, Q;,j decides to send if 
qi,j,to+lO > 0.  On each of the steps, every other queue decides to send only if it is forced. 
(Note that no queue that conflicts with Q; , j  is forced at step to + 10.) 
The probability of this event is at least (1 - X)"(11)(8)-KN4(b;,j,t0 + ll)-QR-20KN(7). Note 
that every queue Q;II ,~II  other than Q;,. only decides to send on step t with s;tt,jtt,t 5 R2*. 

5 .  If Qi1, j t  is an unclear solid candidate and Q ~ I I ~ I I  is a short clear solid candidate then we are in 
Case 3. Consider the run of the chain for steps t o , .  . . , to+3 that we described ea,rlier. Suppose 
that on steps to + 4,. . . , t o  + L(R - 1)/2J + 8 no messages arrive. Suppose that on step to + 4, 
every worliing queue that client-conflicts with Q;II,,II decides to send. On step t o  + 5,  Qitt211 
decides to send and every working queue that server-codicts with Q ~ I I ~ I I  decides to send. For 
t in the range {to + 6,. . . , to  + [(R - 1)/2J + 61, Q ~ I I , ~ I I  decides to send on step t if qitt,jtl,t > 0. 
(Thus Q P ~ N  uill empty its queue by step t o  + 1(R - 1)/2J + 6}.) 

decide to send on steps t o  + 4,. . .,to + [ (R  - 1)/2J + 6 and so do any queues that client- 
conflict u-ith them and are almost forced. Q i , j  decides to send on step t o  + [ (R - 1)/2J + 7 if 
Q ; , ~ , ~ ~ + L ( R - I ) / ~ J + ~  > 0. If Qe,y server-conflicts with Qi,j and client-codicts with a blodring 
queue Q , f y  then on steps t o  + 4,. . . , to + i(R - 1)/2J + 5 ,  Q ~ I G I  and Q ~ I ~ I I  decide to send 
and so does a y  other queue that dient-conflicts with them and is almost forced. On step 
t o  + I( R - 1)/2j + 6 .  Q;l,jl decides to send and so does any queue that server-conflicts with Q;,j 
and is almost forced. On step t o  + [ (R  - 1)/2J + 7 Q i t y  decides to send and so does Q;,j if 
Q ~ , ~ , ~ ~ + L ( R - I ) , Q J + ~  > 0- 
If Q i t J #  does not client-conflict with a blocking queue then it server-conflicts with a blocking 
queue QpJ#. If QI#tJt does not client-codict with a blocking queue then on step t o  + 4 Qi, , j t  
and Q t r t j e  decide to send and nothing that client-codicts with either of them decides to send. 
If there is a u-o:king queue that client-codicts with &it,jt then Q ~ I , ~ I  decides to send on step 
t o  + 5 and so does any working queue that client-conflicts with it. Otherwise, Qit,jt does 
not decide to send on step t o  + 5. Similarly, if there is a working queue that client-confticts 
with Q I * r J l  thez Q p j t  decides to send on step t o  + 5 and so does any working queue that 
client-codicts with it. Otherwise, Q i l t j r  does not decide to send on step to + 5. On steps 
t o  + 6 , .  . ..lo - [ ( E  - 1)/2J + 6 Q;l,jt and Q;ti,ji decide to send and so does any queue that 
sen.er-cor&icts uith them and is almost forced. On step t o  + [(R - 1)/2J + 7 Q;,j decides to 
send i f & + L ( R - f ) / 2 J + 7  > 0. 
If there is a bkking queue Q;tt,jtt that dient-conflicts with Q ~ I I , ~ I  then for even f? in the range 
0 I Q I !( R - 18/21 i 4 ,  on step to+4+f?, Q i ~ t , j ~  and Qitt,jtt decide to send and any queue that 
client-coficts u+th them and is almost forced decides to send. On step t o  + 4 any working 
queue that cordicts with Q;t,y decides to send. If qp,jt,to+s > 0 then for any odd L in the 
range 0 5 1 5 i( R - 1)/2J + 4 ,  &it,? and Q p j t  decide to send. On step to + [(R - 1)/2J + 7 
or t o  + [(R - 1)/2] - 8 (whichever is of the same parity as t o  + 4), Qi,j decides to send if its 
queue is non-empty. Every other queue only sends if it is forced. The probability of this event 

steps t o  + 6 , .  . . , t o  + [(R - 1)/2J + 7 nothing that conflicts with Q;II,~II  decides to send, so it 
successfully sends its last message by step t o  + L(R - 1)/2J + 6. If Q ~ I , ~ I , ~ * + ~  > 0 then Qit,jt 

doesn't decide to send on both of steps [ (E  - 1)/2J + 7 and to  + 1(R - 1)/2J + 8. Therefore, 
if Qi, j  decides to send on one of these steps it succeeds. Fnrthermore, every queue Q p t , j t t t  

other than Q;,j only decides to send on step t with sp,jnt,t 5 R2=. 

If Qi',jl di~t-confticts with Qi , j  and with another blocking queue Qijti then Qii,jt and Q i , j n  

is at 1-t (1 - X)K(~(R-1) /2~+8) (8 ) -KN4(~ j , j , t o  + [(E - 1)/2J + 8)-QR-2QKN(1(R-1)/2J+4). On 
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6 .  If Qi,jt and Qit,j are short clear solid candidates then we axe in Case 3. Consider the 
run of the chain for si eps to,. . . , t o  + 3 that we described earlier. Suppose that on steps 
t o  + 4, . . . , 20 + [(R - 1) 12J + 7 no messages asrive. Suppose that on step to + 4, every working 

. queue that client-confIi-ts with Qj, j t  or &it,, decides to send. On step to + 5, &;,it and Qit,j 
decide to send and evqy. working queue that server-conflicts with one of them decides to send. 
For t in the range {to + 6,. . . , to + [(E - 1)/2J + 6}, Q;,jt decides to send on step t if qi,jt,t > 0 
a d  Q a , j  decides to send OR step t if qj!,j,t > 0.  On step to+ [(R-1)/2] +? Qj,j decides to send 
if qi , j , t0+~(~-1)/2~+7 > 0 .  Every other queue only sends if it is forced. The probability of this 

On steps t o  + 6,. . . , t o  e t  [(R - 1)/2J + 7 nothing that conflicts with Q;,jt  or Q;t,j  decides to 
send, so they successfnl~y sends their last messages by step t o  + L(R - 1)/2J + 6. Therefore, if 
&i,j decides to send on step t o  + [(E - 1)/2J + 7 it succeeds. F'urthermore, every queue Qitt j t t  

other than Qi,j only deides to send on step t with s;tt,jttyt 5 B2". 
7. If Qi1,jt is a short clear solid candidate and there is no other solid candidate, then there are 

many cases. In each cse,  we wiU say that a queue otheT-con.icts with Q;,j if it confiicts 
with Q j , j  but not with queue Q j i ~ .  The cases follow. 

event is at least (1 - A) "(1(R-1)/2J+7)(8)-K~4(b. :,At0 . + [(E - 11/21 + ~)-QR-~QKN(~(K-~)/~J+~) 

7a. No blocking queue other-codicts with Q;,j. We split this case up as follows. 
7al. No working 91: eue other-confIicts with Q i , j .  In this case, we are in Case 3. Consider 

the nm of the chain for steps to, .  . .,to + 3 that we described earlier. Suppose 
that on steps !O + 4,. . . , to + [ ( R  - l)/2J + 7 no messages arrive. Suppose that on 
step t o  + 4, every working queue that client-conflicts with Q j t j t  decides to send. On 
step to + 5 ,  Q;  ,jt decides to send and every working queue that server-conflicts with 
Q;t,jt decides xo send. For t in the range { to  -+ 6 , .  . .,to + L(R - 1)/2J + 61, Qit,jt 
decides to send on step t if q;,jt,t > 0. On step t o  + [(R - 1)/2J + 7 Q;j  decides 
to send if ~ i , j , t , + t ( ~ - 1 ) / 2 ~ + 7  > 0. Every other queue only sends if it is forced. The 
probability of this event is at least 
(1 - X~~(l(B:-1)/2J+7)(8)-KN4(~j4to + [(E - 1)/2J + ~)'~R-~QKN(L(R-~)/~J+~). 

On steps to  + 6 , .  - . , to  + [(R - 1)/2J + 7 nothing that codicts with Qit,jt decides to 
send, so it successfully sends its last messages by step to+  L(R-l)/2J +6. Therefore, 
if &;j decides to send on step to + [(R - 1)/2J + 7 it succeeds. lhthermore, every 
quene Qitt , j l t  other thaa Q;,j  only decides to send on step t with s;lt,,ii,t 5 R2". 

7a2. There is a working queue that other-conflicts with Q;,+ Every working queue that 
other-conflicts with Qi,j dlient-con3icts with another potentidy working queue. In 
this case, we are in Case 3. The proof is the same as that of Case 7al except that 
on step t o  + 4 every working queue Qjtt,,,, that other-conflicts with Q;,j decides to 
send, and every potentially working queue that client-coficts with Qitt,jtt decides 
to send. 

7a3. There are two working queues, Q p , j  and &itti,- that other-con3ict (asd in particular, 
server-codict: with Q;j .  Neither of them client-conflicts with a forcing queue. In 
this case we a;-e in Case 3. The proof is the same as that of Case 7al except that 
on step to + 4 every working queue that other-codicts with & i j  decides to send. 

7a4. There is a working queue Qp, j  that other-confiicts (and in particular, server-codicts) 
with Qi,j and does not client-cofict with a potentially working queue. Every other 
working queue that other-codicts with Qi,j client-conflicts with a forcing queue. In 
this Case we %*e in Case 2. Note that b ; t ~ , j , ~ ~ + ~  2 2 (otherwise Q;t~,j would be block- 
ing). Consider the run of the chain for steps to , .  . . , t o  + 3 that we described earlier. 
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Suppose that on step to + 4 no messages arrive and Q p , j  decides to send. No other 
queue decides to send unless it is forced. The probability of this event is at least 

queue Q;tt(,jftt decides to send on step t (for t E { to ,  . . . , t o  + 4)) only if Si",jttt,t _< 8. 
7a5. If there is a working queue Qi,jtt that other-conflicts (and in particular, dient- 

conflicts) with Qi,j  and does not Client-conilict with a potentially working queue 
but server-conflicts with a forcing queue then we are in Case 3. The proof is the 
same as that of Case 7al except that on step to+4, Q;J$ decides to send and nothing 
that client-codicts with the forcing queue decides to send. 

7a6. If there is a working queue Q i , ~ i  that other-conflicts (and in particular, client- 
codicts) with Q;,j and does not dient-codiict with a potentially working queue 
and does not server-codict with a forcing queue then we are in Case 2. The proof 
similar to that of Case 7a4. 

7b. There is a blocking queue which other-conflicts with Q i , j .  We split this case up as follows. 
?bl. There are two blocking queues, Qi , j t  and Q;,jtt that other-conflict (and in particular. 

client-conflict) with Qi,j- In this case, we are in Case 3. The proof is the same as 
that of Case 7al except that on steps t o  + 4,. . . , t o  + [(R - 1)/2J + 6 ,  Qi,jl and QtSJt# 
decide to send, colliding with each other and with any other queues that send that 
other-conflict with Q i , j .  On step to+ l(R-1)/2] +6, every queue that other-conflicts 
with Qi , j  and is almost forced decides to send. 

7b2. There are two blocking queues, Q;t , j  and Qi t t , j  that other-conflict (and in particular. 
server-conflict) with Qi,j- Thereis no blocking queue that dient-conflicts Tith either 
of these queues. In this case, we are in Case 3. The proof is the same as that of 
Case 7al except that, if there is a working queue that Client-conflicts with Q,..) 
then it sends on step to + 4 and &its sends on step to  + 4. Otherwise, Q ~ I , ~  doesn't 
send on step t o  + 4. Similarly, if there is a working queue that client-conflicts with 
Q j t t j  then it sends on step t o  + 4 and Q p , j  sends on step t o  + 4. Otherwise. Q t r l J  

doesn't send on step t o  +4. On steps t o  + 5 , .  . . , t o  + [(R - 1)/2J + 6 ,  Qj,? and QaJ,, 
decide to send, colliding with each other and with any other queues that decide to 
send that other-conflict with Qi, j .  On step t o  + [ ( E  - l)/2J + 6, every queue that 
other-codicts with Q i j  and is almost forced decides to send. 

7b3. There is a blocking queue &it,. which other-conflicts (aad in particular. server- 
conflicts) with &;,j and there is a blocking queue Q;p,j,. In this case, we are in Case 3. 
The proof is the same as that of Case ?a1 except that on steps to + 4,. . .,to i \( R - 
1)/2] $ 5  Q j t j  and Qjtjt decide to send. On step to+  [(R-1)/2] $ 5  any queue QavJ*, 
which is almost forced decides to send. On step t o  + [(R - 1)/2J + 6 QilJ decides 
to send and any queue Q p j  which is almost forced decides to send and no othe: 
queue Qit,j~l decides to send. On step to  + [(R - 1)/2] + 7 ,  Qit,jt decides to send. 

7b4. There is a blocking queue Qi,jt which other-conflicts (and in particular, dient- 
conflicts) with Qij .  It does not client-conflict with any other blocking queue. It 
server-conflicts with the blocking queue Qitjt.  Q;t,jt does not client-conflict with 
any other blocking queue. In this case, we are in Case 3. The proof is similx to the 
proof of Case 7b2.  

7b5. There is a blocking queue Q;,jt which other-conflicts (and in particular, client- 
codicts) with &;,+ It does not client-cofict with any other blocking queue. It 

(1 - A) K5 8 -KN4 (bi,j,to + 5)-a2-KN. Qitt,j  succeeds on step t o  + 5 and every other 

. 

server-conflicts with the blocking queue Q j t j t .  Qitdt client-ccdlicts with blocking 
queue Qit,jtt. In this case, we are in Case 3. The proof is the same as that of Case 7al 
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except that if there is a working queue that client-conflicts with Qi , j~  then it sends 
on step t o  + 4 and Qi,jt sends on step step t o  + 4. Otherwise, Q;g does not send on 
step t o  + 4. For even 1 in the range 0 5 1 5 [(R - 1)/2] + 2,  Q ; t , j ~  and Q;I ,~ I I  both 
send, and so does any queue Q j l j ~ t  which is h o s t  forced. For odd 1 in the range 
0 5 1 5 [(R - 1)/2J + 2, on step to + 4 + 1, nothing that client-conflicts with Q ~ I ~ I  

sends. a i d  Q;i t  both send. 
7b6. There is a short blocking queue Qp,jt that other-conflicts with Q i , j .  Qit,j~ does not 

con3ict with any blocking queues. In this Case, we are in Case 3. The proof is the 
same as the proof of Case 6, because queue Qin,jJ can be treated as a short clea 
solid Candidate. 

7b7. There is a long blocking queue Qit,jl that other-conflicts with Q;,j. Qil,jl does not 
con3ict with s l y  blocking queues. bil,jl,h+4 2 2. In this case we are in Case 2. The 
proof is similar to that of Case 7a4. 

7b8. There is a lorg blocking queue Q i ~ j t  that other-conflicts with Q i , j .  Q; tg  does 
not conflict with any blocking queues. bil,jt,to+4 < 2. Q ~ I , ~ I  satisfies the following 
conditions : 
1. If Q ~ I I , ~ I  is a working queue then either qit1,j1,t0+4 = 1 and Ai~t,jl 5 1/R2, or 

there is a queue Q i t ~ , j ~ t  which does not conact with a blocking queue and has 
~ ; r t , j l l , t ~ + 4  =: 1 and 

2. If Q i ~ , j ~ t  is a working queue then either q i ~ , j t t , ~ ~ + ~  = 1 and A;I$I~ 5 1/R2, or 
there is a queue Q p y  which does not conflict with a blocking queue and has 
~p,j11,t~+4 =: 1 and 

We conclude t.iat Q;t,jt is a delayed candidate. Note that if there is a delayed 
candidate Qg, j~  then we can make Qit,jl a delayed control queue. If Qit121 is work- 
ing and qitt,jt,t0+4 > 1 or Xi"jt,to+4 > 1/R2 then, there is a queue Qi~t,jt~ which 
does not con%:t with a blocking queue and has S ~ I I ~ I I , ~ , , + ~  = 1 and qit1,jt1,to+4 2 
min(R/2, s;i,jt,t,,M - 2, ~i",jl,to+4 - 1). We make Qitt,jn a solid control queue if it 
is long, and a temporary control queue otherwise. (Note that Q;~I,,II is blocking, 
so it doesn't ccadict with a candidate.) If Q i ~ , j t ~  is working and q i ~ , j ~ t , t o f 4  > 1 or 
Xit,jitrt0+4 > 1/1Z2 then, thereis a queue Qill,jlt which does not conflict with a blocking 

As before, we =.&e Q p j ~ t  a solid control queue ifit is long, and a temporary control 
queue otherwistt. 

7b9. There is a long blocking queue Qit,jl that other-conflicts with Q;,j. Q i ~ , j t  does not 
cordict with any blocking queues. Q;tr , j r  is a working queue such that (4itt,i1,tO+4 > 1 
or X p , j  > l /Rz) and there is no forced queue Qitt j~l .  (Or, similarly, Qit,jIt is a 
working queue such that (~il,jll,to+4 > 1 or Xiljtt > l/Bz) and there is no forced 
queue Qp,jn.) Then we are in Case 3. The proof is the same as that of Case 7al 
except that on jtep to  + 4, Qi",j; decides to send and nothing that confiicts with it 
decides to send. As of step to + 5, &p,jl is a blocking queue. Thus, we are in one of 
the cases 7bl-7b5. (As in Cases 7b2,7b4 and 7b5, if there is a working queue that 
client-corrflicts with Qiljt then it sends on step to + 4 (while Q i ~ t j ~  is sncceeding) 
and Q ~ I , ~ I  sends on step t o  + 4. Otherwise, Qi~,jt doesn't send on step t o  + 4. Now if 

queue and has : i i / l , j l ~ , t ~ + 4  = 1 and qilt,jtl,to+4 3 min(R/2,~p, j i , t~+4 - 2 ,  sji,jii,toH - 1). 
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there is a working queue that client-conflicts with Qi11,jt then we start at step t o  + 4 
of those cases. Otherwise, we start at step to  + 5.) 

7b10. There is a long blocking queue Qiijl that other-confiicts with Q;,j. Qir,jl does not 
codict with any blocking queues. Q ~ I I , ~ I  is a working queue such that ( q i ~ , , j ~ , t o ~  > 1 
or X i t ~ , j  > 1/E2) and Q ~ ~ I , ~ I I  has S;ll,j1J,to+4 = 1 but it conflicts with a blocking 
queue Q’. (Simihrly, Q~, ,~I I  is a working queue such that (qir,jrl,to+4 > 1 or X;I,,U > 
1/B2) and &i”,jIr has s j ~ ~ j ~ ~ , t ~ + 4  = 1 but it conflicts with a blocking queue Q’. ) 
Then we are in Case 3. The proof is the same as that of Case 7al except that on 
step to+& &’ decides to send (and collides with Q;~t,p). On step to+5 Q p j ~  decides 
to send and nothing that conflicts with it decides to send. As of step to + 6, Q p g  
is a blocking queue. Thus, we are in one of the cases 7bl-7b5 as in case 7b9. 

7bll. There is a long blocking queue Q ~ I J  that other-conflicts with Q;,j. Q ~ I , ~ I  does 
not conflict with any blocking queues. For every working queue Q ~ I I , ~ I  such that 
~ i ” , j t , t 0 + 4  > 1 or Ailt,y > 1/R2 (there is at least one such Q p g ) ,  there is a forced 
queue Q~II,,N that does not collide with any blocking queue and has qirl,jtf,to+4 < 
min(R/2, sil,j1,to+4 - 2, s ; ~ , j ~ , t ~ + 4  - 1). (Similarly, For every working queue Q;t ,y 

such that qjl,j11,~~+4 > 1 or X i t , y  > 1/R2 (there is at least one such Qit,jt~), there 
is a forced queue Q ~ I ~ , ~ I I  that does not collide with any blocking queue and has 
qp , j t1 , t~+4  < min(R/2, sjr,j1,tO+4 - 2 3 s.1, 2 3 ,  -11 to+4 - 1). ) Then we are in Case 3. The 
proof is similar to that of Case 7al except that on step t o  $4 all workers Qpt,jl with 

queues that are described above decide to send and every working queue that client- 
conflicts with one of the forced queues and is almost forced decides to send. If one 
of the forced queues, Q j r t j t t  has a collision on a step, then, on the next step, Qjrt,j~ 
decides to send and none of the queues that codict with Q ~ I I , ~ ,  decides to send. 
Otherwise, one of the forced queues, Q p , ~ t  exhausts its queue and on the next step 
Qill,jl decides to send and none of the queues that conflict with Q ; I I , ~ I  decides to 
send. Q p , j t  is then a blocking queue and so we are in one of the cases 7bl-7b5 as 
in Case 7b9. 

q;”’ , 3 ,  ‘I t o+4 = 1 and X p j t  5 1/R2 decide to send. On every step d of the forced 

If none of the big backoff counters put us into Case 2 or Case 3, then the control queues that we 
identify by considering the above cases do not codict and therefore we can divide the queues into 
categories such that all of the Case 4 conditions are satisfied. 
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